
A Mobility-Adaptive TDMA MAC for Real-time
Data in Wireless Networks

Johannes Lessmann and Dirk Held

University of Paderborn, 33102 Paderborn, Germany
{lessmann, madmax}@upb.de

Abstract. In this paper, we present a TDMA MAC protocol for scenar-
ios with real-time traffic like voice streams. While many previous works
assume stationary networks, DynaMAC can quickly adapt to changing
topologies while not violating delay guarantees for even a single data
packet with high probability. By intelligent data aggregation, DynaMAC
also accounts for the fact that the large synchronization preambles of
high-speed PHYs make transmissions of very small packets like voice
samples extremely inefficient. Further, it introduces a novel segmenta-
tion concept, which results in a discrete set of potential per-node delay
guarantees, which can be exploited by higher layers to balance the end-
to-end delay of routes with different lengths. Finally, the slot allocation
strategy tries to ensure a contiguous placement of unassigned slots, so
that larger best-effort packets can be efficiently transmitted with a min-
imum of fragmentation. We validate our propositions with expressive
simulations.

1 Introduction

In cases of QoS sensitive traffic, an alternative to contention-based MAC proto-
cols are TDMA MACs. The challenge with TDMA is to create an access schedule
for the wireless medium. If the assigned slots are non-overlapping within the two-
hop neighborhood of each node, all packets can be sent without risk of collisions.
TDMA MACs also naturally lend themselves to periodic real-time traffic like
voice or video streams for two reasons. First, they can maintain an established
quality level (delay, bandwidth) even if the network load increases. Second, the
overhead associated with allocating slots before actually transmitting is afford-
able since periodic traffic will make use of the same slots for a comparatively
long time therefore making up for the initial cost.

While many existing TDMA protocols are designed for sensor networks and
assume that the nodes do not move (much), our proposed protocol, DynaMAC,
can efficiently handle changing topologies. With high probability, it can not only
recover from mobility-induced packet collisions without dropping a single packet,
but even uphold the delay guarantees for collided packets.

Another issue, that we explicitly address is the fact that the PHY preambles
can be very large compared to individual real-time data packets. A modern
voice codec like G.729 [1], for example, produces 40 voice packets per second with



2

approximately 200 bit per sample. When transmitted with a high-speed PHY like
802.11g at full speed (54 Mbps), this implies a packet length of approximately
4 µs. Compared to the PHY overhead of 26 µs per packet, this results in a
goodput reduction of about 86%. With 802.11b, which has a preamble of 192
µs, the overhead at 11 Mbps would be 98%. We therefore propose to aggregate
real-time samples first on a per-sender, then on a per-receiver basis to utilize the
channel more efficiently.

We finally introduce a novel segmentation concept that allows DynaMAC
to offer higher layers (most importantly the routing layer) not only one, but
multiple per-node delay guarantees from which they can choose. That way, QoS
routes which require many hops on the routing level, can make use of very small
per-node delays while short routes are free to choose a more relaxed delay offer.
This greatly helps to achieve common end-to-end delays even among routes of
different lengths. Traditionally, end-to-end delays are somewhat proportional
to the hop count. With DynaMAC, packets on routes with many hops can be
routed “faster”. Common end-to-end delays are particularly desirable for voice
conversations where values of more than 250 ms are not tolerable no matter how
many hops the required route might have.

The remainder of this paper is organized as follows. Section 2 discusses pre-
vious TDMA MAC protocols and their shortcomings. In Section 3, DynaMAC is
described in detail. Section 4 shows DynaMAC’s performance using simulation
results. We conclude in Section 5.

