Work in Progress: Why is this Web Page coming
up so slow?
Investigating the Loss of SYN Packets

Dragana Damjanovic, Philipp Gschwandtner, Michael Welzl

Institute of Computer Science,
University of Innsbruck, Austria
dragana.damjanovic,philipp.gschwandtner,michael.welzl@uibk.ac.at

Abstract. Before the first valid calculation of the round trip time for
a connection, TCP sets an initial value for the retransmission timeout
to 3 seconds which, in the case of the first packets getting lost, intro-
duces a long delay. For short transfers, like web traffic, this could have
a significant influence on the performance. We performed measurements
to investigate how often this happens. As our measurements show, con-
trol packets (SYN and SYN/ACK packets) do get lost and delays of 3
seconds or even more (further timeouts) occur. By means of a simple
example implementation, we indicate that this problem could be solved.

Keywords: network protocol, measurements, connection management

1 Introduction

Sometimes, when browsing the Web, some page takes just too long to appear.
Usually an impatient user clicks refresh one or more times and the page loads.
This already happened at least once to everybody. One possibility for this be-
havior could be the loss of SYN or SYN/ACK packets. Web applications like
browsers mainly use TCP as a transport protocol. TCP starts a connection
with three-way handshaking, sending a SYN packet, waiting for a response
(SYN/ACK packet) and then sending an ACK for the SYN/ACK packet which
is the first packet of a TCP connection that can contain data. As recommended
in [1], before the first round trip time (RTT) measurement has been done, TCP
should set the retransmission timeout (RTO) to 3 seconds. Therefore in case
of SYN or SYN/ACK packets getting lost TCP waits 3 seconds (or longer for
further back-offs) before retransmitting them. Especially for short-lived flows,
this delay can significantly degrade the performance. Reference [2] suggests that
TCP may increase its initial window from one to between two and four segments.
This would make TCP more robust to losses in the starting phase when the win-
dow is 1 and any loss would force a timeout, but in the case of the connection’s
opening packets getting lost, TCP has no choice but entering timeout.

In [3] the authors recognize this problem of lost packets belonging to the
connection opening phase and their simulations show how the response time

2 Dragana Damjanovic, Philipp Gschwandtner, Michael Welzl

can be significantly increased by just avoiding the loss of the SYN/ACK packet.
They suggested the use of ECN [4] for SYN/ACK packets, but — as studies
show in 2000 only 1.1% [5] of the servers were ECN-capable and till 2004 it has
increased just to 2.1% [6] — ECN is not widely used. Therefore utilizing ECN
for SYN/ACKSs would not improve the actual performance until the number of
ECN capable servers increases.

Drawn by the idea of the impact the loss of packets belonging to the connec-
tion’s opening phase can have on the performance of web browsing, we investigate
on how often this happens. As our measurements show this problem does exist
(in average more than 0.5% of the connections experience this). Therefore we
give a simple example implementation that can overcome this drawback.

In the next section we investigate related work in the area of safe connection
establishment and some work done in speeding up web servers’ response times.
In Section 3 we present the results of our Internet measurements and in 4 we in-
troduce and validate an example implementation that improves the performance
of web browsing, followed by the conclusion of our findings.

2 Related work

Since web traffic usually consists of very short flows (request-response connec-
tions with web clients sending a request and server answering to the request),
not just the loss of packets belonging to the connection opening phase but also
the whole connection opening phase itself introduces a significant delay. In the
past there have been proposals for protocols more suited for transaction-oriented
connections that would eliminate this delay, proposals for protocols built on top
of TCP as well as protocols build from scratch.

The Stream Control Transmission protocol (SCTP) [7] is a protocol well
suited for web traffic. SCTP uses a concept based on associations instead of
connections, each association can have multiple streams and ordered delivery on
separate streams is also supported. In the case of HT'TP transfers with TCP
each request is sent over a separate connection, whereas SCTP enables multi-
ple requests to be sent over the same association. For opening a connection it
uses a four-way handshake, but to reduce the delay the last two packets of the
connection opening phase can carry data.

