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Abstract. Today, the large packet buffers present in backbone routers
significantly increase their power consumption and design time. Recent
models of networks with large buffers have suggested that these large
buffers could be replaced with much smaller ones. Unfortunately, it turns
out that these models are not valid anymore in networks with small
buffers, and therefore cannot predict how these small-buffer networks will
behave. In this paper, we introduce a new model that provides a complete
statistical description of small-buffer Internet networks. First, we present
novel models of the distributions of several network components, such as
the line occupancies of each flow, the instantaneous arrival rates to the
bottleneck queues, and the bottleneck queue sizes. Then, we combine all
these models in a single fixed-point algorithm that forms the key to the
global statistical small-buffer network model. In particular, given some
QoS requirements, this new model can be used to precisely size small
buffers in backbone router designs.
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1 Introduction

Current backbone routers typically contain extremely large buffers. These buffers
take about half of their board space and a third of their power consumption [1].
They rely on massive amounts of SRAM and DRAM with fast access times, re-
quire complex scheduling algorithms to manage these SRAM and DRAM mod-
ules, and can take a significant amount of time to design [2].

These large buffer sizes typically result from a widely-followed rule of thumb,
stating that router buffer sizes should be equal to the product of the typical
(or worst-case) round-trip-time by the router capacity [3]. This rule of thumb is
derived when considering synchronized TCP flows. For instance, given a standard
linecard with 40 Gbps and a 250-ms round-trip time, the rule of thumb dictates
a large linecard buffer of 10 Gb, which needs several DRAM modules and cannot
be practically implemented in SRAM alone.

Recent papers in the literature suggest that this rule of thumb overprovisions
buffers by several orders of magnitude [4-8]. In fact, as the number of TCP flows
becomes extremely large, they are much less synchronized, and therefore their
sum is smoother than for synchronized flows, hence incurring smaller buffer
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needs. More precisely, these papers argue that the TCP flows can be modeled
as independent, and therefore, by the law of large numbers, the total number of
TCP packets in the network converges to a Gaussian distribution. As a conse-
quence, in this model, also known as the Stanford model, it is hypothesized that
the needed buffer size is smaller by a factor of about y/n than the rule of thumb
for synchronized flows, where n is the number of TCP flows going through the
buffer. For instance, given a million flows, the example above yields a buffer size
of about 10 Mb in the Stanford model, which can be implemented in SRAM
instead of DRAM. If true, such a result would obviously incur significant archi-
tectural changes in backbone routers: for the same power budget, it would be
possible to pack more lines, thus increasing the router capacity. The memory
architecture would be much simplified. And the input and output queues might
be packed together with the switch fabric in a single chip, hence increasing its
modularity as well.

Unfortunately, because it analyzes networks with large buffers, the Stanford
model assumes that most of the traffic variability is in the buffers, and not on the
lines. However, this assumption does not hold anymore in small-buffer networks,
where the variability in the line occupancy cannot be neglected. Therefore, a new
model is needed in small-buffer networks. This is the objective of this paper.

Our work is related to several studies in the literature. First, the Stanford
model is developed in [4-6], but none of these papers provide any complete
network models for small-buffer networks. In contrast, [7-9] do provide network
models, but they all assume Poisson arrivals to the bottleneck queues, and we
will later see that these assumptions do not match simulations in small-buffer
networks. Other models also consider non-droptail queueing policies [10]. Finally,
[6] shows that buffers can be made even smaller, but it assumes that TCP is
altered or access lines are made slower.

In this paper, we introduce a new method that provides a complete statistical
description of large Internet small-buffer networks with TCP traffic. To do so,
we consider each bottleneck queue, and successively build models for the distri-
butions of several network components around this queue. We then connect all
these models together in a closed loop, and derive the final network model as a
result of a fixed-point equation.

In particular, contributions of this paper include: (a) to our knowledge, the
first-ever model for the traffic distribution on the links entering the bottleneck
queues; (b) a new model for the instantaneous arrival rate to the bottleneck
queues, including a decomposition along the input lines and a Gaussian-based
model for the total rate; (c) a model for the occupancy distribution and packet
loss rate of bottleneck queues that does not make assumptions on the incoming
traffic load and does not assume that it is Poisson; and, most importantly, (d)
a closed-loop model of small-buffer networks that enables us to determine their
loss rate, as well as the distributions of the major network components. We also
conclude this paper with a detailed discussion of assumptions and consequences
of these results. In particular, these models can be used by router designers to
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determine the necessary router buffer size given any loss probability target in
any large network topology.

