
A Performance Analysis of Authentication Using

Covert Timing Channels

Reed Newman, Raheem Beyah

Communications Assurance and Performance Group, Computer Science Department,

Georgia State University

Atlanta, GA, USA
jnewamn8@student.gsu.edu, rbeyah@cs.gsu.edu

Abstract. Authentication over a network is an important and difficult problem.

Accurately determining the authenticity of a node or user is critical in

maintaining the security of a network. Our proposed technique covertly

embeds a watermark, or identifying tag, within a data stream. By implementing

this model on a LAN and WLAN we show that this method is easily adaptable

to a variety of networking technologies, and easily scalable. While our

technique increases the time required for data to be transferred, we show that

the throughput of the link during the brief authentication window is decreased

by no more than 8% in a switched LAN and 11% in a WLAN. During our

empirical analysis we were able to detect the watermark with 100% accuracy in

both a LAN and WLAN environment.

1 Introduction

With the large amount of network applications in existence today, it is becoming

increasingly difficult for network administrators to police the traffic on their

networks. Additionally, these network applications are increasingly carrying sensitive

information; as the sensitivity of the information traversing the network increases, so

too must the level of security within the network.

 A key step in securing a network is the authentication of all nodes1 on that

network. Authentication of nodes allow perimeter devices the ability to determine if a

node's requests should be granted. Reliable node authentication helps to ensure the

basic elements of network security: positively identifying a node, allowing that node

specific access privileges, and holding that node accountable should it compromise

the security or productivity of the network.

 Leading industry approaches, such as Cisco’s AAA Server and Cisco's NAC

model [1], rely on user name/password, S/Key, Token Cards or system profiling to

authenticate users. While all of these methods provide a reasonable level of security,

each are expensive and have been shown to have flaws [2,3]. Additionally, simple

1 Authentication relating to nodes can easily be extended to users. When referencing nodes,

unless otherwise noted, the statement applies to nodes and users.

access control lists have proven to be ineffective as spoofing IP and MAC addresses

is a trivial task, allowing attackers to easily gain access to systems and networks.

 By not requiring strict node authentication, joining a network is a trivial

matter. An attacker may obtain a physical connection to a network, enter the network

through a wireless access point, circumvent 802.1x via phishing or other known

exploits, or access the network via a VPN connection. By requiring each node joining

the network to authenticate itself, the overall security of the network is increased

making systems within the network harder to breach.

 We propose to embed a watermark, or signature specific to a node, within a

data flow using inter-packet delay. The watermark will be embedded between select

packets in a covert manner, such that it is difficult to detect and does not decrease the

throughput of the link significantly. Our model can be used to supplement the above

methods or be used as a standalone method of authentication. Our technique does not

require synchronization between the nodes' clocks, and can easily be adapted for user

authentication.

 We acknowledge that our proposed method, a method advocating security by

obscurity, is not an impervious solution but assert that the additional layer of security

increases the difficulty for an attacker. We believe that providing authentication in a

covert manner adds the same level of benefit one achieves when changing an internal

server’s (sftp, ssh, etc.) port from a well-known port to a random port. The attacker

would require not only a technique by which to break into the server (e.g., a buffer

overflow attack, etc.), but must also find the server, via port scanning, over a range of

64,000 ports without being detected. Further, this work evaluates performance of

using timing channels in general to transmit data. Our specific application of this

method uses this channel to communicate authentication information.

 The remainder of this paper is organized as follows: Section 2 reviews

related work, Section 3 details the covert timing channel model, Section 4 outlines the

experimental setup and procedure, Section 5 provides analysis on the model, Section

6 provides experimental data, and Section 7 contains our conclusions and future work.

2 Related Work

The idea of using inter-packet delay (IPD) for node identification is not necessarily

new. There have been several different applications regarding the use of IPD in

recent academic research. The majority of the work focuses on the detection of

stepping stone connections (i.e., intermediate systems attackers use to launch attacks

and insulate themselves from detection), with most solely considering interactive

(SSH) traffic.

 The authors of [4] extend the work done in [5,6] to detect a correlation

between stepping stones. In [4], the authors use a binning technique to partition the

data stream allowing the encoded watermark a greater level of robustness against

timing perturbations and repacketization within the stepping stone links. In [7], the

authors extend the work of [8] in an effort to defeat chaff packets (e.g., structurally

correct packets inserted within the data flow to obfuscate a pattern) that may be

inserted by a node within the stepping stone chain. This is done by decoding

watermarks from all possible subsequences of a downstream flow, and choosing the

“best” watermark (defined as the watermark with the least hamming distance from the

original watermark).