TCP for Transactions (T/TCP) [8] is a protocol suggested as an extension to
the TCP protocol for distributed applications like web applications (the scenario
we are investigating), that would benefit from a transaction oriented transport
protocol that does not always introduce additional packet exchanges for opening
and closing connections. Hosts opening a connection for the first time perform
the three-way handshake and host information is cached on each side. This cache
is used for validating upcoming SYN packets. Data is sent even within the first
packet of a connection (SYN packet) and in case a cache entry for this host exists
and the sequence number is valid (i.e. it is not a duplicate) the response to this
data is sent in the next packet. In all other cases the response is sent after the
three-way handshake is performed. This is an easy way to speed up short flows,

Work in Progress: Investigating the Loss of SYN Packets 3

like web traffic, but it has many security drawbacks: it consumes more resources
than normal TCP before a connection is open, therefore it can be attacked more
easily by SYN flooding, it is more vulnerable to IP address spoofing, etc.

The Versatile Message Transaction Protocol (VMTP) [9] is another example
of a transaction oriented protocol. It uses unique connection IDs for safe con-
nection management and will fall back to three-way handshaking only in special
cases (e.g. one of the hosts restarted). It is not built on top of TCP and provides
better security and naming, statelessness of transactions etc. This protocol is
designed for the area of distributed programming, for communication between
servers and clients belonging to the same organizational entity, and it is better
suited for those purposes than for an open system like the Web.

A transport protocol designed for wide area networks should implement a
connection management mechanism for connection opening and closing that is
immune to problems introduced by lost, duplicated or out-of-sequence packets.
In the past there have been a couple of proposals for safe initialization and clos-
ing of a connection: three-way handshaking, unique connection IDs and timers.
As already mentioned TCP uses a three-way handshake for opening but also for
closing connections [10]. Protocols that use unique connection IDs usually need
an extra mechanism for secure opening or closing, like three-way handshaking or
a timer. VMTP is an example of this kind of protocol and as mentioned before it
uses a three-way handshaking in some cases. The Delta-t transport protocol [11]
uses a timer-based connection management. Connections are handled without
any connection management packet exchanges. Communication is established
between ports of processes and Delta-t defines a stream as the unique triple
(destination port, source port, stream number), where ports are identified by 64
bit addresses unique for the whole network. The Delta-t connection management
is built on the idea that there are permanent error- and flow- controlled con-
nections between all possible streams. The time-based mechanism automatically
recognizes whether a connection is in the default state and accordingly allocates
or deallocates the connection state without any packet exchange. Delta-t and
VMTP are just two examples of protocols that deal with connection opening
without any packet exchange, but none of these protocols are used in the Inter-
net today.

3 Measurements

To investigate how often the stated problem occurs we observed web traffic. Here
we only consider the relevant part for our topic, which is the connection opening
phase. The loss of connection opening packets can be detected on the client side
and on the server side. There are 4 possible cases that can be distinguished:

client side
duplicate SYN: If a second duplicate SYN is sent by the client, either the
first SYN or the corresponding SYN/ACK must have been lost.
duplicate SYN/ACK: If a duplicate SYN/ACK is received, we can safely
deduce that the corresponding ACK has been lost.

4 Dragana Damjanovic, Philipp Gschwandtner, Michael Welzl

server side
duplicate SYN: If a second duplicate SYN packet is received by the server,
the client did not receive the corresponding SYN/ACK.
duplicate SYN/ACK: If a second duplicate SYN/ACK is sent, either the
first SYN/ACK or the corresponding ACK was lost.