The rest of the work is organized as follows. Section 2 presents the notations
and the closed-loop model used in this paper. Section 3 contains the models of
the different network components. Then, Section 4 presents simulation results.
Finally, Section 5 discusses the assumptions used and Section 6 discusses the
generality of the presented results.

2 Notations and Closed-Loop Model

2.1 Notations

Our objective is to model a large network with small buffers. We will first for-
mally reduce the problem to a simpler dumbbell topology problem, and then
introduce the different notations used.

Assumption 1 (Dumbbell Topology) The large modeled network can be de-
composed into subnetworks with a single bottleneck buffer in each subnetwork,
each subnetwork being modeled using a dumbbell topology around its bottleneck

buffer.

This is a classical assumption (see for instance [4,6,9,11,12]), which we further
discuss in Section 5. The intuition behind it is that the behavior of TCP flows
mainly derives from the congestion of the buffers on their path, and that in
practice, a single buffer on their path typically causes most of the congestion.

As shown in Figure la, the dumbbell topology includes n persistent TCP
flows sharing the same bottleneck buffer of capacity C' and buffer size B. For
each flow i, we will denote the congestion window size as W;, the access link
occupancy as L;, the access link propagation time as T;, and the total round-
trip propagation time, not including the queueing time, as RTT;. We will also
denote the bottleneck queue size as (), and its loss rate as p.

The latencies of the forward and backward access links are assumed to follow
some given positive distribution, and their capacities are assumed to be very high
so that the bottleneck link is the only one experiencing congestion. Further, the
TCP window sizes are assumed to be integer and have positive lower and upper
bounds. The queueing policy is assumed to be drop-tail. Finally, all modeled
distributions are assumed to be stationary. Note that the simulations in Section 4
relax these assumptions, e.g. by allowing for short TCP flows. Also, Section 5
further discusses the influence of these assumptions on the general results.

2.2 Closed-Loop Model

Our goal is to provide a closed-loop model for the dumbbell network. First, we
will establish a general set of inter-related models. Then, by solving a fixed-point
problem involving all these inter-related models, we will converge towards a final
network model.
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Fig. 1: Two topology views

As illustrated in Figure 1b, the inter-related models will successively provide
equations for the distributions of: (1) the access link occupancies {L;}, (2) the
instantaneous arrival rates {AA;}, (3) the total instantaneous arrival rate AA,
(4) the bottleneck queue size @, (5) the value of the loss rate p, and (6) the
congestion window sizes {W;}. The first five models are presented in this paper.
The last model for the congestion window distribution can be taken from the
many literature references (see for instance [13,14]).

Once the inter-related models are obtained, we can put them together in a
loop using the following schematic chain:

which can be rewritten as:
p=f(p) (2)

We can then simply find p by solving this fixed-point equation, and the solution
provides us as well with the distributions of all the network components men-
tioned above. To solve for p, it is possible to use the gradient descent algorithm
for a few iterations till |p — f(p)| < € for a desired e.

In other words, we now have the ability to provide a model for all the main
characteristics of this small-buffer network when given only the link latencies,
bottleneck link capacity, and buffer size.

3 Closed Loop for the Packet Loss Rate Derivation

In this section we will successively go through the inter-related models presented
above.
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3.1 Model of L;

We will now assume that we are given the distributions of the TCP congestion
windows W;, and want to provide a model for the distribution of L;. To do so,
we will first make two simplifying assumptions.

Assumption 2 (Independence) The {W;} are independent and identically
distributed.

In the remainder, we will denote their common distribution function as fy .
Intuitively, this simplifying assumption relies on the fact that as the number
of flows increases, their mutual synchronization decreases, and therefore the
congestion windows can increasingly be modeled as independent. Note that this
assumption, as well as the next one, are further discussed in Section 5.

TCP flows typically send packets and ACKs (acknowledgements) in a highly
bursty manner. Further, we can use their congestion window size to approximate
the size of this burst. The following assumption models this high burstiness.

Assumption 3 (Burstiness) Flow i has a total of W; packets (or ACKs on
the reverse path), all present as a single burst on a given link.

Note that this simplifying assumption directly contradicts the common fluid
models of TCP, which assume that the window is spread out, and assumes instead
that the window is concentrated at a single point. This assumption also uses
the fact that we consider small-buffer networks: since the probability of having
packets in the buffer is small enough, it can be neglected in this model. We can
now derive the distribution of the access link occupancies L;:

Theorem 1 (Access Link Distribution) The number of packets on forward
access link 1 is distributed as:

R;,};Ti - fw (k)  otherwise.