 Peng, et al. [9] investigate the secrecy of active watermarking. The authors

develop an attack technique that infers important parameters of the watermarks, and

also recovers and duplicates watermarks through the stepping stones. The authors of

[10] attempt to detect stepping stone connection correlations of SSH traffic by

creating a logical partition between ON and OFF periods of usage. By examining the

IPD of connections and determining if the OFF period transitions to an ON period

within a certain threshold, it can be reasonably stated that these connections are

related. It is interesting to note that this is an entirely passive technique.

 In [11], provable upper bounds are set on the number of packets required to

confidently detect encrypted stepping stone streams with proven guarantees of a low

false positive rate. The methods in [11] also take into consideration the usage of chaff

packets, and provide bounds on the amount of chaff needed by the attacker to evade

detection. The model proposed by [12] is similar to that of [11], with the addition of

wavelets. In [12], the authors attempt to differentiate between the short term behavior

of the stepping stone streams, where timing perturbations and chaff packets can mask

the correlation between connections, and the long term behavior of stepping stone

streams.

Wang and Reeves [5] propose a watermark-based scheme that can detect

correlation between streams of encrypted traffic. However, the assumption is made

that the attackers timing perturbations are independent and evenly distributed. Should

the traffic be disturbed in another fashion, such as with the insertion of chaff packets,

their method will show a decrease in accuracy. Zhang, et al. [13] provide an upper

bound on the number of packets required to detect attackers in stepping stone

networks when chaff packets and timing perturbations exist simultaneously.

 The authors of [14] show that VoIP encoding scheme can easily contain a

covert channel by altering the least significant bit. They provide analysis on the

bandwidth and the amount of data transferred. Wang, et al. [6] show that encrypted

VoIP calls hidden through an anonymizing network can still be traced, using a

technique similar to that of Paxson [10].

Only tangentially related to our work, the authors of [15] studied the loss of

anonymity in a flow-based wireless mix network under flow marking attacks, in

which an adversary embeds a pattern of marks into wireless traffic flows by

electromagnetic interference. They asserted that traditional mix technologies are not

effective in defeating flow marking attacks in wireless networks. They proposed a

new countermeasure based on digital filtering technology. The authors of [16]

introduce a covert timing channel model based on the presence or absence of packets

arriving during a specific time period. The authors attempt to detect this covert

timing channel over IP using a similarity comparison between packet inter-arrival

times.

 The concept of covert channels was first introduced by B. Lampson in 1973

[17]. Covert channels at the network and transport layers in TCP/IP were first

investigated by Rowland [18] and Fisk, et al. [19]. Currently software such as

Covert_TCP [19] and Nushu [20] are available to hide data within TCP headers.

Project Loki [21] has also shown that ICMP packets are capable of carrying covert

information within their headers. By moving the covert channel to the application

layer, detection of covert channels becomes even more difficult. It was discussed in

RFC 3205 [22] that HTTP be used as a carrier for other protocols; this was obviously

meant for the covert encapsulation of the protocols. Several tools are also available to

tunnel protocols through HTTP, like Lars Brinkhoff's httptunnel [23], primarily for

the purpose of evading firewalls.

 The predominate focus of these works, with the exception of [6,14-19,21-

22], are on detection of stepping stones using SSH style traffic. SSH traffic can be

classified as high-latency traffic, caused by user pauses in commands being issued. In

[14], data in the least significant bit of the VoIP stream is altered to create a covert

channel. Wang et al. [6] use a technique similar to that of Paxson [10] to correlate

between VoIP flows hidden by an anonymizing network. Additionally, all of the

works discussed above, with the exception of [15-19,21-22], focus on wired networks.

In [17-18,21-22], the covert channel is actually embedded or encapsulated within

another protocol.

We propose a general model (protocol independent) for node authentication

that is able to take advantage of low-latency traffic and be effective on both wired and

wireless networks. We evaluate this model experimentally and address the

performance and accuracy of our model. This model does not require a large amount

of overhead during the brief authentication window, using no more than 8% of the

available bandwidth during testing in a switched LAN and no more than 11% in a

WLAN.

