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Abstract. In this paper we address the problem of online bandwidth
estimation in wired and wireless LANs. To this end, we employ active
probing, i.e. we continuously inject packet probes into the network. We
present the key challenges and analyze the trade-offs between fast change
detection and estimate smoothness. We show the benefit of using Kalman
filtering to obtain optimal estimates under certain conditions and provide
a procedure for parameterizing the filter with respect to specific use
cases. Furthermore, we evaluate the influence of probing train length on
the results. Based on our findings we developed a tool implementing the
presented methodology. We support our theoretical results by a number
of real-world measurements as well as simulations.
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1 Introduction

The idea of using end-to-end measurements to infer the capacity left over by cross
traffic, also called available bandwidth, dates back to TCP congestion control [1]
and packet pair probing [2]. In the field of wired networks a number of estimation
methods, e.g. [3–7] exist that are well understood. The task of bandwidth esti-
mation in wireless LANs, poses additional challenges [8, 9]. Nevertheless, some
tools originating from the wired domain have been suggested for available band-
width estimation in wireless networks [9, 10, 7]. Empirical evaluations for both
domains can be found e.g. in [11, 8].

Active probing methods inject synthetic traffic into the network and attempt
to infer the unused resources of the network path by analysing the packet disper-
sion, i.e, the changes in inter-packet gaps. Almost all tools calculate the average
of several measurements and report a single bandwidth estimate. Under constant
channel conditions, increasing probing intervals or the probing traffic intensity
can improve the accuracy of the results. On the other hand, it is often neces-
sary to probe bandwidth continuously in order to accurately detect changes over
time. For minimal intrusiveness it is desirable to minimize probing traffic, which
might negatively impact the sample accuracy. At the same time, the sampling



rate must be high enough to guarantee that changes are detected sufficiently
fast.

In this paper we analyze the constraints related to continuous probing and
show how Kalman filtering can be used to improve estimates. We model the
available bandwidth and the fair bandwidth share in wireless networks respec-
tively as a time-varying process that is at least piecewise stationary. In wired
networks this process is cross traffic dependent while in wireless domains it is
also related to the number of nodes and the physical channel conditions. Using
trains of packet probes we sample this process continuously to adapt to changes
in the channel state, e.g. changing number of transmitting stations, rate adapting
stations or cross traffic variations. Additionally, we assume that the maximum
probing rate is limited. We show that the estimate variance, which we interpret
as measurement noise, is related to the train length. Furthermore, we present a
procedure for tuning the process noise which influences smoothness and agility
of the Kalman estimate. We substantiate our analytical findings by an extensive
set of measurements and simulations. Furthermore, we address the problem of
finding a suitable number of packets per probing stream.

2 Related Work

In this section we discuss related work on bandwidth estimation in wireless
and wired networks. We focus on active probing techniques rather than passive
approaches which analyze cross traffic directly. In wireless networks for instance,
the broadcast medium can be used to capture packets of other stations and
derive bandwidth information. However, theses methods cannot obtain end-to-
end information.

Available bandwidth estimation techniques attempt to infer the capacity left
over by cross-traffic in a network path. Hence, the available bandwidth ABi of
a single link i in a time interval [τ, t) is defined as [12]

ABi(τ, t) = Ci(1− ui(τ, t)) (1)

where Ci is the channel capacity and ui ∈ [0, 1] the utilization. The available
bandwidth of the network path is given by the minimum available bandwidth
over all single links AB = mini(ABi).

In recent years a number of tools, which use active probing for available
bandwidth estimation have been proposed, e.g. [10, 3, 4]. Probes consisting of
packet pairs or packet trains are injected into the network at specified rate.
The inter packet gaps at the path egress are then used to infer the available
bandwidth. So-called packet chirps [4] represent a special class where packets
are sent with a geometrically decreasing gap.

Most tools assume First In First Out (FIFO) multiplexing which is the typical
scheduling policy in today’s Internet. Thus, network flows obtain a share of the
capacity which is proportional to their sending rate. Under the assumption of



constant bit rate (CBR) probing rates this yields

rin
rout

= max
(

1,
rin + λ

C

)
=

{
1 , if rin ≤ C − λ
rin+λ
C , if rin > C − λ

(2)

also referred to as the rate response curve [6, 13], where rin and rout are the input
and output rates of the probing traffic, λ is the cross traffic rate and C is the
channel capacity. Therefore, estimating the available bandwidth is equivalent to
finding the break in the rate response curve. Iterative probing tools [14] aim to
detect the break using a rate scan, i.e. by iteratively increasing their sending rate.
While (2) is typically applied to packet trains, it can easily be mapped to a gap
response curve, used for packet pairs [13] by using the expressions gin = L/rin
and gout = L/rout where L is a given packet size and gin and gout are the input
and output gaps between successive packets.

