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Abstract. Authentication over a network is an important and difficult problem.  

Accurately determining the authenticity of a node or user is critical in 

maintaining the security of a network.  Our proposed technique covertly 

embeds a watermark, or identifying tag, within a data stream.  By implementing 

this model on a LAN and WLAN we show that this method is easily adaptable 

to a variety of networking technologies, and easily scalable.  While our 

technique increases the time required for data to be transferred, we show that 

the throughput of the link during the brief authentication window is decreased 

by no more than 8% in a switched LAN and 11% in a WLAN.  During our 

empirical analysis we were able to detect the watermark with 100% accuracy in 

both a LAN and WLAN environment. 

1 Introduction 

With the large amount of network applications in existence today, it is becoming 

increasingly difficult for network administrators to police the traffic on their 

networks.  Additionally, these network applications are increasingly carrying sensitive 

information; as the sensitivity of the information traversing the network increases, so 

too must the level of security within the network. 

 A key step in securing a network is the authentication of all nodes1 on that 

network.  Authentication of nodes allow perimeter devices the ability to determine if a 

node's requests should be granted.  Reliable node authentication helps to ensure the 

basic elements of network security: positively identifying a node, allowing that node 

specific access privileges, and holding that node accountable should it compromise 

the security or productivity of the network. 

 Leading industry approaches, such as Cisco’s AAA Server and Cisco's NAC 

model [1], rely on user name/password, S/Key, Token Cards or system profiling to 

authenticate users.  While all of these methods provide a reasonable level of security, 

each are expensive and have been shown to have flaws [2,3].  Additionally, simple 

                                                           
1 Authentication relating to nodes can easily be extended to users.  When referencing nodes, 

unless otherwise noted, the statement applies to nodes and users. 



access control lists have proven to be ineffective as spoofing IP and MAC addresses 

is a trivial task, allowing attackers to easily gain access to systems and networks. 

 By not requiring strict node authentication, joining a network is a trivial 

matter.  An attacker may obtain a physical connection to a network, enter the network 

through a wireless access point, circumvent 802.1x via phishing or other known 

exploits, or access the network via a VPN connection.  By requiring each node joining 

the network to authenticate itself, the overall security of the network is increased 

making systems within the network harder to breach. 

 We propose to embed a watermark, or signature specific to a node, within a 

data flow using inter-packet delay.  The watermark will be embedded between select 

packets in a covert manner, such that it is difficult to detect and does not decrease the 

throughput of the link significantly.  Our model can be used to supplement the above 

methods or be used as a standalone method of authentication.  Our technique does not 

require synchronization between the nodes' clocks, and can easily be adapted for user 

authentication. 

 We acknowledge that our proposed method, a method advocating security by 

obscurity, is not an impervious solution but assert that the additional layer of security 

increases the difficulty for an attacker.  We believe that providing authentication in a 

covert manner adds the same level of benefit one achieves when changing an internal 

server’s (sftp, ssh, etc.) port from a well-known port to a random port.  The attacker 

would require not only a technique by which to break into the server (e.g., a buffer 

overflow attack, etc.), but must also find the server, via port scanning, over a range of 

64,000 ports without being detected.  Further, this work evaluates performance of 

using timing channels in general to transmit data.  Our specific application of this 

method uses this channel to communicate authentication information. 

 The remainder of this paper is organized as follows: Section 2 reviews 

related work, Section 3 details the covert timing channel model, Section 4 outlines the 

experimental setup and procedure, Section 5 provides analysis on the model, Section 

6 provides experimental data, and Section 7 contains our conclusions and future work. 

2 Related Work 

The idea of using inter-packet delay (IPD) for node identification is not necessarily 

new.  There have been several different applications regarding the use of IPD in 

recent academic research.  The majority of the work focuses on the detection of 

stepping stone connections (i.e., intermediate systems attackers use to launch attacks 

and insulate themselves from detection), with most solely considering interactive 

(SSH) traffic. 