3 Covert Timing Channel Model

Through the application of Steganography to a network flow, we achieve Covert

Timing Channels, which are defined as parasitic communication channels that draw

bandwidth from other channels, via the disruption of event timing relative to other

events, in order to transmit information [24-25]. Traditionally Covert Timing

Channels are used for the transmission of messages, and likewise, to provide

authentication, we transfer a watermark or signature specific to a node, through this

channel.

Particularly, we disrupt the inter-packet timing within a data flow over a

network (specifically using the TCP and UDP protocols). By adding minimal

amounts of delay to select packets within the flow, we add a watermark to the flow in

such a way that it is unique to a specific node. By delaying packets within a data

stream, even minimally, we detract from the bandwidth of the network and thus

increase the time required for a given task. We will show that bandwidth degrades

proportional to the amount of delay needed to accurately transfer a watermark, the

length of the watermark, and the rate at which the node must be re-authenticated.

 Disrupting the inter-packet timing within a data flow is inherently volatile,

especially when considering outside influences such as the overhead incurred from

the use of TCP. Given occasionally network volatility we must assume that sending

one watermark may not provide adequate authentication. Additionally to provide a

greater degree of robustness, in certain cases it may be necessary to increase the

frequency of watermark transmissions. For instance, a university system may not

require the node to re-authenticate itself often whereas a military institution, which

places a higher priority on security, may. Resending the watermark increases the

security provided by the model, allowing the host network to ensure that the node it

authenticated originally is still that node. In Section 4 we show that the increase per

additional watermark is small, resulting in a minimal decrease of network throughput.

Additionally, we provide analysis on the amount of delay required to accurately detect

the watermark, versus the percentage error of false negatives.

 The degree of natural delay varies from one network type to another. For

instance, assuming that network delay is the only factor, the time required to transfer

a file over the Internet or VPN connection is greater than the time required to transfer

that same file over a wireless network (from one local computer to another); the time

required for the transfer of that file over the wireless network is greater than the time

required to transfer the file over a 100Mbps LAN connection. With the addition of

network congestion, packet loss, etc., the distinction between network types becomes

even clearer. As such, the addition of delay required by our model dynamically varies

depending on what type of network the user is using. Our model calculates the

minimal delay required to accurately embed a watermark into the data flow by using

the round-trip time (RTT) of the first ten data packets received per connection over a

TCP connection. This approach will not work over a UDP flow, as there are no

acknowledgment packets being returned to the sender. If UDP is being used, the

client will ping the server several times and calculate the delay based on the RTT

provided.

 An overview of our model, graphically represented in Fig. 1, is as follows.

Initially a bootstrap phase is entered. During this phase, a kernel module, called the

Encoder, is loaded and an initial watermark is created. The Encoder associates itself

with an application at the transport layer and acts as a filter allowing for the queuing

of packets, so that delay may be added. An additional kernel hook, called the

Detector, registers itself to determine the RTT of the first ten data packets sent, which

will determine the amount of delay added to the data flow. The initial watermark is

currently generated from a password, but can be altered to be generated from another

input; for example, using a serial number unique to a node (or other identifying

information) in addition to a password would allow for the authentication of the

user/machine pair. To generate a watermark, our password is hashed using the SHA-

1 hashing algorithm, translated from hex to binary, and truncated to the desired length

of the watermark.

 Two delay values are used within the watermark. A high value is used to

represent a binary 1, and a low value used to represent a binary 0; the true high (λ)

and low (ω) values are set by the Detector with λ > ω and ω being greater than the

average delay between packets. When delaying a packet that is part of the

watermarked sequence, the binary watermark is consulted to determine if the delay to

be added is λ or ω; if the binary value of the delay is a 0, the value represented by ω is

used, with the value of λ being used if the binary value of the delay is a 1.

 As data is sent from the application, it is registered with the Encoder. The

Encoder tracks the number of packets being sent, as well as the start time of the data

flow. From a predetermined level of security configured by the user, the Encoder will

embed the watermark within the data stream after every β number of packets, or after

γ units of time have elapsed. Additionally, the user may configure the watermark to

be rehashed using the current watermark as the key to create a new watermark after δ

packets have been transferred, or to create a new watermark after ζ units of time have

elapsed.