2 Related Work

Many works have been published in the domain of QoS MACs. Here, we confine
ourselves to TDMA approaches. In USAP [2], the author presents a slot allo-
cation scheme where time is divided into frames of variable length. The length
of a frame depends on the node density in the neighborhood. When there are
many neighbors, the frame length must be doubled to create new transmission
opportunities. Unfortunately, [2] does not specify how exactly slots are to be al-
located and is also vague as to the details of frame doubling. In [3], the authors
try to improve on USAP. Time is again divided into frames where the first slot
is always unoccupied. When a new node needs a slot and no unassigned slot
can be found, it eventually doubles its frame length (number of slots per frame),
copies the schedule into what is now the second half and claims the first slot
in the second half. Mobility-induced conflicts are also resolved by doubling the
frame length. One conflicting node takes the original slot, the other one claims as
described above. Effectively, this approach halves the transmission opportunities
for the conflicting slot. This makes it unusable for real-time streams with fixed
periodic traffic which we consider in this paper.

In LMAC [4], each node owns exactly one slot in every frame. In the control
part of its messages, a node announces the intended recipient for the current
message. All nodes must listen to the control part of their neighbors to know
whether they are the recipients or not. This approach does not make sense for



3

small slot sizes like the ones appropriate for real-time samples, since that would
imply constant idle listening of all nodes even when they are rarely involved in
any actual communication.

DRAND [5] has a schedule allocation strategy which is somewhat similar to
ours (allocation by negotiation, schedule propagation). However, DRAND as-
sumes that this schedule has to be constructed only once and for all, it does not
provide any method to change or repair schedules. It is explicitly targeted at sta-
tionary networks and not applicable to changing mobility. Besides, DRAND does
not specify how messages for the initial schedule construction must be exchanged
(contention-based or according to some preliminary schedule). Therefore, it is
hard to compare its performance with that of DynaMAC, since the initial con-
struction might take any amount of time.

None of the previous TDMA protocols can efficiently meet the requirements
imposed by periodic real-time traffic with very small samples in a dynamic net-
work of constantly moving nodes. Additionally, our proposed approach of frame
segmentation which allows us to uphold delay guarantees even in the face of
mobility-induced collisions is completely novel.

3 Architecture of DynaMAC

In DynaMAC, time is divided into cycles (frames). The length of a cycle depends
on the rate of the (CBR) real-time traffic that is to be supported. A voice codec
like G.729 produces 40 packets per second, i.e. one packet every 25 ms. To
support this kind of traffic, the cycle length should therefore be 25 ms. If a
mixture of real-time traffic types with different rates is to be routed, the least
common multiple must be selected for the cycle length. A cycle is divided into
a number lcyc of slots.

On a higher abstraction level, a cycle consists of a random phase and a
scheduled phase. The slot count lrnd of the random phase is small compared
to that of the scheduled phase. The random phase is accessed using CSMA
without exponential backoffs and used to exchange control data like topology
information, slot allocations or, to some extent, best-effort traffic. The scheduled
phase is accessed according to the TDMA schedule and accomodates the real-
time traffic and all best-effort traffic which could not be already transmitted in
the random phase. It is divided into sc segments of equal size, i.e. each segment
has lseg = lcyc−lrnd

sc slots. At the end of each segment are lbuf dedicated buffer
slots which are used for collision resolution as will be described later. Finally, to
allow new nodes to easily synchronize with their neighbors, the random phase
is started with one synch slot. Each node u sends a synch beacon in this slot
with probability ρu = 1

nu+1 where nu is the number of neighbors of u. Figure 1
depicts the structure of a DynaMAC cycle.

3.1 Timing Parameters for the Medium Access

Random Phase For the whole random phase, all nodes must switch to listening
mode. The random phase is accessed using CSMA without backoff. A node that



4

Fig. 1. Structure of a DynaMAC cycle (frame). The numbers in brackets are sample
values which are assumed for explanation purposes in this paper.

wants to transmit computes a random slot number from the random phase and
sends. In case of collisions, packets must be resent. To detect collisions, nodes
which could not successfully receive a message in the random phase have to
broadcast a NACK message a SIFS after the message. SIFS means “Short Inter-
Frame Space” and is adopted from the 802.11 standard. In addition to NACK s,
unicast messages are acknowledged by the recipients with an ACK.