 The authors of [4] extend the work done in [5,6] to detect a correlation 

between stepping stones.  In [4], the authors use a binning technique to partition the 

data stream allowing the encoded watermark a greater level of robustness against 

timing perturbations and repacketization within the stepping stone links. In [7], the 

authors extend the work of [8] in an effort to defeat chaff packets (e.g., structurally 

correct packets inserted within the data flow to obfuscate a pattern) that may be 

inserted by a node within the stepping stone chain.  This is done by decoding 



watermarks from all possible subsequences of a downstream flow, and choosing the 

“best” watermark (defined as the watermark with the least hamming distance from the 

original watermark). 

 Peng, et al. [9] investigate the secrecy of active watermarking.  The authors 

develop an attack technique that infers important parameters of the watermarks, and 

also recovers and duplicates watermarks through the stepping stones.  The authors of 

[10] attempt to detect stepping stone connection correlations of SSH traffic by 

creating a logical partition between ON and OFF periods of usage.  By examining the 

IPD of connections and determining if the OFF period transitions to an ON period 

within a certain threshold, it can be reasonably stated that these connections are 

related.  It is interesting to note that this is an entirely passive technique. 

 In [11], provable upper bounds are set on the number of packets required to 

confidently detect encrypted stepping stone streams with proven guarantees of a low 

false positive rate.  The methods in [11] also take into consideration the usage of chaff 

packets, and provide bounds on the amount of chaff needed by the attacker to evade 

detection.  The model proposed by [12] is similar to that of [11], with the addition of 

wavelets.  In [12], the authors attempt to differentiate between the short term behavior 

of the stepping stone streams, where timing perturbations and chaff packets can mask 

the correlation between connections, and the long term behavior of stepping stone 

streams.  

Wang and Reeves [5] propose a watermark-based scheme that can detect 

correlation between streams of encrypted traffic.  However, the assumption is made 

that the attackers timing perturbations are independent and evenly distributed.  Should 

the traffic be disturbed in another fashion, such as with the insertion of chaff packets, 

their method will show a decrease in accuracy. Zhang, et al. [13] provide an upper 

bound on the number of packets required to detect attackers in stepping stone 

networks when chaff packets and timing perturbations exist simultaneously. 

 The authors of [14] show that VoIP encoding scheme can easily contain a 

covert channel by altering the least significant bit.  They provide analysis on the 

bandwidth and the amount of data transferred.  Wang, et al. [6] show that encrypted 

VoIP calls hidden through an anonymizing network can still be traced, using a 

technique similar to that of Paxson [10]. 

Only tangentially related to our work, the authors of [15] studied the loss of 

anonymity in a flow-based wireless mix network under flow marking attacks, in 

which an adversary embeds a pattern of marks into wireless traffic flows by 

electromagnetic interference. They asserted that traditional mix technologies are not 

effective in defeating flow marking attacks in wireless networks. They proposed a 

new countermeasure based on digital filtering technology.  The authors of [16] 

introduce a covert timing channel model based on the presence or absence of packets 

arriving during a specific time period.  The authors attempt to detect this covert 

timing channel over IP using a similarity comparison between packet inter-arrival 

times. 

 The concept of covert channels was first introduced by B. Lampson in 1973 

[17].  Covert channels at the network and transport layers in TCP/IP were first 

investigated by Rowland [18] and Fisk, et al. [19].  Currently software such as 

Covert_TCP [19] and Nushu [20] are available to hide data within TCP headers.  

Project Loki [21] has also shown that ICMP packets are capable of carrying covert 



information within their headers.  By moving the covert channel to the application 

layer, detection of covert channels becomes even more difficult.  It was discussed in 

RFC 3205 [22] that HTTP be used as a carrier for other protocols; this was obviously 

meant for the covert encapsulation of the protocols.  Several tools are also available to 

tunnel protocols through HTTP, like Lars Brinkhoff's httptunnel [23], primarily for 

the purpose of evading firewalls. 