 From this point, the data is transferred over the network to the receiver where

another module, a kernel hook, decodes the signal; it is not required that a kernel hook

be used in this instance, the application itself could provide this service. Abstractly,

we shall refer to this entity as the Decoder. Prior to decoding the watermark, the data

flows' inter-packet timing sequence is subjected to a high-pass filter which filters out

the majority of the un-encoded network traffic. Two methods of decoding the

watermarks were investigated. These methods are as follows:

1. The Simple Threshold Method – A cutoff point is determined by taking the

mean of the IPD not set to zero by the high-pass filter. If a packet has been

delayed by an amount greater than the cutoff, it is considered to represent a

1, otherwise it is considered to represent a 0.

2. The Multi-Threshold Method – Using a moving window of two, the values

are multiplied together and stored in a separate array. Doing this places the

number pairs into three distinctly separate categories, 00, 01/10, and 11. It is

difficult to determine the order of the pairing in the 01/10 category; as a

solution, the original stream is reviewed, and the greater value is determined

to be the 1 value.

Due to space limitations, only the Simple Threshold Method was used during

testing.

 Should the flow be found to not contain the watermark after a certain

threshold, as determined by the level of security required, the Decoder can be

configured to signal a firewall, or other external device, in an effort to alert a user or

disallow continued traffic from the source. There are many additional steps that could

be taken, each specific to an individual organization's needs, and beyond the scope of

this work.

 Fig. 1. Fig. 2. Fig. 3.

Fig 1. A work flow depicting the Covert Timing Channel Model. Fig 2. Depiction of

the Experimental Testbed. Fig. 3 Watermarks in UDP traffic transmitted over a

WLAN link. Here λ = 12 ms and ω = 8 ms, with the Watermark = {1 0 1 1 1 1 1 0 0

0 1 0 0 0 0 0 1 0 0 0}.

4 Experimental Setup and Procedure

To test the Covert Timing Channel Model in a controlled environment, an

experimental testbed was constructed. The testbed was comprised of a Lenovo 3000

C100 laptop running Fedora Core 4, kernel ver. 2.6.16-1.2111_FC4 with 512 MB

RAM as the client sending the watermark. One server, called Server 1, used in the

testbed was a custom build desktop computer running Fedora Core 6, kernel ver.

2.6.20 with a 3.0 GHz processor and 1 GB RAM connected on a local network with

the client by both a wired and wireless connection. An Airlink101 wireless card was

used in the Lenovo client, and a D-Link wireless USB adapter was used in Server 1

for the wireless testing. A Netgear 802.11b router was used for the local wired and

wireless testing; encryption was left on during the wireless testing to more accurately

simulate a real-world environment. The majority of network traffic was generated by

the client to the server, with several other computers generating traffic through the

router on the local network, but not to the client or server. This is an appropriate

setup considering most institutions use a switched network, possibly a wireless

network as well, with multiple users active at any given time. In our experiments

there were two different scenarios:

1. Switched LAN – The data transfer occurs entirely over a 10/100 Ethernet

network.

2. 802.11b WLAN – The data transfer occurs entirely over an 802.11b wireless

network.

Several different configurations were used with multiple trials being run for each

configuration.

 Packets were queued using a Netfilter kernel module [26]. The packets were

passed to user space if they were being sent out of a predetermined port, and placed

into a separate queue with an appropriate release time set. If the packets were part of

a watermark, the release time was set according to the watermark; if the packets were

not part of a watermark, their release time was set to the current time. The head of the

queue was continually checked to determine if the packet had reached its release time,

and the packet was released if the current time was greater than the release time.

 All network traffic was monitored using Tcpdump [27]. Traffic was

generated by transferring a 2.97 MB text file using a simple sockets program written

in C, resulting in the transfer of 2035 packets over the network for Figures 4 and 5.

For Figures 6-9, the same sockets program was used to transfer 88,000 packets over

the network. Each set of captured data was parsed to a flat file using a pcap parser.

The files were then processed in Matlab to detect the watermark embedded within the

data flow. Five hundred tests per network type were run without using the watermark

to provide a baseline.1 For each set of parameters used in Figures 6-9, ten trials were

run per configuration, resulting in approximately 400 trials.