Scheduled Phase In the scheduled phase, nodes sleep whenever they are not
scheduled from transmission or receiving. Since a particular node u may be
scheduled to send in slot s and receive in slot s + 1 or vice versa, a slot must
not be occupied completely, but a SIFS must be left free at the end of each
slot to allow the node’s radio to switch the radio mode. When mobility-induced
collisions occur (cf. Section 3.5), the receiver v must be able to send a NACK to
the sender u so that the situation can be resolved. Instead of sending a NACK
as a direct reply (which would consume a lot of time in every slot), the NACK is
piggybacked in the next message which is sent by v anyway. Since u knows the
schedules of all of its one-hop neighbors, it can correctly identify the slot where
to expect a potential NACK message and switch to listening mode accordingly.
Since space must be reserved for the NACK s statically (regardless of whether
they are actually sent or not), we also piggyback ACK s for confirmation of
successful receptions. That way, a successful transmission can be distinguished
from the case where the recipient has moved out of the sender’s transmission
range.

3.2 Data Aggregation

As already indicated in Section 1, real-time stream samples can be very small
compared to the synchronization preamble of the 802.11 PHY (which we contin-
uously consider in this paper). Hence, transmitting only one sample per packet as
a general rule is unacceptable. To our knowledge, we are the first to consider full
data aggregation in the context of multi-hop TDMA MACs with delay-sensitive
data.

In DynaMAC, we try to combine all samples for which a node u is the
sender into one packet. If a packet becomes too large for one slot, u tries to



5

allocate a neighboring slot so that fragmentation can be avoided. This means
that a packet will generally have multiple receivers, namely all nodes, for which
a sample is included in the aggregated packet. Hence, all receivers of a packet
must listen for u at the particular slots where u transmits. To be able to do
so, u must notify its recipients to listen before transmitting by a message in
the random phase. In Section 3.3, we will introduce the segmentation concept
of DynaMAC. A DynaMAC cycle is divided into several segments to provide
different delay bounds. There, we will see that our data aggregation is actually
done independently for each segment. Hence, packets contain only those samples
for which a node u is the sender and which are scheduled for the same segment.

3.3 Per-Node-Delay Guarantees

In a TDMA MAC, the per-node delay is given by the time difference between the
slot when a sample is received by a node u and the slot when it is forwarded by
u to the successing hop. Consequently, in a TDMA MAC, where slots are allo-
cated conflict-free, it is principally possible to require (and guarantee) per-node
delays in a very fine-grained manner. However, our data aggregation strategy
makes this kind of fine-grained approach very counterproductive, since aggrega-
tion relies on a certain amount of streams that can be combined. Consequently,
since data aggregation is an absolutely essential part of DynaMAC to improve
the goodput (cf. Section 3.2), we propose segmentation as a compromise to rem-
edy the problems discussed above. We divide a DynaMAC cycle into a set of
sc distinct segments. Guarantees are only given in terms of segments. Within
segments, data aggregation can be performed. When we guarantee delivery only
for the end of the segment, we do not need to make any statement as to the
specific slot in the segment which we chose for transmission. The segmentation
constitutes a good combination of the advantages of data aggregation, on the
one hand, and fine-grained delay guarantees, on the other hand.

3.4 Slot Allocation

Generally, the goal of the slot allocation strategy is to construct and maintain a
conflict-free schedule. We start by explaining the smallest case of just two nodes.
Eventually, one of them (say u) will hear the synch beacon of the other one (say v)
and synchronizes its cycle to that of its neighbor. Since u does not know whether
v is also new to the network or not, it sends a Schedule Request (SR) packet to
v. Since v is unaware of any other node, it replys with a Schedule Update (SU )
packet without any allocated slots. Both nodes can then independently allocate
their initial slots. The node with the higher ID chooses the first two slots in the
first segment, the other one takes the first two slots in the second segment. We
call the initial double-slot of a node its default slot. Note that the default slot
is always a sending double-slot, because it is used to reliably broadcast some
control data like SU packets (see below) or NACK s.