 The predominate focus of these works, with the exception of [6,14-19,21-

22], are on detection of stepping stones using SSH style traffic.  SSH traffic can be 

classified as high-latency traffic, caused by user pauses in commands being issued.  In 

[14], data in the least significant bit of the VoIP stream is altered to create a covert 

channel.  Wang et al. [6] use a technique similar to that of Paxson [10] to correlate 

between VoIP flows hidden by an anonymizing network.  Additionally, all of the 

works discussed above, with the exception of [15-19,21-22], focus on wired networks.  

In [17-18,21-22], the covert channel is actually embedded or encapsulated within 

another protocol. 

We propose a general model (protocol independent) for node authentication 

that is able to take advantage of low-latency traffic and be effective on both wired and 

wireless networks.  We evaluate this model experimentally and address the 

performance and accuracy of our model.  This model does not require a large amount 

of overhead during the brief authentication window, using no more than 8% of the 

available bandwidth during testing in a switched LAN and no more than 11% in a 

WLAN. 

3 Covert Timing Channel Model 

Through the application of Steganography to a network flow, we achieve Covert 

Timing Channels, which are defined as parasitic communication channels that draw 

bandwidth from other channels, via the disruption of event timing relative to other 

events, in order to transmit information [24-25].  Traditionally Covert Timing 

Channels are used for the transmission of messages, and likewise, to provide 

authentication, we transfer a watermark or signature specific to a node, through this 

channel. 

Particularly, we disrupt the inter-packet timing within a data flow over a 

network (specifically using the TCP and UDP protocols).  By adding minimal 

amounts of delay to select packets within the flow, we add a watermark to the flow in 

such a way that it is unique to a specific node.  By delaying packets within a data 

stream, even minimally, we detract from the bandwidth of the network and thus 

increase the time required for a given task.  We will show that bandwidth degrades 

proportional to the amount of delay needed to accurately transfer a watermark, the 

length of the watermark, and the rate at which the node must be re-authenticated. 

 Disrupting the inter-packet timing within a data flow is inherently volatile, 

especially when considering outside influences such as the overhead incurred from 

the use of TCP.  Given occasionally network volatility we must assume that sending 

one watermark may not provide adequate authentication.  Additionally to provide a 

greater degree of robustness, in certain cases it may be necessary to increase the 



frequency of watermark transmissions.  For instance, a university system may not 

require the node to re-authenticate itself often whereas a military institution, which 

places a higher priority on security, may.  Resending the watermark increases the 

security provided by the model, allowing the host network to ensure that the node it 

authenticated originally is still that node.  In Section 4 we show that the increase per 

additional watermark is small, resulting in a minimal decrease of network throughput.  

Additionally, we provide analysis on the amount of delay required to accurately detect 

the watermark, versus the percentage error of false negatives. 

 The degree of natural delay varies from one network type to another.  For 

instance, assuming that network delay is the only factor, the time required to transfer 

a file over the Internet or VPN connection is greater than the time required to transfer 

that same file over a wireless network (from one local computer to another); the time 

required for the transfer of that file over the wireless network is greater than the time 

required to transfer the file over a 100Mbps LAN connection.  With the addition of 

network congestion, packet loss, etc., the distinction between network types becomes 

even clearer.  As such, the addition of delay required by our model dynamically varies 

depending on what type of network the user is using.  Our model calculates the 

minimal delay required to accurately embed a watermark into the data flow by using 

the round-trip time (RTT) of the first ten data packets received per connection over a 

TCP connection.  This approach will not work over a UDP flow, as there are no 

acknowledgment packets being returned to the sender.  If UDP is being used, the 

client will ping the server several times and calculate the delay based on the RTT 

provided. 

 An overview of our model, graphically represented in Fig. 1, is as follows.  