Measurements were taken on the server side as well as on the client side, using
tcpdump and subsequent analysis of the trace files. For every packet, the TCP
header is inspected to determine whether it is an SYN, SYN/ACK or ACK
responding to the received SYN/ACK and therefore a part of the three-way
handshake of TCP. Then, the analyzer checks for duplicate SYN or SYN/ACK
packets (packets that hold the same source and destination IP address and port
as well as the same sequence number) to detect if packets belonging to the
connection opening phase got lost. We also measured the time difference between
such repeated packets. If this time difference matches the standard initial RTO
time (3 seconds or further back-offs with the RTO multiplied by 2 each time)
we can safely assume for the majority of the cases that the duplicate packet was
automatically transmitted. For all the other cases, other factors have to be taken
into account.

3.1 Web Mail Server (Server)

The University of Innsbruck provides two separate Linux-based servers for web
mail that we used for our server-side measurements, one for the employees
(http://web-maill.uibk.ac.at) and a second one for the students (http://web-
mail2.uibk.ac.at). We recorded roughly 208.000.000 packets for a duration of 12
days. The following results were obtained by doing server-side measurements
at the former. A total of 737.188 requests for initiating a connection have been
logged, 730.523 of which were successful (99,1%). 5162 (0.7%) of those successful
connections required more than one SYN packet, which shows a real occurrence
of lost SYN packets. Figure 1(a) shows the results of this measurement as a
histogram, illustrating the time interval between transmitting duplicate SYN
packets. There are peaks of duplicate SYNs at 3 and 6 seconds, which match the
first two time intervals for the RTO timer. The fact that there are many SYN
packets that approximately fit into a time interval but do not do so precisely can
be explained with variances in the calculation of the initial RT'O [1]. Therefore
we can assume that those duplicate SYN requests were automatically generated.

Furthermore there are smaller peaks at the slightly higher time values 3.4 sec-
onds, 6.8 seconds and 13.6 seconds, which also suggests an automated generation
with just a higher starting value or increasing delay in network. Another peak is
visible at approximately 0-0.3 seconds. The duplicate SYN packets arriving at
those small intervals (and also at any other time interval than the standard ones
used by RTO) might occur due to potentially faulty TCP implementations, de-
liberately changed RTO settings or possibly other factors like lower-level frame
collisions causing switches to forward a duplicate of a frame. However, the phe-
nomenon of those short interval packets cannot be explained by impatient users

Work in Progress: Investigating the Loss of SYN Packets 5

Histogram of duplicate SYN packets at lwm1

2000
1800
1600
£ 1400
2]

1200
£ 1000
800
600

400
200 A
0 A A

0 3 6 9 12 15 18 21 24 27
Interval (seconds)

-
o

(a) Webmail Server lwm1

Histogram of duplicate SYN packets at Iwm2
2500

2000

YN

® 1500

1000

of

500

0 L
0 3 6 9 12 15 18 21 24 27
Interval (seconds)

(b) Webmail Server lwm2

Fig. 1. Webmail Servers lwm1 and Iwm?2

clicking on "refresh” or accidental double-clicks, since it is not possible to force
the standard TCP implementations to resend a second SYN containing the same
source IP and port. We investigated further on this topic but found no way at
the application layer of causing TCP to resend a duplicate SYN. The reaction
of impatient users still solves the problem however, since today’s web browsers
simply open a new TCP connection for each refresh request.

The second measurement at the student’s web mail server showed similar
results. Again, the highest peaks are positioned at the standard initial RTO
interval times and smaller peaks at slightly increased timings as before. Also
quite a number of duplicate SYNs were received during non-automatic inter-
val times, suggesting either miscalculation or similar phenomena as described
above (mainly at 0 to 6 seconds, but continuously small occurrences up until 18
seconds). The results are illustrated in Figure 1(b).