If additional nodes join the network, they will eventually receive a non-
collided synch beacon from one of the existing nodes which allows them to



6

synchronize with their neighbors. They can then broadcast an SR packet in
the random phase. Since now a schedule is already in place, all nodes which
hear the SR packet reply with an SU packet that contains a bitmask in which
each slot of the scheduled phase is represented by one or two bit. The first bit
indicates whether the corresponding slot is allocated or not. If it is allocated,
there is a second bit for that slot which indicates whether this slot is claimed
by the sender of the SU packet itself or by one of its one-hop neighbors. The
SU packets are sent in the default slots of each node. This is done to relieve
the random phase from as much burden as possible. Since new nodes are always
in listening mode until they have established their own default slots, the packet
will certainly be received by the new node.

When the new node receives the SU packets from its neighbors, it computes
their disjunctive combination to determine the set of unassigned slots in its
two-hop neighborhood. Then, it picks the first free slot and broadcasts a Slot
Allocation (SA) message with an “unapproved” flag in the next random phase
indicating its slot selection. When no disapproval is sent by any neighbor, the
new node sends the same SA message again, this time with an “approved” flag.
The neighboring nodes receive the second SA message and in turn propagate
it to their one-hop neighbors in their default slots in the next cycle, so that
eventually, all two-hop neighbors are aware of the new slot allocation and can
update their internal schedules. The same procedure applies for established nodes
to get additional slots.

When two one-hop neighbors want to allocate the same slot in a random
phase, one node will be earlier, and, since all nodes are listening, the other
node can hear the conflicting allocation and claim another slot. If two two-hop
neighbors u and v claim the same slot, there will always be some node w which is
a one-hop neighbor to both u and v and therefore hears both nodes’ SA messages.
Hence, w sends an SU message to the node with the lower node ID, say u, which
includes the new slots allocated by v. Node u interprets this as a disapproval
and must send a new SA message (unapproved) with different slot allocations.
This procedure is repeated until all allocation request are satisfied. When a
node wants to release a slot that it previously allocated, the same procedure as
described in this section can be utlized.

3.5 Mobility-Induced Collisions

When nodes are moving around, it is possible that two nodes which were more
than two hops apart when the current schedule was negotiated, approach each
other and therefore become part of each other’s two-hop neighborhood. When
these nodes have conflicting slot allocations (which was not a problem previ-
ously), there can be collisions. We resolve this problem as follows. When packets
of two nodes u and v collide in slot s, one or both recipients will send a NACK
in their next sending slot (i.e. collision-free). Then, one or both of u and v im-
mediately choose a buffer slot located at the end of the current segment and
retransmit the packets. If a collision occurs in the buffer slot again (other nodes
could also have chosen the same buffer slot due to independent collisions), a



7

Fig. 2. (a) Successful delivery rate of 802.11 DCF and DynaMAC under increasing
load. (b) Successful delivery rate of DynaMAC with and without buffer slots under
increasing load.

new buffer slot is computed using a linear congruential generator with the triple
(sender ID, current slot number, original slot number) as its input. Eventually,
all conflicting nodes will have sequentialized. Since buffer slots are only used for
collision resolution, chances are very high that any (even the first) retransmis-
sion in a buffer slot is successful. Since in DynaMAC, per-node delay guarantees
are only given in terms of segment ends (cf. Section 3.3), a retransmission in a
buffer slot at the end of the original segment does not violate the delay guaran-
tee. This is another advantage of our proposed segmentation concept. Generally,
the larger the delay between incoming and outgoing slot for a packet, the more
buffer slots are in between and the more likely is it that a retransmission within
the guaranteed delay will succeed.