Initially a bootstrap phase is entered.  During this phase, a kernel module, called the 

Encoder, is loaded and an initial watermark is created.  The Encoder associates itself 

with an application at the transport layer and acts as a filter allowing for the queuing 

of packets, so that delay may be added.  An additional kernel hook, called the 

Detector, registers itself to determine the RTT of the first ten data packets sent, which 

will determine the amount of delay added to the data flow.  The initial watermark is 

currently generated from a password, but can be altered to be generated from another 

input; for example, using a serial number unique to a node (or other identifying 

information) in addition to a password would allow for the authentication of the 

user/machine pair.  To generate a watermark, our password is hashed using the SHA-

1 hashing algorithm, translated from hex to binary, and truncated to the desired length 

of the watermark. 

 Two delay values are used within the watermark.  A high value is used to 

represent a binary 1, and a low value used to represent a binary 0;  the true high (λ) 

and low (ω) values are set by the Detector with λ > ω and ω being greater than the 

average delay between packets.  When delaying a packet that is part of the 

watermarked sequence, the binary watermark is consulted to determine if the delay to 

be added is λ or ω; if the binary value of the delay is a 0, the value represented by ω is 

used, with the value of λ being used if the binary value of the delay is a 1.  

 As data is sent from the application, it is registered with the Encoder.  The 

Encoder tracks the number of packets being sent, as well as the start time of the data 

flow.  From a predetermined level of security configured by the user, the Encoder will 

embed the watermark within the data stream after every β number of packets, or after  



 

 

 

 

 

 

γ units of time have elapsed.  Additionally, the user may configure the watermark to 

be rehashed using the current watermark as the key to create a new watermark after δ 

packets have been transferred, or to create a new watermark after ζ units of time have 

elapsed. 

 From this point, the data is transferred over the network to the receiver where 

another module, a kernel hook, decodes the signal; it is not required that a kernel hook 

be used in this instance, the application itself could provide this service.  Abstractly, 

we shall refer to this entity as the Decoder.  Prior to decoding the watermark, the data 

flows' inter-packet timing sequence is subjected to a high-pass filter which filters out 

the majority of the un-encoded network traffic.  Two methods of decoding the 

watermarks were investigated.  These methods are as follows: 

1. The Simple Threshold Method – A cutoff point is determined by taking the 

mean of the IPD not set to zero by the high-pass filter.  If a packet has been 

delayed by an amount greater than the cutoff, it is considered to represent a 

1, otherwise it is considered to represent a 0. 

2.  The Multi-Threshold Method – Using a moving window of two, the values 

are multiplied together and stored in a separate array.  Doing this places the 

number pairs into three distinctly separate categories, 00, 01/10, and 11.  It is 

difficult to determine the order of the pairing in the 01/10 category; as a 

solution, the original stream is reviewed, and the greater value is determined 

to be the 1 value. 

Due to space limitations, only the Simple Threshold Method was used during 

testing. 

 Should the flow be found to not contain the watermark after a certain 

threshold, as determined by the level of security required, the Decoder can be 

configured to signal a firewall, or other external device, in an effort to alert a user or 

disallow continued traffic from the source.  There are many additional steps that could 

be taken, each specific to an individual organization's needs, and beyond the scope of 

this work. 

  

 

        
              Fig. 1.                            Fig. 2.                                           Fig. 3. 

Fig 1. A work flow depicting the Covert Timing Channel Model.  Fig 2. Depiction of 

the Experimental Testbed.  Fig. 3 Watermarks in UDP traffic transmitted over a 

WLAN link.  Here λ = 12 ms and ω = 8 ms, with the Watermark = {1 0 1 1 1 1 1 0 0 

0 1 0 0 0 0 0 1 0 0 0}. 

 



4 Experimental Setup and Procedure 

To test the Covert Timing Channel Model in a controlled environment, an 

experimental testbed was constructed.  The testbed was comprised of a Lenovo 3000 

C100 laptop running Fedora Core 4, kernel ver. 2.6.16-1.2111_FC4 with 512 MB 

RAM as the client sending the watermark.  One server, called Server 1, used in the 

testbed was a custom build desktop computer running Fedora Core 6, kernel ver. 