The BART tool [7], a successor of DietTOPP [10], is an iterative probing
method which uses a Kalman filter to obtain both, the end-to-end available
bandwidth and the bottleneck capacity. However, the approach employs iterative
probing while our work focuses on direct probing and an analytical derivation
of the Kalman filter noise parameters.

If the link capacity C is known in advance (2) can be solved for the cross traffic
rate λ if the probing rate is larger than the available bandwidth. In contrast to
iterative probing this yields one estimate for every probe. Hence, rather than
testing whether the probing rate is above or below the available bandwidth, the
cross traffic itself is sampled. This approach is referred to as direct probing [14].
Let rin = C it follows from (2) that the available bandwidth can be calculated
directly by [5, 9]

AB = C

(
2− C

rout

)
= C

(
1− gout − gin

gin

)
. (3)

In wireless networks the DCF aims to achieve per packet fairness for the medium
access. Studies have related this fairness to the fair share achieved by Generalized
Processor Sharing, e.g [15, 16]. Hence, the assumption of FCFS scheduling does
not hold in wireless LANs. The fair share fs can be computed recursively as a
solution of

fs :
M∑
i=1

min{ri, fs} = C (4)

where C is the capacity, ri is the sending rate of station i, and M is the number
of competing stations. Unlike in FCFS systems in fair queueing systems iterative
probing reports the fair share, which represents an upper bound for the avail-
able bandwidth. However, using (3) in fair queueing systems yields neither the
available bandwidth nor the fair share [8]. Thus, direct probing tools using this
equation tend to fail in wireless networks. Nevertheless, direct probing using a
rate above the fair share easily reports the fair share, since it is equal to the
output rate.



A partially implicit assumption of many bandwidth estimation tools is a sim-
plified network model: the network path is abstracted by a single tight link, cross
traffic is viewed as constant rate fluid and channel conditions are invariant. At
least the last point is not necessarily true in wireless networks due to interference
of other stations, other external radio sources or rate adaption.

3 Filtering of Active Probing Measurements

In order to detect changes in the cross traffic process, we probe continuously
over time. Therefore, we require an accurate and fast probing approach with low
probing overhead. To this end, we use direct probing as it provides fast and fairly
reliable samples in FIFO as well as DCF networks. We measure the dispersion
of packets in a packet train of length l + 1 with packet size L and derive the
averaged gap of the departures, i.e, packets at the receiver side by

gd =
d(l + 1)− d(1)

l
(5)

where d(n) represents the receiving time-stamp of the nth packet. In FIFO net-
works available bandwidth is derived by (3) whereas the fair share is computed
by fs = L/gd.

In a perfect constant fluid system, every single sample would lead to a correct
bandwidth estimate. Unfortunately, estimates derived through injected packet
probes are strongly influenced not only by packetized cross-traffic but also by
issues such as interface buffers or timer inaccuracies. We regard the resulting
probing train gap variations as measurement noise. We found that these effects
are diminished when using larger packet trains. Most existing tools use averaging
over several probe estimates to deal with measurement noise and obtain more
accurate bandwidth estimates [17, 13]. In essence, all approaches utilize some
form of filtering. For instance, the use of packet trains itself constitutes a low
pass filter. A naive approach for on-line bandwidth estimation is to employ
a moving average over the past N samples. In all cases an open question is
the suitable filter parametrization. Parameters include train lengths, probing
intensity and filter lengths. In the following, we employ the Kalman filter, which
known to produce optimal estimates for processes perturbed by Gaussian noise.
In section 4.1 we argue, that active probing methods which use long trains of
packet probes, produce estimates which are normally distributed around the
true available bandwidth. Consequently, Kalman filtering is ideal for eliminating
this type of measurement error. Additionally, we relate the Kalman filter to an
exponentially weighted moving average filter (EWMA).