1 UDP traffic was generated as a CBR data flow (35Mbps)

5 Analysis

The balance of performance and security within large networks is crucial in

maintaining the viability of that network. Corporate, university, government and

military networks all require different levels of security and minimum tolerable levels

of performance, leading to the need for scalable and adaptable solutions that do not

prohibit performance. Using the Covert Channel Model, each network type receives a

configurable and robust method to authenticate nodes for a minimal cost to the

network. The cost of using these methods varies depending on the frequency of

authentication, size of the watermark, and the amount of delay added. This cost is

minimal over switched LAN and WLAN connections.

 When adding a watermark, the majority of the data flow is uninterrupted

(Unwatermarked Delay). Only the portion of the data flow containing the watermark

adds delay (Watermarked Delay). Additionally, the number of times the watermark

repeats increases the delay (Watermarked Repetition Delay), leading to the delay

model (Total Delay).

The delay added by the watermark depends on 4 variables: (1) The value of

λ; (2) the value of ω; (3) the length of the watermark; and (4) the number of times the

watermark is repeated. Both (1) and (2) are configurable and by minimizing these

parameters the performance of the network is preserved. Both (3) and (4) are a

function of the security required by the network.

 The Detector attempts to minimize the values in (1) and (2). By using the

values of first ten data packets sent, the Detector determines which type of network is

being used and sets the rates accordingly. It determines the connection type based on

the RTT time of the first ten packets. The distinction between a LAN and a WLAN is

made based on the variance within the first ten packets. If a LAN is in use, the

Detector sets λ= (φHigh x (RTT / 2)) and sets ω = (φLow x (RTT/2)) with φHigh = 46.5

and φLow = 15.5. If a WLAN connection is in use the Detector sets the Encoder to

“spike” the interface. When using a WLAN connection φHigh = 1.84 and φLow = 1.0;

due to the comparatively high bandwidth of the LAN connection, larger normalizing

parameters (φHigh, φLow) are required.

 During testing, it was initially observed that large delays were required on

WLAN networks to ensure that the entire watermark was received. When using

limited bandwidth, such as that on a WLAN, packets may be queued within the

interface before being transferred to the network. By adding a large delay (“a spike”)

prior to sending the watermark, the interface is allowed to clear its queue and thus

transmit the watermark with greater accuracy and lower delays. Empirical testing

shows that by “spiking” the interface, bandwidth over a WLAN connection is

preserved far better than by simply increasing λ and ω. This will be discussed in

more detail in Section VI.

unwatermarked_transmission_time = (packets_total – packets_watermarked) x (RTT/2)

high_delay = packets_watermarked @ λ x λ

low_delay = packets_watermarked @ ω x ω

watermarked_delay = high_delay + low_delay

watermarked_repititions_delay = total_repititions x watermarked_delay

transmission_time = unwatermarked_transmission_time + watermarked_repitions_delay

 While testing was done using both TCP and UDP traffic, we will focus our

analysis on TCP. The primary reason for this is that UDP traffic is relatively well

behaved (with no outside influences unlike TCP) and easily carries the watermark.

This is shown in Fig. 3 where UDP traffic is sent over a WLAN connection (which is

more volatile than a LAN connection) at a rate well below the rate determined to be

optimal. During this trial, watermarks were detected at 100% over the entire duration.

UDP traffic over a LAN connection showed similar results.

 Ideally, after minimizing the delay, the watermark is transfered over the

network and detected immediately. While this may be true with λ and ω set to a high

value, it is not always the case. Network perturbations may cause alterations within

the watermark leading to a false negative (no false positives were observed). In this

case, multiple watermarks may be sent to authenticate the node. These incomplete

watermarks are examined to determine their proximity to the correct watermark.

Should they be within a tolerance level against false negatives (a predetermined value

from the user) they will be considered the same as an ideal watermark. Additionally,

care is taken such that delay values are not set too high (i.e., above the TCP timeout

values), since packet retransmissions could also cause an increased number of false

negatives.

 Optimal values for encoding differ per network. To maximize throughput

the desired value for ω is slightly above the normal sending rate. Desired values for λ

are slightly but distinguishably above ω. While this varies depending on what

network type is in use, testing within our testbed has shown that optimal values in our

LAN are λ = 6ms and ω = 2ms and in our WLAN are λ = 22ms and ω = 16ms. This

was determined empirically and is illustrated in Fig. 4 and Fig. 5. These values lead

to a highly detectable solution that is still covert and minimizes the number of

watermarks required for accurate detection.