3.2 Internet Proxy (Client)

Moreover we recorded traffic at the university’s Internet proxy using the client-
side measurement method. For a duration of two days we recorded 154.000.000

6 Dragana Damjanovic, Philipp Gschwandtner, Michael Welzl

packets. A total of 1.721.382 connection attempts have been logged, 1.708.442
of which were successful (99,2%). Multiple SYN/ACKs (and SYNs) were neces-
sary in 2.148 of those successful connections. Figure 2(a) illustrates the interval
between the original and duplicate SYN/ACKs. First of all there are quite less
SYN/ACKs than SYN packets compared to our previous measurements, which
can be explained by the nature of the client-side measurement. The server sends
a duplicate SYN/ACK only if the first SYN/ACK or its corresponding ACK
got lost. If the former is the case, the client counts only one SYN/ACK - a
phenomenon that also occurred in our other measurements - which results in
less SYN/ACKSs being registered on the client side. However this is not the case
for measuring SYN packets, since we notice every transmission of SYNs on the
client side, regardless of their success. Furthermore the figure illustrates a rather
high number of duplicate SYN/ACKSs at 0 to 4 seconds, which might be a result
of high server load and therefore delayed response times. Additionally there are
peaks at 1.5 seconds, 9 seconds and 16.5 seconds, which do not match any of
the suggested RTO intervals. Hence we assume that these peaks are caused by
miscalculation of the RTO or non-compliance of the specification.

3.3 Free Tracelogs of LBNL/ICSI (Server And Client)

In addition to the tests we performed at the servers of our university, we ex-
amined the logfiles of the LBNL/ICSI Enterprise Tracing Project, which con-
tain both server- and client-side measurement data that is freely available for
download.! The files contain three months of measurement data consisting of
approximately 5.000.000 packets involving HTTP. The data that is relevant to
our topic includes 232.852 connection attempts, 219.867 of which were success-
ful (94.4%). For 4103 (1.9%) of those successful connections multiple SYNs were
necessary. The results of duplicate SYNs are illustrated in Figure 2(b) and show
that, compared to our own measurements, there are much less duplicate SYNs at
non-automatic retransmission time intervals. This can be explained by different
measuring conditions, since the data downloaded from LBNL/ICSI was retrieved
in a local area network, whereas our measurements most probably include every-
day technologies like ADSL, cable Internet and WLAN. Since they are likely to
be more error-prone than wired Ethernet connections, it is deductible that they
show more irregularities due to lost packets. Apart from the peaks at the stan-
dard RTO interval times, there are peaks at 0.5 and 20 seconds. Since they are
too protruding to be random deviations it might be possible that some specific
program or deliberately changed RTO setting is responsible for those peaks.

3.4 Summary of the measurements

Additionally to the measurements described thoroughly above, we took measure-
ments at Alupress AG2, a company operating in the field of metal processing,

! http://www.icir.org/enterprise-tracing/download.html
% http://www.alupress.net

Work in Progress: Investigating the Loss of SYN Packets 7

Histogram of duplicate SYN/ACK packets at Proxy

o
S
S

o
=]
S

I
o
S

w
[=3
S

N
=]
S

number of duplicate SYN/ACK packets
=)
o

o

ﬂk A A A M

9 12 15 18 21 24 27
Interval (seconds)

(a) Internet Proxy Server

Histogram of duplicate SYN packets at LBNL/ICSI
7000

< 6000
5000
4000

3000

of

2000

1000

0 L A

0 3 6 9 12 15 18 21 24 27
Interval (seconds)

(b) LBNL/ICSI Tracefiles

Fig. 2. Measurements taken at the Internet Proxy Server of UIBK and LBNL/ICSI

that showed similar results and are therefore not described in detail. In all our
measurements (as illustrated by Table 1) we found that lost packets belonging
to the three-way handshake occur at a relatively high rate of 0.5%. Furthermore
we deduce from the logfiles of our own measurements that the phenomenon of
duplicate SYN packets arriving only 0 to 0.3 seconds after the original SYN
packet seems to be confined to a relatively small number of source hosts. They
might use very small RTO settings that match those time intervals or other-
wise modified TCP implementations that deviate from the suggested standard
behaviour. Since one of the requirements of ZID - our university’s central infor-
mation technology service, who gave us permission to record and analyse traffic
data - was the anonymization of host IP addresses, we cannot investigate further
on the origin of those particular SYN packets.