2.6.20 with a 3.0 GHz processor and 1 GB RAM connected on a local network with 

the client by both a wired and wireless connection.  An Airlink101 wireless card was 

used in the Lenovo client, and a D-Link wireless USB adapter was used in Server 1 

for the wireless testing.  A Netgear 802.11b router was used for the local wired and 

wireless testing; encryption was left on during the wireless testing to more accurately 

simulate a real-world environment.  The majority of network traffic was generated by 

the client to the server, with several other computers generating traffic through the 

router on the local network, but not to the client or server.  This is an appropriate 

setup considering most institutions use a switched network, possibly a wireless 

network as well, with multiple users active at any given time. In our experiments 

there were two different scenarios:  

1. Switched LAN – The data transfer occurs entirely over a 10/100 Ethernet 

network. 

2. 802.11b WLAN – The data transfer occurs entirely over an 802.11b wireless 

network. 

Several different configurations were used with multiple trials being run for each 

configuration. 

 Packets were queued using a Netfilter kernel module [26].  The packets were 

passed to user space if they were being sent out of a predetermined port, and placed 

into a separate queue with an appropriate release time set.  If the packets were part of 

a watermark, the release time was set according to the watermark; if the packets were 

not part of a watermark, their release time was set to the current time.  The head of the 

queue was continually checked to determine if the packet had reached its release time, 

and the packet was released if the current time was greater than the release time. 

 All network traffic was monitored using Tcpdump [27]. Traffic was 

generated by transferring a 2.97 MB text file using a simple sockets program written 

in C, resulting in the transfer of 2035 packets over the network for Figures 4 and 5.  

For Figures 6-9, the same sockets program was used to transfer 88,000 packets over 

the network.  Each set of captured data was parsed to a flat file using a pcap parser.  

The files were then processed in Matlab to detect the watermark embedded within the 

data flow.  Five hundred tests per network type were run without using the watermark 

to provide a baseline.1  For each set of parameters used in Figures 6-9, ten trials were 

run per configuration, resulting in approximately 400 trials. 

                                                           
1 UDP traffic was generated as a CBR data flow (35Mbps) 



5 Analysis 

The balance of performance and security within large networks is crucial in 

maintaining the viability of that network.  Corporate, university, government and 

military networks all require different levels of security and minimum tolerable levels 

of performance, leading to the need for scalable and adaptable solutions that do not 

prohibit performance.  Using the Covert Channel Model, each network type receives a 

configurable and robust method to authenticate nodes for a minimal cost to the 

network.  The cost of using these methods varies depending on the frequency of 

authentication, size of the watermark, and the amount of delay added.  This cost is 

minimal over switched LAN and WLAN connections. 

 When adding a watermark, the majority of the data flow is uninterrupted 

(Unwatermarked Delay).  Only the portion of the data flow containing the watermark 

adds delay (Watermarked Delay).  Additionally, the number of times the watermark 

repeats increases the delay (Watermarked Repetition Delay), leading to the delay 

model (Total Delay). 

 
The delay added by the watermark depends on 4 variables: (1) The value of 

λ; (2) the value of ω; (3) the length of the watermark; and (4) the number of times the 

watermark is repeated.  Both (1) and (2) are configurable and by minimizing these 

parameters the performance of the network is preserved.  Both (3) and (4) are a 

function of the security required by the network. 