 Network performance is not greatly affected if λ and ω are set to relatively

low values (but not the lowest possible values) and the number of watermarks

contained within the authentication cycle is small. An authentication cycle represents

the transmission of one or more watermarks. The transmission of several

watermarks may be required to achieve an acceptable degree of detection accuracy.

While it is certainly possible for a greater degree of performance to be achieved by

setting λ and ω to lower values, doing so decreases the probability that the watermark

will be accurately detected requiring a larger number of watermarks to be included

within an authentication cycle.

 The computational power required and the speeds at which the watermarks

can be detected are also important factors. The Simple Threshold Method is a

powerful and easily implementable method to detect the watermark. It only requires

enough memory to buffer the current watermark, and minimal computations; as such,

the Simple Threshold Method is faster than the Multi-Threshold Method. The

drawback to using this method is that it has minimal intelligence, and can create a

higher false positive rating if network conditions change. The Multi-Threshold

Method provides a greater degree of robustness with lower false positive rates.

However, it does require that the original time stamps be held in memory as well as

the current watermark, and a slightly greater amount of computation to be done.

Comparatively, the Multi-Threshold Method provides better protection against

changes within network conditions. Due to space limitations our experimental data

only provides analysis using the Simple Threshold method.

 At the monitoring node each watermark is individually detected and

compared to the true watermark to determine its accuracy. Each of these accuracy

ratings are stored until enough watermarks have been received (or time has elapsed)

to complete one authentication cycle. The maximum value of the stored accuracy

ratings is selected and compared to the configured threshold. If this maximum is

greater than the threshold the user is considered to be authenticated, otherwise the

maximum value of the stored accuracy ratings is averaged with all previously

detected maximum rates and this value is considered to be the user’s current

authentication value. The authentication value is compared to the configured

threshold again to determine if the user is authenticated.

6 Performance Analysis

RTT values differ per network. During testing it was observed that RTT values for a

switched LAN had a median value of 0.258ms and a mean value of 0.247ms. Within

Fig. 4. Fig. 5. Fig. 6

Fig. 7. Fig. 8. Fig. 9

Fig. 4 contains the results from trials used to empirically determine the optimal

values for λ and ω, as well as the number of watermarks required per authentication

cycle for different levels of detection accuracy in a LAN. Fig. 5 contains the results

from trials used to empirically determine the optimal values for λ and ω, as well as

the number of watermarks required per authentication cycle for different levels of

detection accuracy in a WLAN. Figs. 6 and 8 show the percentage decrease in

network throughput, compared to the baseline throughput, when the number of

authentication cycles is increased in a switched LAN and WLAN respectively. Figs. 7

and 9 show the percentage decrease in network throughput, compared to the baseline

throughput, when the length of a single watermark is increased in a switched LAN

and WLAN respectively.

a WLAN the RTT median value was 23.90ms and a mean value of 42.43ms. Using

the Detector, the appropriate λ / ω delay times for a LAN and WLAN network are

6ms/2ms and 22ms/16ms respectively. As previously mentioned these values were

determined empirically and are fixed in order to provide the performance analysis.

 While certain institutions may require the highest level of security, the needs

of other institutions may not be as stringent. The Covert Timing Channel method is

designed to be a general method of authentication for institutions requiring various

levels of security. As such, performance testing was done for several different levels

of accuracy using different watermarks lengths and various numbers of watermarks

included within a single authentication cycle. By using shorter watermark lengths

and/or fewer watermarks per authentication cycle, institutions (such as educational

facilities that do not require high levels of security) may authenticate nodes with a

lower degree of accuracy without seriously impacting the performance of the

network. Conversely, institutions requiring a greater degree of security may increase

the length of the watermark and/or the number of watermarks per authentication

cycle. Doing so allows nodes to be authenticated at a higher degree of accuracy while

increasing the complexity required for watermarks to be detected at high levels of

accuracy.

 Testing on the switched LAN differed from that of the WLAN network in

that the addition of a watermark was either fully detectable or not detectable at all up

to 95% accuracy using an authentication cycle containing one watermark, after which

an increase in the authentication cycle size (increased to three watermarks) was

required to achieve 100% accuracy at lower rates. This is the result of extremely low

latency between hosts. The “authentication watermarks” were fully detectable until

6ms/2ms, after which no watermarks were detected at all. As long as λ > 5ms and

1ms < ω≤ λ-2ms, watermarks were generally 95% detectable with 0% error within

the detection. The values of 6ms/2ms were chosen for the LAN because of their

consistent ability to provide a great degree of detectability with minimal performance

degradation (Fig. 4).