In order to correctly parametrize a probing technique, it is vital to consider
its use-case. It is evident that in a scenario where the user is only interested in the
average available bandwidth over several minutes different settings are required
than if changes must be detected within seconds. To this end, we require the user
to specify the minimum bandwidth change B to be identified within a given time
Ts. Furthermore, we assume that the maximum probing rate is constrained to



a specific value rp (to e.g. 5% of the maximum link capacity), resulting in a
maximum inter-train sending time t∆ = L(l + 1)/rp. Given these constraints,
our goal is to derive optimal settings for the Kalman filter.

4 Bandwidth Estimation using Kalman Filtering

As shown in [18] the channel access procedure used in the 802.11 DCF trans-
forms the cross traffic process into an uncorrelated, approximately Gaussian dis-
tributed random process. Furthermore, in Sect. 4.1 we demonstrate that Poisson
cross traffic observed over long timescales has the same properties. Therefore,
we model perturbations within packet train samples as a Gaussian noise process.
This makes the Kalman filter an ideal candidate for estimating the true channel
bandwidth.

In the following, we will outline the working of the Kalman filter and present
simplifications, which are applicable when the filter noise parameters are time
invariant. Moreover, we will show how suitable noise values should be derived in
the context of available bandwidth and fair share measurements. Furthermore,
we will demonstrate the effect of the parameters on the filter performance and
convergence speed.

It is well known that the Kalman filter is the minimum mean squared error
(MMSE) estimator when the process and measurement noises are Gaussian. If
the Gaussian assumption is dropped, the Kalman filter is still the best linear
unbiased estimator. The filter can estimate the state xk at time k of any system
which can be represented in a state space framework

xk = Axk−1 +Bkuk + ωk (6)
zk = Hxk + νk (7)

where A is a state transition matrix, B is a control-input matrix associated
with an external input uk, and ωk is a normally distributed process noise with
ωk ≈ N(0, Q). The measurements zk, linked to the system state through an
observation matrix H are perturbed by a normally distributed measurement
noise νk ≈ N(0, R).

The optimal state estimate is obtained by iteratively applying a set of equa-
tions [19] known as the time and measurement updates as samples zk, e.g. packet
train estimates in our specific use-case, become available. In our probing frame-
work, the state estimate, i.e. the available bandwidth, is scalar, A = 1, B = 0
and H = 1. The reduced Kalman equations are then given by

Gk =
Pk−1 +Q

Pk−1 +Q+R
(8)

x̂k = x̂k−1(1−Gk) +Gkzk (9)
Pk = (1−Gk)(Pk−1 +Q) (10)

Above Gk is the Kalman gain and Pk is the filter estimate error variance. Typ-
ically, the filter is initialized with a guess for the state estimate x0 and large
value P0 representing the uncertainty associated with the guess.



It is evident from equations (8, 9, 10) that the error variance Pk and the
Kalman gain Gk are independent of the current state estimate x̂k and the mea-
surement zk. Moreover, for stationary noises the parameters Pk and Gk quickly
converge to constant values P∞ and G∞ respectively [19]. The values of these
steady-state parameters can be calculated offline analytically

P∞ =
Q

2
± Q

2

√
1 + 4R/Q = P± (11)

G∞ =
P+

P+ +R
= −P−

R
(12)

where P∞ is positive. Evidently, the steady-state Kalman filter equations are
equivalent to the recursive formulation of the exponentially weighted moving
average (EWMA) filter with smoothing factor G∞. Using zk = xk we get

x̂k = (1−G∞)x̂k−1 +G∞xk (13)

In contrast to classic EWMA filtering, where the smoothing factor is generally
selected in an ad-hoc manner, the Kalman framework allows us to optimally
parametrize the filter. If the Gaussian noise variances Q and R are known, the
Kalman filter is optimal, i.e. no other filter can achieve a smaller MSE. For
non-Gaussian noises, the filter is still the best linear unbiased estimator. In the
following sections, we will outline a procedure for determining suitable process
and measurement noises.

4.1 Measurement Noise Parametrization

We now derive the measurement noise associated with packet train sampling of
a Poisson cross-traffic process. To calculate the dispersion and variance of gd
caused by cross traffic in the wireless case we use [18]

d(l + 1)− d(1) = (l +K)
(
L

C
+∆

)
+

l+1∑
j=2

b(j) (14)

where K describes the random number of cross traffic packets transmitted be-
tween packet 1 and l of the probing stream, ∆ accounts for the protocol overhead
and b(j) for the DCF back-off procedure. For a wired FIFO system we set ∆
and b(j) to zero. The dominant source of randomness is given by the number
of inter-transmitted packets K. Thus, the variation and the measurement noise
mainly depend on K and can be derived from its distribution.