  The Detector attempts to minimize the values in (1) and (2).  By using the 

values of first ten data packets sent, the Detector determines which type of network is 

being used and sets the rates accordingly.  It determines the connection type based on 

the RTT time of the first ten packets.  The distinction between a LAN and a WLAN is 

made based on the variance within the first ten packets.  If a LAN is in use, the 

Detector sets λ= (φHigh x ( RTT / 2 )) and sets ω = (φLow x (RTT/2)) with φHigh = 46.5 

and φLow  = 15.5.  If a WLAN connection is in use the Detector sets the Encoder to 

“spike” the interface.  When using a WLAN connection φHigh = 1.84 and φLow  = 1.0; 

due to the comparatively high bandwidth of the LAN connection, larger normalizing 

parameters (φHigh, φLow) are required. 

 During testing, it was initially observed that large delays were required on 

WLAN networks to ensure that the entire watermark was received.  When using 

limited bandwidth, such as that on a WLAN, packets may be queued within the 

interface before being transferred to the network.  By adding a large delay (“a spike”) 

prior to sending the watermark, the interface is allowed to clear its queue and thus 

transmit the watermark with greater accuracy and lower delays.  Empirical testing 

shows that by “spiking” the interface, bandwidth over a WLAN connection is 

preserved far better than by simply increasing λ and ω.  This will be discussed in 

more detail in Section VI. 

unwatermarked_transmission_time = ( packets_total – packets_watermarked ) x (RTT/2) 

high_delay = packets_watermarked @ λ x λ 

low_delay = packets_watermarked @ ω x ω 

watermarked_delay = high_delay + low_delay 

watermarked_repititions_delay = total_repititions x watermarked_delay 

transmission_time = unwatermarked_transmission_time + watermarked_repitions_delay 
 



 While testing was done using both TCP and UDP traffic, we will focus our 

analysis on TCP.  The primary reason for this is that UDP traffic is relatively well 

behaved (with no outside influences unlike TCP) and easily carries the watermark. 

This is shown in Fig. 3 where UDP traffic is sent over a WLAN connection (which is 

more volatile than a LAN connection) at a rate well below the rate determined to be 

optimal.  During this trial, watermarks were detected at 100% over the entire duration.  

UDP traffic over a LAN connection showed similar results. 

 Ideally, after minimizing the delay, the watermark is transfered over the 

network and detected immediately.  While this may be true with λ and ω set to a high 

value, it is not always the case.  Network perturbations may cause alterations within 

the watermark leading to a false negative (no false positives were observed).  In this 

case, multiple watermarks may be sent to authenticate the node.  These incomplete 

watermarks are examined to determine their proximity to the correct watermark.  

Should they be within a tolerance level against false negatives (a predetermined value 

from the user) they will be considered the same as an ideal watermark.  Additionally, 

care is taken such that delay values are not set too high (i.e., above the TCP timeout 

values), since packet retransmissions could also cause an increased number of false 

negatives. 

 Optimal values for encoding differ per network.  To maximize throughput 

the desired value for ω is slightly above the normal sending rate.  Desired values for λ 

are slightly but distinguishably above ω.  While this varies depending on what 

network type is in use, testing within our testbed has shown that optimal values in our 

LAN are λ = 6ms and ω = 2ms and in our WLAN are λ = 22ms and ω = 16ms.  This 

was determined empirically and is illustrated in Fig. 4 and Fig. 5.  These values lead 

to a highly detectable solution that is still covert and minimizes the number of 

watermarks required for accurate detection. 

 Network performance is not greatly affected if λ and ω are set to relatively 

low values (but not the lowest possible values) and the number of watermarks 

contained within the authentication cycle is small.  An authentication cycle represents 

the transmission of one or more watermarks.  The transmission of several 

watermarks may be required to achieve an acceptable degree of detection accuracy.  

While it is certainly possible for a greater degree of performance to be achieved by 

setting λ and ω to lower values, doing so decreases the probability that the watermark 

will be accurately detected requiring a larger number of watermarks to be included 

within an authentication cycle. 