4 Enhancing performance

There are different ways the performance in case of lost control packets could be
improved. A simple solution to enhance the performance is to change the TCP

8 Dragana Damjanovic, Philipp Gschwandtner, Michael Welzl

Table 1. Summary of all measurements

UIBK UIBK

Webmail |Webmail Sgﬁ;"ss gf}g LBNL/

LWM1 LWM2
Connection tries total 737.188 665.829| 75.493| 1.721.382| 232.852
Connection tries successful 730.523 659.913| 75.049| 1.708.442| 219.867
Connection tries not successful 6.665 5.916 444 12.940 12.985
multiple SYNs 5.968 4.838 480 19.452 22.268
multiple SYNs for successful conn. 5.162 4.064 214 5.696 4.103
multiple SYNs for unsuccessful conn. 806 774 266 13.756 18.165
multiple SYNs outside standard interval 690 577 48 23 428
SYNs per successful connection 1,007 1,006 1,003 1,003 1,019
duplicate SYN every X connection 142 162 351 300 54

settings in the operating system, e.g. setting the initial retransmission value
to something smaller than 3 seconds, but this will then apply for every TCP
connection and possibly introduce unnecessary retransmissions and could even
cause TCP to fail in certain cases of extreme delay. Therefore the Internet stan-
dard recommends a rather conservative value. For example setting the value to
100 ms would create problems for establishing connections with a longer RTT.
Since two SYN packets have a higher probability to arrive at their destination,
a possibility would be to send each SYN packet twice with a short time interval
between. This would reduce the probability of failures at the cost of a little bit
more traffic in the network. A better solution, that would reduce traffic, would
be to perform some statistical evaluation on how long it normally takes to get
an ACK for a SYN packet and to set the retransmission timeout accordingly.
Here we present an example implementation that shows that performance can
be improved. We implemented a small tool (syn_optimizer) that runs at the ap-
plication layer. The tool keeps a copy of sent packets belonging to the connection
opening phase and in case the corresponding acknowledgement does not arrive,
it retransmits the packet. The tool can be applied just for a certain port (in this
case port 80) and the delay before retransmission of a non-acknowledgement
packet is also configurable.

The loss of packets belonging to TCP’s initialization can be recognized on the
client as well as on the server side and the problem can be solved on both sides.
As already mentioned on the client side a loss of a SYN or SYN/ACK packet
can be noticed, on the other hand, the server side cannot recognize the loss of a
SYN packet. Therefore the server side implementation has some drawbacks.

4.1 Client side

On the client side the tool monitors sent packets and keeps a copy of sent SYN
packets. In case a corresponding SYN/ACK packet has not been received after a
certain delay (SYN packet or SYN/ACK packet has been lost) the SYN packet is
retransmitted. The delay and number of retransmissions can be set via an input
parameter. Furthermore the tool will only retransmit packets with a certain
destination port (for web traffic: port 80). The delay parameter should not be
set too low because it can cause unnecessary retransmissions on a connection

Work in Progress: Investigating the Loss of SYN Packets 9

with a longer RTT. In the case of this tool being installed at the net edge and
then applying the changes for all traffic the choice of the delay should be even
more conservative. The tool can be called like in the following example:

syn_optimizer —d 200 —r 3 —c¢ —p 80,
where d denotes the delay, r represents the number of retransmission, ¢ indicates
it is the client side (s for the server side) and p stands for port.

We tested the tool using a small testbed consisting of three computers, as
illustrated in Figure 3. All computers run Linux (kernel version 2.6). One of the
computers is used as a router and has two network cards (Eth0: Intel PRO/1000
and Ethl: Intel PRO/100) The other two computers are used as a web server
(using the Apache Web Server, with Eth0: Intel PRO/100) and as a client (using
Firefox, with Eth0: Broadcom Tigon 3 Gigabit).