4 Simulation Results

We simulated DynaMAC using ShoX [7]. For the simulation, we chose the Dyna-
MAC parameters which we also assumed throughout this paper. The simulated
network consisted of 100 nodes randomly distributed in an area of 50 × 50 m.
The length of a stream is chosen randomly with a maximum of 15 seconds. For
signal propagation, we used the unit disk model with a radius of 20 m. To as-
sess the quality of DynaMAC, we compared it to the 802.11g DCF (Distributed
Coordination Function) MAC in ad hoc mode. Our desired end-to-end delay is
100 ms.

Figure 2(a) shows the delivery rate of the 802.11 DCF MAC and DynaMAC
under different network loads in a static network. The network load is given in
terms of the number of concurrent streams in the network. As can be expected,
the 802.11 DCF MAC performs poorly with timely delivery when the load in-
creases. When the number of streams exceeds 30, less than half of the packets
are delivered on time. This is due to the fact that, since there is no data aggre-
gation in 802.11, a number of 40 streams implies that there are actually 1600
sample packets per second which compete for the medium. DynaMAC, on the
other hand, delivers 100% of the packets regardless of the current load. This



8

is because of the fact, that the routing layer reserved the complete path be-
tween source and destination before sending any sample packets. Collisions due
to mobile nodes are covered below.

We measured the impact of our buffer slot concept in order to evaluate and
demonstrate its benefits. For that, we induced collisions artificially by having
the nodes broadcast interfering sample streams in arbitrary slots. This strategy
allows to induce collisions without the need to move nodes, i.e. without routing
layer issues. Figure 2(b) clearly shows the benefit of our buffer slot strategy. If no
buffer slots are used, all collided packets get lost as long as an interfering “colli-
sion stream” lasts. With buffer slots, however, the delivery ratio almost remains
at 100 %. The few exceptions are due to situations when multiple collisions of
independent streams occur at the same time and different nodes try to switch
to the same buffer slots.

5 Conclusion

In this paper, we have presented DynaMAC, a novel TDMA MAC protocol for
delay-sensitive data. It is one of the few TDMA MACs which consider mobility
of nodes. DynaMAC even allows to uphold packet delay guarantees in the face of
constantly moving nodes. DynaMAC also greatly increases the network goodput
when it comes to small real-time samples. We have proposed a novel segmenta-
tion concept as an excellent compromise between fine-grained delay guarantees
and data aggregation. Our proposition to provide buffer slots at the segments’
ends and give delay guarantees only in terms of segment ends achieves useful
flexibility for DynaMAC to shift outgoing slots back and forth within the whole
delay guarantee period, thus enabling optimal inter-segment aggregation.

References

1. International Telecommunication Union, Recommendation G.729, http://www.itu.
int/rec/T-REC-G.729/en

2. D. Young, USAP Multiple Access: Dynamic Resource Allocation for Mobile Multi-
hop Multichannel Wireless Networking, IEEE Military Communications Conference
Proceedings, 1999

3. A. Kanzaki, T. Hara, and S. Nishio, An Efcient TDMA Slot Assignment Protocol
in Mobile Ad Hoc Networks, Proceedings of the 2007 ACM symposium on Applied
computing (SAC), 2007

4. L. van Hoesel and P. Havinga, A Lightweight Medium Access Protocol (LMAC)
for Wireless Sensor Networks, First International Workshop on Networked Sensing
Systems (INSS), 2004

5. I. Rhee, A. Warrier, J. Min, L. Xu, DRAND: Distributed Randomized TDMA
Scheduling For Wireless Ad-hoc Networks, ACM MobiHoc 2006

6. V. Rajendran, J. Garcia-Luna-Aceves and K. Obraczka Energy-Efficient,
Application-Aware Medium Access for Sensor Networks, 2nd IEEE Conf. on Mo-
bile Ad-hoc and Sensor Systems (MASS), 2005

7. The ShoX developers, ShoX - scalable ad hoc network simulator, http://shox.

sourceforge.net