To derive the conditional distribution of P [K = k|l], i.e. that a cross traffic
source transmits k packets given a tagged station transmits l packets in a DCF
system, [18] uses probability theory and findings presented in [20] and [21]. The
conditional distribution of k under l can be expressed as follows

P[K = k|l] = P

[
k∑
j=1

b1(j) ≤ b2 l and
k+1∑
j=1

b1(j) > b2 l

]
(15)



where b1 are i.i.d. random variables representing the inter-arrival times of cross
traffic whereas b2 is the gap between two successive packets of a CBR probing
stream with length l. Based on this model, the authors relate measurement
noise to probing train length. Equipped with these findings, we derive a similar
expression for cross traffic in FIFO networks.

Lemma 1 (Poisson approximation) Let λ be the average packet rate of Pois-
son cross traffic arrivals. Furthermore, let l be the length and rp the rate of a
probing stream. For E[K] = lλ/rp � 1 (15) is approximately Gaussian where

P[K ≤ k|l] ≈ P

[
N(0, 1) ≤ k − lλ/rp√

lλ/rp

]
.

Proof. Using the central limit theorem, the Poisson distribution can be approxi-
mated by a normal distribution for E[K]� 1 with mean µ = E[K] and variance
σ2 = E[K], i.e. it becomes N(E[K], E[K])-distributed

P[K = k] ≈ 1√
2π E[K]

e−
(k−E[K])2

2 E[K]

To calculate E[K], we assume the cross traffic arrivals as a Poisson process with
an average packet rate λ. For a probing stream of length l and probing rate rp,
we get

E[K] =
l

rp
λ

that describes the expected average packet arrivals during a sample interval re-
lated to the probing stream. We can now use the normal distribution to calculate
the conditional probability

P[K ≤ k|l] ≈ P

[
N

(
0,

l

rp
λ

)
≤ k − l

rp
λ

]
Finally, we use the fact, that if X is N(aµ, a2σ2) then Y = X/a is N(µ, σ2) with
a2 = lλ/rp to standardize the result.

Combining (5) and (14) we find that in FIFO systems the variation of gd is given
by the distribution K/l. Using Lemma 1 and V ar(aX+b) = a2V ar(X) we calcu-
late the standard deviation for Poisson cross traffic and derive the measurement
noise

σgd
=

√
λ

rp l

L

C
(16)
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(a) Change tracking using different pro-
cess noise values: Q=3.8, Q=0.38.
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(b) Influence of process noise on con-
vergence speed: Q=0.04 (T=10s),
Q=0.0044 (T=30s), Q=0.0011 (T=60s).

Fig. 1. Simulation of estimates corrupted by Gaussian noise (R=16) with t∆ = 0.1 s.

4.2 Process Noise Parametrization

For optimal operation, the Kalman filter must also be supplied with the true
variance Q of the measured process. Essentially, the parameter Q determines how
quickly the filter considers new measurements to be reliable. However, generally
the variance of the measured process is not known in advance. Nevertheless, we
may choose a value based on knowledge of the type of changes we are interested in
capturing. Even if the measured process is not normally distributed, the Kalman
filter provides the lowest MSE achievable by a linear filter.

Consider the simulation scenario depicted in figure 1(a). After 20 s the fair
share abruptly drops from 28 to 14 Mbps. Expressed as a gap length, we denote
this change of B = 14 Mbps as gj = L/B. The fair share remains in this state for
Ts = 5 s. Samples corrupted by a Gaussian noise process with variance R = 16
are collected every t∆ = 0.1 s. To ensure that the filter follows cross-traffic
variations, we must set Q > 0. It is evident that if Q is too large, the estimate will
be unnecessarily noisy. If, on the other hand, Q is too small, the discontinuity will
be over-smoothed. This might be acceptable if one is not interested in tracking
such short variations. Let us however assume that the application relying on our
bandwidth estimate can benefit from accurately identifying this short fair share
jump.