Proof. Using Assumption 3, the probability that the burst is not present on the
access line is 1 — T;/RTT;. The burst presence probability is independent of its
size, since the propagation times are the same no matter what the burst size is.
Therefore, the probability that k£ > 0 packets are present on the access line is
the product of the probability that the burst size is k (fw (k)) by the probability
that the burst is present on the access line (T;/RTT;). |

The simulation results regarding this model are presented in Section 4.

3.2 Arrival Rates of Single Flows and Total Arrival Rate

Denote the number of packets of flow ¢ arrived to the bottleneck queue in At
seconds as AA;. Intuitively, AA‘? represents the (instantaneous) arrival rate on
line 4 to the bottleneck queue. We are interested in studying the distribution of

AA; for some small At < T;, and obtain the following model:
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Theorem 2 (Flow Arrival Rate Distribution) The number of packets AA;
of flow i arrived during time At is distributed as:

k):{ — gL+ Pr(Li=0)- 2L ifk=0,

Pr(AA; =
r( Pr(L;=k)- %’5 otherwise.

(4)

Proof. By Assumption 3, packets of flow ¢ move on each line in a single burst of
size W; and at a constant speed. Therefore, the probability that on some link 4,
k > 0 packets arrive within At, is Pr(L; = k) - ?f This gives us the probability
for the packet arrival of any size larger then zero. The complementary probability,
therefore, stands for the no-arrival event.

Incidentally, note that Equation (4) can be rewritten as in Equation (3):

A .
PT(AAZ _ k) _ 1-— RTtTi if k= 07 (5)
Rﬁ—% - fw (k)  otherwise.

This is Equation (3), replacing the access link propagation time T; with the
propagation time At. [ ]

We now want to find the total instantaneous arrival rate AA = ) . (AA4;)
of all flows. Since the {W;} (and the {L;}) are statistically independent by
Assumption 3, the {AA;} are statistically independent as well. Thus, we can use
Lindeberg’s Central Limit Theorem [15] to show that the total arrival rate AA
will be Gaussian for a large number of flows. We refer interested readers to [14]
for the detailed proof.

Theorem 3 (Total Arrival Rate Distribution) When the number of flows

n — o0, the normalized total arrival rate AA-) BlAA) converges in distribution
Vo Var(AA;y)

to the normalized Gaussian distribution N (0,1).

The simulation results comparing this Gaussian model with a typical Poisson
model are presented in Section 4.

3.3 Queue Size Distribution and Packet Loss Rate

Our next objective in the fixed-point model is to find the distribution of the
queue size ) and the packet loss rate p given the above model for AA. We will
decompose time into frames of size At, and assume that packets arrive as bursts
of size AA every At seconds. Thus, we clearly get the following queueing model:

Theorem 4 (Queue Size and Loss Rate) The queue size distribution and
the packet loss rate are obtained by using a G[AAtA]/D/l/B queueing model, in
which every At seconds, packets arrive in batches of size AA and immediately
obtain service for up to C At packets.

We implemented this queueing model using both the algorithm developed in [16]
and a simple Markov chain, and both yielded similar results.

We are now done with our set of network models, and are ready to analyze
their correctness using simulation results.
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Fig. 2: Distribution of the access link occupancy L; (logarithmic scale).

4 Simulation Results

We will now present the simulation results for the different parts of the closed-
loop model. The simulations were done in ns2. Specific settings are detailed
below for their respective simulations. In all the simulations below, we ran
2000 simultaneous persistent TCP NewReno flows, unless noted otherwise. The
packet size was set to 1000 bytes. The maximum allowed window size was set
to Wi = 64 packets. The propagation time of the bottleneck link was fixed
to 20 milliseconds, and the propagation times for all the other links were chosen
randomly according to a uniform distribution.

4.1 Access Link Occupancy Model vs. Fluid Model

We want to compare our bursty model for {L;} against a fluid model, in which
packets are distributed uniformly on all the links (the queueing time is ne-
glected). According to this fluid model, the number of packets present on access

link 4 at time ¢ is thus equal to L;(t) = Rg—T - W;(t). The maximum number of
packets on the access link, therefore, is bounded by % - Winae-

Figure 2 represents the probability distribution function (PDF) of the ac-
cess link occupancy L; of some random flow 7 using a logarithmic scale. It was
obtained using a simulation involving 500 simultaneous TCP flows. It can be
seen that our bursty model is fairly close to the measured results throughout
the whole scale. It behaves especially better than the fluid model, for which the
pdf is equal to 0 for any occupancy above RTW - Winaz &~ 10, and thus cannot
even be represented on the logarithmic scale. This observation strengthens the
intuition that Assumption 3 was reliable. Note that we obtained similar results
on many simulations with different parameters.
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Fig. 3: Distribution of the total arrival rate AA in time At.