Router

Packet_loss_simulator.c
Iptables scripts
e =
%
s eth0:192.168.1. & eth1: 192.168.2.1

Points of measurement

Webserver

Apache webserver
eth0: 192.168.1.2

Browser
Firefox webbrowser
eth0: 192.168.2.2

Fig. 3. Illustration of our testbed

To test syn_optimizer we simulated the packet loss on the router. We ran
a couple of tests: without any packet loss, with one SYN packet lost, with one
SYN/ACK packet lost, with both SYN and SYN/ACK packets lost and finally
with 3 SYN packets lost. In each case the waiting time before syn_optimizer
would retransmit a packet was set to 200 ms and the number of retransmissions
was set to 3. Using the Wireshark® tool we observed packets sent on the link
between the client and the router as well as packets sent between the router and
the server.

Table 2 shows packets seen on the link between the Web server and the router
and on the link between the router and the client. In this case the first SYN
packet was lost and the tool was not applied. As can be seen the first retrans-
mission of the lost SYN packet appeared after almost 3 seconds and an HTTP
GET command was sent after 3.00 seconds. The results when syn_optimizer
was applied are shown in Table 3. We set a delay of 200 ms for resending the
SYN packet and the SYN packet was retransmitted after about 258ms. A pos-
sible reason for this extra delay of about 60 ms is that our tool runs on the
application level. The HTTP GET command was sent after 260 ms which was
2.74 seconds faster than without our tool. Some test showed that the response
can be even 20.29 seconds faster with the tool. The test with the loss of 3 SYN
packets showed that without our tool applied the HTTP GET was sent after

3 http://www.wireshark.org/

10 Dragana Damjanovic, Philipp Gschwandtner, Michael Welzl

Table 2. The test with 1 SYN packet lost; without syn_optimizer

Packets sent from the client to the router:

No. Time Source Destination Protocol Info

1 0.000000 192.168.1.2 192.168.2.2 TCP 40877 > http [SYN] Seq=0 Win=

2 2.996952 192.168.1.2 192.168.2.2 TCP 40877 > http [SYN] Seq=0 Win=

3 3.000432 192.168.2.2 192.168.1.2 TCP http > 40877 [SYN, ACK] Seq=0

4 3.000539 192.168.1.2 192.168.2.2 TCP 40877 > http [ACK] Seq=1 Ack=

5 3.000689 192.168.1.2 192.168.2.2 HTTP GET / HTTP/1.1

6 3.000864 192.168.2.2 192.168.1.2 TCP http > 40877 [ACK] Seq=1 Ack=

7 3.001320 192.168.2.2 192.168.1.2 HTTP HTTP/1.1 304 Not Modified

8 3.001437 192.168.1.2 192.168.2.2 TCP 40877 > http [ACK] Seq=552 Ac

9 8.001572 192.168.2.2 192.168.1.2 TCP http > 40877 [FIN, ACK] Seq=18
Packets sent from the router to the server:

No. Time Source Destination Protocol Info

1 0.000000 192.168.1.2 192.168.2.2 TCP 40877 > http [SYN] Seq=0 Win=

2 0.000119 192.168.2.2 192.168.1.2 TCP http > 40877 [SYN, ACK] Seq=0

3 0.000279 192.168.1.2 192.168.2.2 TCP 40877 > http [ACK] Seq=1 Ack=

4 0.000433 192.168.1.2 192.168.2.2 HTTP GET / HTTP/1.1

5 0.000587 192.168.2.2 192.168.1.2 TCP http > 40877 [ACK] Seq=1 Ack=

6 0.001037 192.168.2.2 192.168.1.2 HTTP HTTP/1.1 304 Not Modified

7 0.001182 192.168.1.2 192.168.2.2 TCP 40877 > http [ACK] Seq=552 Ac

8 5.001267 192.168.2.2 192.168.1.2 TCP http > 40877 [FIN, ACK] Seq=1

Table 3. The test with 1 SYN packet lost; with syn_optimizer

Packets sent from the client to the router:

No. Time Source Destination Protocol Info

1 0.000000 192.168.1.2 192.168.2.2 TCP 57993 > http [SYN] Seq=0 Win=

2 0.258130 192.168.1.2 192.168.2.2 TCP 57993 > http [SYN] Seq=0 Win=

3 0.259776 192.168.2.2 192.168.1.2 TCP http > 57993 [SYN, ACK] Seq=0

4 0.259903 192.168.1.2 192.168.2.2 TCP 57993 > http [ACK] Seq=1 Ack=

5 0.260003 192.168.1.2 192.168.2.2 HTTP GET / HTTP/1.1

6 0.260174 192.168.2.2 192.168.1.2 TCP http > 57993 [ACK] Seq=1 Ack=

7 0.260630 192.168.2.2 192.168.1.2 HTTP HTTP/1.1 304 Not Modified

8 0.260751 192.168.1.2 192.168.2.2 TCP 57993 > http [ACK] Seq=552 Ac

9 5.258758 192.168.2.2 192.168.1.2 TCP http > 57993 [FIN, ACK] Seq=1
Packets sent from the router to the server:

No. Time Source Destination Protocol Info

1 0.000000 192.168.1.2 192.168.2.2 TCP 57993 > http [SYN] Seq=0 Win=

2 0.000135 192.168.2.2 192.168.1.2 TCP http > 57993 [SYN, ACK] Seq=0

3 0.000319 192.168.1.2 192.168.2.2 TCP 57993 > http [ACK] Seq=1 Ack=

4 0.000418 192.168.1.2 192.168.2.2 HTTP GET / HTTP/1.1

5 0.000571 192.168.2.2 192.168.1.2 TCP http > 57993 [ACK] Seq=1 Ack=

6 0.001008 192.168.2.2 192.168.1.2 HTTP HTTP/1.1 304 Not Modified

7 0.001163 192.168.1.2 192.168.2.2 TCP 57993 > http [ACK] Seq=552 Ac

8 4.999125 192.168.2.2 192.168.1.2 TCP http > 57993 [FIN, ACK] Seq=1

21.02 seconds compared to just 0.73 seconds with our tool in use. The summary
of all tests is shown in Table 4.

4.2 Server side

As we already mentioned a performance optimization in case of SYN/ACK
packet loss can be done on the server side too. In this case our tool will monitor
sent packets and capture SYN/ACK packets. If the corresponding acknowledge-
ment for a SYN/ACK packet does not arrive after a certain delay, our tool will
retransmit the SYN/ACK packet.

We used the same test setup as in section 4.1 and observed the behavior of
our tool in following cases: 1 SYN packet was lost, 1 SYN/ACK packet was lost,
both SYN and SYN/ACK packets were lost and 3 SYN/ACK packets were lost.

In the case of the loss of a SYN packet our tool did not show any improve-
ment, because the loss of a SYN packet cannot be detected on the server side.
Since the results for this scenario are similar we will discuss one in detail. The

Work in Progress: Investigating the Loss of SYN Packets 11

Table 4. Improvement using syn_optimizer on the client side

number of lost SYN[number of Tost[without with

packets SYN/ACK packets |syn_optimizer syn_optimizer difference
1 0 3.00 0.26 2.74
0 1 3.00 0.30 2.70
1 1 6.50 0.45 6.05
3 0 21.02 0.73 20.29

client retransmitted the lost SYN packet after the TCP timeout expired (after 3
seconds). Since the next two SYN/ACK packets were lost too, the TCP timeout
triggered two more times: once at the server (at 3.800 seconds) and once more
at the client (at 8.99 seconds, the RTO was doubled). With the optimizer in
place, at 0.0 seconds the server received a SYN packet and immediately sent
a SYN/ACK packet. This packet was saved by the tool and since no acknowl-
edgement was received in the next 200 ms, syn_optimizer resent the SYN/ACK
packet at 0.316 seconds. Because of not receiving any acknowledgments in next
two 200 ms intervals the SYN/ACK packet was retransmitted again at 0.560
ms and 0.801 ms. After the third retransmission the acknowledgment was re-
ceived. The HTTP GET command was sent after 0.8 seconds which was 8.2
seconds faster than without syn_optimizer (in that case the time interval was
9.0 seconds). The summary of our other tests can be seen below:

number of Tost[number of Tost[without with diff
SYN packets SYN/ACK packets |syn_optimizer syn_optimizer ifference
1 0 2.99 3.00 -0.01
0 1 3.00 0.33 2.67
1 1 6.27 3.28 2.99
0 3 9.00 0.80 8.20

As is evident using this simple tool can increase the performance of web
browsing. By using it on the client side, the performance can be improved in all
cases. On the server side the tool cannot detect the loss of SYN packets, but
in any case congestion is more likely to happen on the way from the server to
clients rather than in the opposite direction. Still, installing such a tool at the
server will improve performance of all users connecting to the server.

5 Conclusion

The results of our measurements show that the loss of SYN packets is occurring
at a relatively high rate of 0.5%, forcing the host to resend duplicate SYN pack-
ets. While some of those duplicate packets are sent after time intervals that do
not match the suggested standards, the majority of them are retransmitted at
the standard RTO interval times, which can significantly delay short lived data
transfers. To overcome this problem we investigated the possibility of reducing

12 Dragana Damjanovic, Philipp Gschwandtner, Michael Welzl

the RTO time interval, which has the disadvantage of possibly introducing unnec-
essary retransmissions for connections with higher round-trip times. Therefore
we show, by means of a simple example implementation, that the performance
can be improved. Our tool keeps copies of sent control packets and retransmits
them in case no response has been received for a certain amount of time. It can
be configured only to operate on a certain port and for a specific timeout. The
results show that data transfer time (in our tests an HTTP GET command) can
be improved by between 2.74 and 20.29 seconds. Similar improvements can also
be observed when applying the tool on the server side for the retransmission of
SYN/ACK packets.

6 Acknowledgements

We would like to thank both Walter Miiller and Benjamin Kaser, who assisted
us in gathering the measurement data for this paper.

References

1. Paxson, V., Allman, M.: Computing TCP’s retransmission timer. RFC 2988,
Internet Engineering Task Force (November 2000)

2. Allman, M., Floyd, S., Partridge, C.: Increasing TCP’s Initial Window. RFC 2414
(Experimental) (September 1998) Obsoleted by RFC 3390.

3. Kuzmanovic, A.: The power of Explicit Congestion Notification. In: SIGCOMM
'05: Proceedings of the 2005 conference on Applications, technologies, architec-
tures, and protocols for computer communications, New York, NY, USA, ACM
(2005) 61-72

4. Ramakrishnan, K., Floyd, S., Black, D.: The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Proposed Standard) (September 2001)

5. Padhye, J., Floyd, S.: Identifying the (TCP) Behavior of Web Servers. In: In ACM
SIGCOMM. (2001)

6. Medina, A., Allman, M., Floyd, S.: Measuring the Evolution of Transport Protocols
in the Internet. SIGCOMM Comput. Commun. Rev 35 (2005) 37-52

7. Stewart, R.: Stream Control Transmission Protocol. RFC 4960 (Proposed Stan-
dard) (September 2007)

8. Braden, R.: T/TCP — TCP Extensions for Transactions Functional Specification.
RFC 1644 (Experimental) (July 1994)

9. Cheriton, D.: VMTP: a transport protocol for the next generation of communica-
tion systems. SIGCOMM Comput. Commun. Rev. 16(3) (1986) 406-415

10. Postel, J.: Transmission Control Protocol. RFC 793 (Standard) (September 1981)
Updated by RFC 3168.

11. Watson, R.W.: The Delta-t transport protocol: Features and experience. In: in
Proc. IEEE 14th Conf. Local Comput. Networks, Minneapolis, MN (oct. 1989)
399-407