 The computational power required and the speeds at which the watermarks 

can be detected are also important factors.  The Simple Threshold Method is a 

powerful and easily implementable method to detect the watermark.  It only requires 

enough memory to buffer the current watermark, and minimal computations; as such, 

the Simple Threshold Method is faster than the Multi-Threshold Method.  The 

drawback to using this method is that it has minimal intelligence, and can create a 

higher false positive rating if network conditions change.  The Multi-Threshold 

Method provides a greater degree of robustness with lower false positive rates.  

However, it does require that the original time stamps be held in memory as well as 

the current watermark, and a slightly greater amount of computation to be done.  

Comparatively, the Multi-Threshold Method provides better protection against  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

changes within network conditions.  Due to space limitations our experimental data 

only provides analysis using the Simple Threshold method. 

 At the monitoring node each watermark is individually detected and 

compared to the true watermark to determine its accuracy.  Each of these accuracy 

ratings are stored until enough watermarks have been received (or time has elapsed) 

to complete one authentication cycle.  The maximum value of the stored accuracy 

ratings is selected and compared to the configured threshold.  If this maximum is 

greater than the threshold the user is considered to be authenticated, otherwise the 

maximum value of the stored accuracy ratings is averaged with all previously 

detected maximum rates and this value is considered to be the user’s current 

authentication value.  The authentication value is compared to the configured 

threshold again to determine if the user is authenticated. 

6 Performance Analysis 

RTT values differ per network.  During testing it was observed that RTT values for a 

switched LAN had a median value of 0.258ms and a mean value of 0.247ms.  Within 

 
Fig. 4.                                      Fig. 5.                                     Fig. 6 

 
Fig. 7.                                      Fig. 8.                                     Fig. 9 

Fig. 4 contains the results from trials used to empirically determine the optimal 

values for λ and ω, as well as the number of watermarks required per authentication 

cycle for different levels of detection accuracy in a LAN.  Fig. 5 contains the results 

from trials used to empirically determine the optimal values for λ and ω, as well as 

the number of watermarks required per authentication cycle for different levels of 

detection accuracy in a WLAN.   Figs. 6 and 8 show the percentage decrease in 

network throughput, compared to the baseline throughput, when the number of 

authentication cycles is increased in a switched LAN and WLAN respectively.  Figs. 7 

and 9 show the percentage decrease in network throughput, compared to the baseline 

throughput, when the length of a single watermark is increased in a switched LAN 

and WLAN respectively. 

 



a WLAN the RTT median value was 23.90ms and a mean value of 42.43ms.  Using 

the Detector, the appropriate λ / ω delay times for a LAN and WLAN network are 

6ms/2ms and 22ms/16ms respectively.  As previously mentioned these values were 

determined empirically and are fixed in order to provide the performance analysis. 

 While certain institutions may require the highest level of security, the needs 

of other institutions may not be as stringent.  The Covert Timing Channel method is 

designed to be a general method of authentication for institutions requiring various 

levels of security.  As such, performance testing was done for several different levels 

of accuracy using different watermarks lengths and various numbers of watermarks 

included within a single authentication cycle.  By using shorter watermark lengths 

and/or fewer watermarks per authentication cycle, institutions (such as educational 

facilities that do not require high levels of security) may authenticate nodes with a 

lower degree of accuracy without seriously impacting the performance of the 

network.  Conversely, institutions requiring a greater degree of security may increase 

the length of the watermark and/or the number of watermarks per authentication 

cycle.  Doing so allows nodes to be authenticated at a higher degree of accuracy while 

increasing the complexity required for watermarks to be detected at high levels of 

accuracy. 

 Testing on the switched LAN differed from that of the WLAN network in 

that the addition of a watermark was either fully detectable or not detectable at all up 

to 95% accuracy using an authentication cycle containing one watermark, after which 

an increase in the authentication cycle size (increased to three watermarks) was 

required to achieve 100% accuracy at lower rates.  This is the result of extremely low 

latency between hosts.  The “authentication watermarks” were fully detectable until 

6ms/2ms, after which no watermarks were detected at all.  As long as λ > 5ms and 

1ms < ω≤  λ-2ms, watermarks were generally 95% detectable with 0% error within 

the detection.  The values of 6ms/2ms were chosen for the LAN because of their 

consistent ability to provide a great degree of detectability with minimal performance 

degradation (Fig. 4). 