4.2 Arrival Rate Model vs. Poisson Model

We want to compare our Gaussian-based model for the distribution of the to-
tal instantaneous arrival rate AA with a typical Poisson model [7-9]. Figure 3
plots the pdf of AA, using At = 10 ms, and compares it with simulated data
obtained artificially using the two models. Our Gaussian-based model relies on
the expected value and variance computed above. On the contrary, for the Pois-
son model, we force the expected value to equal the measured value. Of course,
over this amount of time, the Poisson model yields an approximately Gaussian
distribution as well. As shown in the figure, our model approximately yields the
correct variance and is close to the simulated results, while the Poisson model
yields too small a variance. This can be explained by the burstiness properties
of the TCP flows.

4.3 Queue Size Distribution Results and Comparisons

Figure 4 compares the measured queue size distribution with our model. We used
a buffer size of 580 packets. Our Markov-chain-based queue model was obtained
after the convergence of the entire closed-loop model, and therefore uses our
modeled arrivals as well.

It can be seen that our queue model is fairly close on most of the simulated
range of ), but cannot exactly reproduce the smooth continuous behavior of the
queue at the edges (Q = 0 and @ = B) because of its discrete bursty nature. In
fact, in this example, the true loss rate was 0.55%, while our model gives 0.76%.

4.4 Fixed-Point Solution

In the simulations, the fixed-point solution of our network model was found
using the gradient descent algorithm, in typically less than 50 iterations. The
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Fig. 4: Queue size distribution.

exact number of needed iterations depends of course on the desired precision
and on the network parameters. Table 1 illustrates the average flow throughput,
the average queueing delay (measured and modeled) and the average loss rate
(measured and modeled) using the simulation results in 4 settings with quite
different parameters:

- Case 1: 500 long-provisioned TCP flows with RTT; distributed between 80
and 440 msec, B = 232 packets and C' = 232.5 Mbps.

- Case 2: 500 long-provisioned TCP flows with RTT; distributed between 80
and 440 msec, B = 450 packets and C' = 116.25 Mbps.

- Case 3: 750 long-provisioned TCP flows and a constant number of 25 short
TCP flows, with RT'T; distributed between 70 and 2040 msec, B = 244 packets
and C = 69.75 Mbps. (The short flows were omitted in the model.)

- Case 4: 1500 long-provisioned TCP flows and a constant number of 5 short
TCP flows, with RT'T; distributed between 220 and 240 msec, B = 828 packets
and C' = 209.25 Mbps. (The short flows were omitted in the model.)

In all these cases, the modeled queueing delay and packet loss rate were
close to, but slightly above, the measured results. Incidentally, using the same
simulations without short flows, we also verified that the influence of the short
flows on the simulation results was negligible. Note also that all these cases use
small buffers, with the last case following the Stanford model, and the three first
cases having even smaller buffers.

5 Discussion of Assumptions

Let’s now discuss the correctness and generality of the assumptions.

Dumbbell Topology — We assumed in Assumption 1 that any large network
can be subdivided into dumbbell topologies. This assumption relies on the obser-
vation that in the Internet, few flows practically have more than one bottleneck,
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Average flow Queueing delay Loss rate p

throughput | Measured | Modeled |Measured|Modeled
Case 1|| 52 pkts/sec | 1.79 msec | 1.9 msec | 0.79 % | 0.90 %
Case 2|| 29 pkts/sec [18.27 msec|19.87 msec| 1.81 % | 2.10 %
Case 3|| 11 pkts/sec | 7.84 msec | 8.54 msec | 1.30 % | 1.30 %
Case 4/|| 18 pkts/sec |22.16 msec|26.15 msec| 3.30 % | 3.50 %

Case

Table 1: Measured versus modeled results.

and that flows having more than one bottleneck actually mainly depend on the
most congested one [4]. Thus, the assumption of a single point of congestion
seems realistic enough. However, we also assumed that the congestion only af-
fects packets, not ACKs. This assumption might be too restrictive — even though
we found that our Gaussian-based models still held in various simulations using
reverse-path ACK congestion.