 Our primary consideration during testing was the amount of overhead this

model requires for accurate detection. Two configurable parameters were tested to

provide a performance versus security comparison: (1) the cost to network throughput

for different watermark lengths; and (2) the cost to network throughput for additional

redundancy using authentication cycles. By increasing the length of the watermark

and by adding additional authentication cycles, the security of the model is increased

at a cost to the network throughput.

 Fig. 6 represents the cost of increasing the number of watermarks contained

within one authentication cycle. This figure provides results for 1 watermark, 20 bits

(or packets) long, per authentication cycle, with one to ten authentication cycles being

sent over the authentication period of 88,000 packets for 95% detection rate. To

achieve 100% detection, 3 watermarks were used per authentication cycle using the

same λ and ω values. The throughput of the watermarked flows are compared to the

average of several hundred baseline transmissions in the same environment.

Transmission of more authentication cycles caused a decrease in the throughput of the

network. In our experiments it was noted that there was an average of 0.54% decrease

in throughput per additional authentication cycle transmitted, with a maximum

performance penalty of 7.32% over our trials.

 Fig. 7 represents the cost of increasing the watermark length, tested using 6

watermarks per authentication cycle for 100% detection, and 1 watermark per

authentication cycle for 95% detection. The cost of increasing the watermark from a

length of 5 to 40 is a total decrease in throughput of 7.5%, with each additional bit

costing, on average, a 0.036% decrease in throughput.

Performance on a WLAN network had a greater degree of variance,

primarily due to the nature of the network. Due to the bursty nature of a WLAN

network, a higher proportional delay value was required for accurate detection.

Testing was done at a detection accuracy of 90% (λ = 20ms), 95% (λ = 20ms), and

100% (λ = 22ms), with ω = 12ms (the optimal low value for our tested network) for

each.

 Fig. 8 represents the cost of increasing the amount of authentication cycles

per authentication period on a WLAN network. Each authentication cycle contains

6/3/2 watermarks for 100%/95%/90% detection respectively, consisting of 20 bits (or

packets). In our experiments it was noted that there was, on average, a 0.63%

decrease in network throughput per additional authentication cycle added, with a

maximum decrease of 7.17%.

 Fig. 9 represents the cost of increasing the watermark length in a WLAN

network. This figure contains a large degree of variance due to the nature of WLAN

networks, but shows a general decrease in network throughput as the length of the

watermarks are increased; with a larger amount of test data, we believe that this trend

will smooth over time. On average adding an additional bit in a watermark on a

WLAN network caused a 0.0435% decrease in throughput with, generally, an average

maximum performance penalty of 8.54% when disregarding a single outlying value.

 All figures, while showing the general trend expected, are comprised of a

limited set of trials. It is our belief that the anomalies within each figure will smooth

over a larger number of trials.

7 Conclusion and Future Work

While our specific application uses the Covert Timing Channel model to

communicate authentication information, we investigate the use of the Covert Timing

Channel model to transmit data in general. We show that the Covert Timing Channel

method provides a secure, reliable, and cost effective process for which nodes may be

authenticated within a network. Our model is highly scalable, easily adaptable and

backwards compatible with existing technology, and provides excellent performance

on switched LAN and WLAN networks. While the performance of this model is

readily visible from the LAN and WLAN test results, we believe that this model could

be extended for use over WAN networks as well; in our future work, we intend to

show that this model will perform well over VPN connections. Additionally, we

intend to investigate the effects of chaff packets on our method. Lastly, we shall apply

our method to node authentication using real world traffic.

References

1. Cisco, NAC. http://www.cisco.com/en/US/netsol/ns466/networking_solutions_package.html

2. Thumann, M. Roecher, D. NAC@ACK: Hacking the Cisco Nac Framework. In the Proceedings of

Black Hat Europe 2007.

3. Cisco Security Response: AAA Command Authorization By-Pass.

http://www.cisco.com/warp/public/707/cisco-sr-20060125-aaatcl.pdf

4. Pyun, Y. J., Park, Y. H., Wang, X., Reeves, D. S., Ning, P. “Tracing Traffic through Intermediate

Hosts that Repacketize Flows,” in INFOCOM 2007. 26th IEEE International Conference on Computer

Communications.