 Our primary consideration during testing was the amount of overhead this 

model requires for accurate detection. Two configurable parameters were tested to 

provide a performance versus security comparison: (1) the cost to network throughput 

for different watermark lengths; and (2) the cost to network throughput for additional 

redundancy using authentication cycles.  By increasing the length of the watermark 

and by adding additional authentication cycles, the security of the model is increased 

at a cost to the network throughput. 

 Fig. 6 represents the cost of increasing the number of watermarks contained 

within one authentication cycle. This figure provides results for 1 watermark, 20 bits 

(or packets) long, per authentication cycle, with one to ten authentication cycles being 

sent over the authentication period of 88,000 packets for 95% detection rate.  To 

achieve 100% detection, 3 watermarks were used per authentication cycle using the 

same λ and ω values. The throughput of the watermarked flows are compared to the 

average of several hundred baseline transmissions in the same environment. 

Transmission of more authentication cycles caused a decrease in the throughput of the 

network. In our experiments it was noted that there was an average of 0.54% decrease 



in throughput per additional authentication cycle transmitted, with a maximum 

performance penalty of 7.32% over our trials. 

 Fig. 7 represents the cost of increasing the watermark length, tested using 6 

watermarks per authentication cycle for 100% detection, and 1 watermark per 

authentication cycle for 95% detection. The cost of increasing the watermark from a 

length of 5 to 40 is a total decrease in throughput of 7.5%, with each additional bit 

costing, on average, a 0.036% decrease in throughput. 

Performance on a WLAN network had a greater degree of variance, 

primarily due to the nature of the network. Due to the bursty nature of a WLAN 

network, a higher proportional delay value was required for accurate detection. 

Testing was done at a detection accuracy of 90% (λ = 20ms), 95% (λ = 20ms), and 

100% (λ = 22ms), with ω = 12ms (the optimal low value for our tested network) for 

each. 

 Fig. 8 represents the cost of increasing the amount of authentication cycles 

per authentication period on a WLAN network.  Each authentication cycle contains 

6/3/2 watermarks for 100%/95%/90% detection respectively, consisting of 20 bits (or 

packets). In our experiments it was noted that there was, on average, a 0.63% 

decrease in network throughput per additional authentication cycle added, with a 

maximum decrease of 7.17%. 

 Fig. 9 represents the cost of increasing the watermark length in a WLAN 

network. This figure contains a large degree of variance due to the nature of WLAN 

networks, but shows a general decrease in network throughput as the length of the 

watermarks are increased; with a larger amount of test data, we believe that this trend 

will smooth over time. On average adding an additional bit in a watermark on a 

WLAN network caused a 0.0435% decrease in throughput with, generally, an average 

maximum performance penalty of 8.54% when disregarding a single outlying value. 

 All figures, while showing the general trend expected, are comprised of a 

limited set of trials.  It is our belief that the anomalies within each figure will smooth 

over a larger number of trials. 

7 Conclusion and Future Work 

While our specific application uses the Covert Timing Channel model to 

communicate authentication information, we investigate the use of the Covert Timing 

Channel model to transmit data in general.  We show that the Covert Timing Channel 

method provides a secure, reliable, and cost effective process for which nodes may be 

authenticated within a network.  Our model is highly scalable, easily adaptable and 

backwards compatible with existing technology, and provides excellent performance 

on switched LAN and WLAN networks.  While the performance of this model is 

readily visible from the LAN and WLAN test results, we believe that this model could 

be extended for use over WAN networks as well; in our future work, we intend to 

show that this model will perform well over VPN connections. Additionally, we 

intend to investigate the effects of chaff packets on our method. Lastly, we shall apply 

our method to node authentication using real world traffic. 
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