We can optimally identify the discontinuity by calculating the variance Q for
the segment Ts after the fair share change. As Ts/t∆ = np samples are generated
during Ts, Q is calculated as follows

Q =
g2
j

np
=

g2
jL

Tsrp
(l + 1) (17)

Evidently Q decreases linearly as the number of samples in the segment is
increased, i.e. the number of packets per train is reduced. Using Eq. 17 the
Kalman filter will yield the minimal MSE within the considered segment. Natu-



rally the detection of shorter discontinuities will be sub-optimal. As a result, the
parametrization can be viewed as a lower bound for the filter tracking ability.

4.3 Convergence Speed and Estimate Variance

We now consider the effects of the filter parametrization on the estimate. Firstly,
we calculate the time needed for the filter to converge to a new value after an
abrupt change. To this end, we examine the impulse response of the scalar steady-
state Kalman filter where yk is the system output and uk is the step function

yk = (1−G∞)kuk = e−αkuk (18)

Evidently, the convergence speed to a new bandwidth is exponential. To calculate
the convergence time, we make use of the fact that e−αk decays to less than 1%
of its initial value after k = 5/α time-steps.

The relationship1 between the noise process variances Q and R to α, and
consequently G∞ is derived using

e−α = (1−G∞) = 1 +
P−
R

= 1 +
Q

2R
− Q

2R

√
1 + 4R/Q (19)

eα =
1

(1−G∞)
=
R+ P+

R
= 1 +

Q

2R
+

Q

2R

√
1 + 4R/Q (20)

cosh(α) = 1 +
Q

2R
(21)

Moreover, taking into account that packet train probes are sent every t∆ seconds,
we can calculate the filter convergence time for a set of values Q,R

T = 5t∆/ arcosh(1 +
Q

2R
) (22)

Next, we derive the overall variance of the filtered estimate during the dis-
continuity period Ts. The EWMA filter is in essence an auto-regressive AR(1)
process with a1 = 1−G, driven by the process G∞z. The variance of the sample
process z is the sum of the process and measurement variances Var(z) = Q+R,
which are independent by definition. Therefore, σ2

z = Var(G∞z) = G2
∞(R+Q).

Thus, the overall variance of the filtered estimate process is given by

Var(x̂k) =
σ2
z

1− a2
1

=
G2
∞(Q+R)

1− (1−G∞)2
(23)

Figure 2(a) illustrates the relationship between the estimate variance and
train length for discontinuity periods of different lengths.

Assuming no further cross-traffic jumps, for times significantly longer than
Ts the effects of the jump on the variance become negligible, i.e. Q tends towards

1 For R� Q the approximation α ≈
p
Q/R may be used.
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Fig. 2. Estimate variance for a 14 Mbit bandwidth change within Ts = 0.5, 1, 2, 4 . . . 32s
(solid curves; top to bottom) and dependency on train length and measurement noise
variance. Within the segment Ts in (a) and for t� Ts in (b).

zero resulting in Var(x̂k) = G2
∞R/(1−(1−G∞)2). The train length dependencies

for this case are depicted in Figure 2(b).
For cases in which the variance of the cross-traffic is known in advance, we

can readily employ equation 23 to determine the probing train length which
produces a minimal MSE.

4.4 Packet Train Length Considerations

For the remainder of the paper, we focus on the wireless case, i.e. fair share
estimation. The measurement noise variance derived in [18] is used.

As we showed above, increasing the packet train length l reduces the variance
of the bandwidth samples proportionally to 1/l. Additionally, because the ratio
between the bandwidth used per train and number of train gaps (l + 1)L/l is
non-linear, probing bandwidth is wasted when using short packet trains. It is
also clear that long train lengths, i.e. low sampling rates, will have a negative
impact on the bandwidth change tracking accuracy.

Next, we analyze the optimal train length for a given Ts and B. Figure 2(a)
depicts the variance of the filtered samples for a process noise optimized to track
changes of B = 14 Mbps within Ts = 0.5, 1, 2, 4 . . . 32s. This variance is related
to the MSE between the estimate and the actual bandwidth during the time
Ts. It is comprised of the deviation during the convergence period T and the
measurement variance after convergence.

It is evident that for the depicted scenario, it is desirable to use short train
lengths even if the resulting sample variance R is increased: the overall segment
MSE is minimized. For t � Ts, the filter has the largest variance improvement
for short train lengths, as depicted in Figure 2(b). However, as the cross-traffic
is assumed to be constant, we can use long packet trains sent at a low frequency
to further improve the estimate.