Statistical Independence of {WW;} — It is obviously not correct that the
congestion windows are completely independent, since they interact through the
shared bottleneck queue. However, in order to study how far from reality the
independence assumption is, we checked how correlated the congestion windows
were over time. We obtained the following correlation matrix for the conges-
tion windows of five arbitrary flows, using 70,000 consecutive time samples in a
simulation with 500 persistent TCP flows.

1 0.066 0.14 0.058 —0.025
0.066 1  0.054 0.0005 —0.081

C=1] o014 0054 1 0.063 0.051 (6)
0.058 0.0005 0.063 1  0.003
~0.025 —0.081 0.051 0.003 1

It can be seen that the correlation coefficients between different flows were in-
deed quite low and far from the maximum absolute value of 1. Of course, while
independent random variables have zero correlation, the reverse is not necessar-
ily true. Nevertheless, this low correlation would tend to indicate that the flows
are indeed desynchronized, and therefore that the simplifying assumption of in-
dependence is not too far from reality. In fact, as the number of flows increases,
we also found that a heuristic measure of the independence of their window sizes
was decreasing (we took two arbitrary flows and used the symmetric form of the
Kullback-Leibler distance between the joint distribution of their window sizes
and the product of their respective distributions). For instance, it was 20.03 for
10 flows, 3.37 for 50 flows, and 2.65 for 200 flows.

Identical Distribution of {IW;} — The distributions of the congestion window
sizes mainly depend on the loss rate p in the shared bottleneck buffer [13,14]. In
simulations, the loss rate was indeed found to be equal for all flows when there
is no strong synchronization.

Burstiness — In Section 4, the comparison of the bursty model with the fluid
model already strengthened the bursty assumption. More generally, this assump-
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tion needs to be used with care in networks without enough space on the links
for a packet burst (extremely small link latencies or link capacities). In other
cases, while not exactly reflecting reality, this assumption seems close enough [4].
RTT Distribution and Queuing Delay — We assumed that the queueing
delay can be neglected in front of the link propagation times. In fact, in the
Stanford model, the worst-case queueing delay is g = i\/g, where RT'T is the
average round-trip propagation time. Consequently, the assumption seems rea-
sonable when n is large, as long as there is no flow with a round-trip propagation
time significantly small in front of RTT.

Number of Packets — We assumed that the number of packets in the network
is close to the total window size, as reflected by the definition of the window size.
This assumption is especially justified when the loss rate is reasonably small, as
seen in our simulations and in the literature [4].

6 Generality of Results

It is obviously impossible to consider every possible topology and every possible
set of flows. We made hundreds of simulations for this paper, and still feel that
there is much to research. Nevertheless, we can already discuss the scope of the
results and their sensitivity to various topology parameters.

Buffer Size — Our paper is about models that are valid in networks with small
buffers. In a network with large buffers, the flows might become synchronized,
and our independence assumptions and the ensuing models might not be ap-
plicable. Likewise, we would not be able to neglect the queueing delay in our
models.

Propagation Times — We chose the link propagation times using a uniform
distribution with different parameters so as to reflect the diversity of real-life
Internet flows. In simulations, our models were fairly insensitive to these prop-
agation times, as long as there were many flows and there were no flows with
near-zero round-trip-times.

Protocols — The closed-loop model fits a network with long-provisioned TCP
flows. The cases above illustrate how a small portion of short TCP flows had
no major influence on the results — in fact, the short flows contribute to the
global desynchronization and make the independence-based models even closer
to simulated results! Likewise, we believe that a small portion of UDP traffic
would not have any influence on the results because of its open-loop nature.
Number of Flows — In simulations, we found that the desynchronization
was already practically correct for several hundreds flows, as previously stated
in [4]. We thus believe that with the hundreds of thousands of flows present in
a congested backbone router, the desynchronization will be even more correct.

7 Conclusion

In this paper, we provided a complete statistical model for a large network with
small buffers. We started with a model for the traffic on a single access line.



12 Mark Shifrin and Isaac Keslassy

Then, we modeled the arrival rates to the bottleneck queues. Later, we found
a model for the queue size distribution and the loss rate. Finally, using these
inter-related models, we showed how to solve a single fixed-point equation to
obtain the full network statistical model.

A router designer might directly use this network model for buffer sizing.
Indeed, the designer might consider a set of possible benchmark parameters and
model the behavior of the resulting network. Then, given target QoS require-
ments such as the required maximum packet loss rate or maximum expected
packet delay, the router designer will be able to design the buffer size that sat-
isfies these constraints.
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