5. X. Wang and D. S. Reeves, “Robust Correlation of Encrypted Attack Traffic through Stepping Stones

by Manipulation of Interpacket Delays,” in Proc. of the 10th ACM conference on Computer and

Communications Security (CCS), Oct. 2003, pp. 20–29.

6. X. Wang, S. Chen, and S. Jajodia, “Tracking Anonymous Peer-to-Peer VoIP Calls on the Internet,” in

Proc. of the 12th ACM conference on Computer and Communications Security (CCS), Nov. 2005, pp.

81–91.

7. P. Peng, P. Ning, D. S. Reeve, and X. Wang, “Active Timing-Based Correlation of Perturbed Traffic

Flows with Chaff Packets,” in Proc. Of the 2nd International Workshop on Security in Distributed

Computing Systems (SDCS), Jun. 2005, pp. 107–113.

8. X. Want, D.S. Reeves, P. Ning, and F. Feng. Robust Network-Based Attack Attribution through

Probabilistic Watermarking of Packet Flows. Technical Report TR-2005-10, Department of Computer

Science, NC State Univ., 2005.

9. P. Peng, P. Ning, and D. S. Reeves, “On the Secrecy of Timing-Based Active Watermarking Trace-

Back Techniques,” in Proc. of the 2006 IEEE Symposium on Security and Privacy (S&P), May 2006,

pp. 334–349.

10. Y. Zhang and V. Paxson, “Detecting Stepping Stones,” in Proc. of the 9th USENIX Security

Symposium, Aug. 2000, pp. 171–184.

11. A. Blum, D. X. Song, and S. Venkataraman, “Detection of Interactive Stepping Stones: Algorithms

and Confidence Bounds,” in Proc. of the 7th International Symposium on Recent Advances in

Intrusion Detection (RAID), Oct. 2004, pp. 258–277.

12. D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford, “Multiscale Stepping-

Stone Detection: Detecting Pairs of Jittered Interactive Streams by Exploiting Maximum Tolerable

Delay,” in Proc. of the 5th International Symposium on Recent Advances in Intrusion Detection

(RAID), Oct. 2002, pp. 17–35.

13. L. Zhang, A. Persaud, A. Johnson, and Y. Guan, “Stepping Stone Attack Attribution in Non-

Cooperative IP Networks,” Iowa State University, Tech. Rep. TR-2005-02-1, Feb. 2005.

14. Takahashi, T., Lee, W. “An Assessment of VoIP Covert Channel Threats,” in Proc. Of SecureComm

2007, 3rd International Conference on Security and Privacy in Communication Networks.

15. X.Fu, Y. Zhu, B. Graham, R. Bettati, and W. Zhao. On Flow Marking Attacks in Wireless

Anonymous Communication Networks. In Proceedings of the 25th International Conference on

Distributed Computing Systems (ICDCS), 2005.

16. S. Cabuk, C. Brodley, C. Shields, “IP Covert Timing Channels: Design and Detection,” in the

Proceedings of the 11th ACM conference on Computer and Communications Security, Oct. 2004.

17. Lampson, B. W. A Note on the Confinement Problem. Communications of the ACM 16, 10 (October

1973), pp. 613-615.

18. Rowland, C. H. Covert Channels in the TCP/IP Protocol Suite. First Monday 2, 5 (May 1997).

19. Fisk, G., Fisk, M., Papadopoulos, C., and Neil, J. Eliminating Stenagraphy in Internet Traffic with

Active Wardens. In Information Hiding 2002 (2002), Springer, pp. 18-35.

20. Rutkowska, J.: The Implementation of Passive Covert Channels in the Linux Kernel. In: Chaos

Communication Congress, Chaos Computer Club e.V. (2004).

21. route., alhambra. Project Loki. Phrack Volume 7, Issue 49, November 1996.

22. Moore, K. On the Use of HTTP as a Substrate. Tech. Rep., In Ternet Engineering Task Force,

February 2002. RFC 3205.

23. Brinkhoff, L. GNU httptunnel. http://www.nocrew.org/software/httptunnel.html

24. Covert Channels Definition. http://en.wikipedia.org/wiki/Covert_channel

25. Stenography Definition. http://en.wikipedia.org/wiki/Stenography

26. Netfilter / IPTables. http://www.netfilter.org/

27. Tcpdump. http://www.tcpdump.org/