Naturally, increasing the probing traffic intensity rp will yield even better
results, as longer trains can be used, yielding a lower probe variance.
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5 Experimental Evaluation of Bandwidth Estimation

Based on the findings in Sect. 4 we developed a modular, portable measure-
ment framework called WiProbe. It implements direct probing for estimating
the available bandwidth in the wired domain and the fair share in wireless net-
works. Kalman filtering is used to continuously remove measurement noise from
the probes.

In order to evaluate our method and the implementation of our tool, we per-
formed experiments in a controlled testbed environment containing both wired
and wireless links. We investigate the performance of the Kalman filter and the
effects of parametrization to provide an underpining of our theoretical findings
in section 3 and section 4.

The wireless testbed2 setup is depicted in Fig. 3. The distance between the
wireless stations and the access point was between 0.5 m and 1.5 m. We switched
off RTS/CTS, automatic rate adaption as well as packet fragmentation. The
DCF is used for medium access. All nodes were connected to a separate switched
Ethernet control network. We employed SSHLauncher [22] to atomate the ex-
periment execution.

First, we focus on the accuracy of unfiltered packet train probes. We estimate
the fair share by sending probing traffic from S1 to R and a single contending flow
from S2 to R with an increasing rate λ from 0 Mbps to 28 Mbps. The cross traffic
is generated using the D-ITG [23] traffic generator. Fig. 4 shows the average of 25
fair share and bandwidth estimates with different probing train lengths gathered
in approximately 1 second per rate for all rates of cross traffic. Furthermore, we

2 We used Lenovo ThinkPad R61i notebooks with 2.0 GHz, 2 GB RAM running
Ubuntu Linux 8.04 with kernel version 2.6.24. We employed the internal Intel
PRO/Wireless 4965 AGN IEEE 802.11g WLAN adapters. The access point is a
Buffalo Wireless-G 125 series running DD-WRT version 24 RC-4. The switch used
in the wired test network is a Netgear FS-108
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show the corresponding confidence intervals at a confidence level of 0.95. As a
reference, the true fair share of a new flow fs = max{C − λ,C/2} and the
available bandwidth are plotted. Due to large protocol overhead [24, 8], we use
a nominal capacity C = 28 Mbps for a packet size of 1500 Bytes. It is obvious
that at least for long probing trains, WiProbe accurately estimates the available
bandwidth and the fair share in FIFO and DCF networks respectively. As stated
in section 3, using shorter train lengths results in samples with a higher variance,
as indicated by the larger confidence intervals in Fig. 4. Furthermore, the direct
probing samples for FIFO networks and high cross traffic rates exhibit some
inaccuracies due to packet loss caused by congestion.

Fig. 5 depicts the effect of train length and process noise on the ability
to track a fair share discontinuity. Based on the results plotted in Fig. 2(a)
we probe using a train length of l = 8 to detect the change of 14 Mbits for
Ts = 16s. Using the calculated, optimal process noise Q = 7.1× 10−5, the jump
is accurately tracked at the expense of a higher estimate noise. Nevertheless, the
measurement noise is significantly lower when compared to the unfiltered case.
Using a sub-optimal value for Q, the filtered estimate variance is reduced for
longer timescales, however the estimate of the discontinuity is highly distorted.

The measurement results depicted in Fig. 6 confirm our theoretical findings
from section 4.3. We were able to achieve a predetermined convergence time by
selecting the process noise Q according to Eq. 23. As expected, fast convergence
times are associated with a larger estimate variance as indicated by the larger
confidence intervals in Fig. 6.

6 Conclusion

In this paper we showed the benefit of employing Kalman filtering for improv-
ing estimates derived from continuous active probing of fair share or available
bandwidth using a constant probing rate. Specifically, we showed how filter pa-
rameters should be chosen to fit a specific use case and calculated the effects
of filtering on the estimate variance. Additionally, we showed the relationship



between filter convergence time and the process and measurement noise param-
eters. Furthermore, we evaluated the influence of train lengths on the estimate’s
variance for wired and wireless setups. We conclude that depending on the time-
scale and intensity of the cross traffic variations of interest, it can be beneficial
to sample cross-traffic frequently using short packet trains. When tracking short-
term changes is not a primary concern, long packet trains sent less frequently
should be employed, as these provide estimates with the lowest variance.
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