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Abstract. The robustness of a network is depending on the type of attack we 
are considering. In this paper we focus on the spread of viruses on networks. It 
is common practice to use the epidemic threshold as a measure for robustness. 
Because the epidemic threshold is inversely proportional to the largest 
eigenvalue of the adjacency matrix, it seems easy to compare the robustness of 
two networks.  We will show in this paper that the comparison of the robustness 
with respect to virus spread for two networks actually depends on the value of 
the effective spreading rate τ. For this reason we propose a new metric, the viral 
conductance, which takes into account the complete range of values τ can 
obtain. In this paper we determine the viral conductance of regular graphs, 
complete bi-partite graphs and a number of realistic networks.   
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1   Introduction 

Our daily activities rely increasingly on complex networks. The power grid, the 
Internet, and transportation networks are examples of complex networks. In contrast 
to simple networks, such as regular or Erdös-Rényi random graphs [7], complex 
networks are characterized by a large number of vertices (from hundreds of thousands 
to billions of nodes), a low density of links, clustering effects, and power-law node-
degree distribution [1], [20]. Being so large, complex networks are often controlled in 
a decentralized way and show properties of self-organization. However, even if 
decentralization and self-organization theoretically reduce the risk of failure, complex 
networks can experience disruptive and massive failure.  

 
As an example of massive attacks, in 2001, Code Red, a computer virus that 
incapacitated numerous networks, resulted in a global loss of 2.6 billion US dollars.  
In 2004, the Sassar virus caused Delta airlines to cancel 40 transatlantic flights in 
addition to halting trains in Australia.  Additionally, the US General Accounting 
Office estimated 250,000 annual attacks on Department Of Defense networks.  
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Objectives of such attacks range from theft, modification, and destruction of data to 
dismantling of entire networks.  In another example concerning the power grid, the 
Northeastern and Midwestern United States, and Ontario, Canada suffered a massive 
widespread power outage on August 14, 2003. Since our daily routines would cease if 
the technological information infrastructure disintegrates, thus, it becomes crucial to 
maintain the highest levels of robustness in complex networks. 
 
Therefore, the first step is to assess the robustness of networks. Obviously the 
robustness of a network is depending on the type of attack we are considering. In this 
paper we will focus on the spread of viruses on networks.  
 
The Susceptible-Infected-Susceptible (SIS) infection model, which arose in 
mathematical biology, is often used to model the spread of viruses [10], [9], [14], 
epidemic algorithms for information dissemination in unreliable distributed systems 
like P2P and ad-hoc networks [3], [8], and propagation of faults and failures in 
networks like BGP [4]. The SIS model assumes that a node in the network is in one of 
two states: infected and therefore infectious, or healthy and therefore susceptible to 
infection. The SIS model usually assumes instantaneous state transitions. Thus, as 
soon as a node becomes infected, it becomes infectious and likewise, as soon as a 
node is cured it is susceptible to re-infection. There are many models that consider 
more aspects like incubation periods, variable infection rate, a curing process that 
takes a certain amount of time and so on [6], [10], [19]. In epidemiological theory, 
many authors refer to an epidemic threshold τc, see for instance [6], [2], [10] and [14]. 
If it is assumed that the infection rate along each link is β while the curing rate for 
each node is δ then the effective spreading rate of the virus can be defined as τ = β/δ. 
The epidemic threshold can be defined as follows: for effective spreading rates below 
τc the virus contamination in the network dies out - the mean epidemic lifetime is of 
order log n, while for effective spreading rates above τc the virus is prevalent, i.e. a 
persisting fraction of nodes remains infected with the mean epidemic lifetime [9] of 
the order exp(nα). In the case of persistence we will refer to the prevailing state as a 
metastable state or steady state. It was shown in [18] and [9] that τc = 1/ρ(A) where 
ρ(A) denotes the spectral radius of the adjacency matrix A of the graph. Recently, the 
epidemic threshold formula has also been verified by using the N-intertwined model 
[17], which consists of a pair of interacting continuous Markov chains. 

 
It is common practice to use the epidemic threshold as a measure for robustness: the 
larger the epidemic, the more robust a network is against the spread of a virus, see 
[11]. Because the epidemic threshold is inversely proportional to the largest 
eigenvalue of the adjacency matrix, it seems easy to compare the robustness of two 
networks.  We will show in this paper that the comparison of the robustness with 
respect to virus spread for two networks is not so straightforward. To be more precise, 
we will show that the comparison of networks depends on the actual value of the 
effective spreading rate τ. For this reason we propose a new metric, the viral 
conductance, which takes into account the complete range of values τ can obtain. 
 



The rest of this paper is organized as follows. In Section 2 we consider the spread of 
viruses on regular and complete bi-partite graphs and show the need for a new metric 
for robustness with respect to virus spread. We propose this new metric, the viral 
conductance, in Section 3. In Section 4 we suggest a heuristic for the computation of 
the viral conductance. We determine the viral conductance for some realistic 
networks in Section 5. The main conclusions are summarized in Section 6. 

 

2   Virus spread on regular and complete bi-partite graphs 

In this section we will compare the fraction of infected nodes for two example 
networks and show that the value of the effective spreading rate τ determines for 
which network this fraction is higher.   The example networks belong to the class of 
regular and complete bi-partite graphs, respectively.  

2.1   Virus spread on regular graphs 

In this subsection we discuss the spread of viruses over a simpler network, i.e. the 
connected regular graph. This model is based on a classical result by Kephart and 
White [10] for SIS models. 
 
We consider a connected graph on N nodes where every node has degree k. We 
denote the number of infected nodes in the population at time t by Y(t). If the 
population N is sufficiently large, we can convert Y(t) to y(t)=Y(t)/N, a continuous 
quantity representing the fraction of infected nodes. Now the rate at which the 
fraction of infected nodes changes is due to two processes: susceptible nodes 
becoming infected and infected nodes being cured. Obviously, the cure rate for a 
fraction i of infected nodes is δy. The rate at which the fraction y grows is 
proportional the fraction of susceptible nodes, i.e. 1-y. For every susceptible node the 
rate of infection is the product of the infection rate per node (β), the degree of the 
node (k) and the probability that on a given link the susceptible node connects to an 
infected node (y). 
 
Therefore we obtain the following differential equation describing the time evolution 
of y(t): 
 

(1 ) .dy ky y y
dt

β δ= − −       (1) 

 
The steady state solution y∞ of Eq. (1) satisfies 
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Because an epidemic state only exists if y∞ > 0, we conclude that the epidemic 
threshold satisfies 
 

1 .c k
τ =         (3) 

 
Because for k-regular graphs the spectral radius of the adjacency matrix is equal to k, 
see [5], Eq. (3) is in line with the result by [18]. 

2.2   Virus spread on complete bi-partite graphs 

In this subsection we will consider complete bi-partite graphs. A complete bi-partite 
graph KM,N consists of two disjoint sets S1 and S2 containing respectively M and N 
nodes, such that all nodes in S1 are connected to all nodes in S2, while within each set 
no connections occur. Fig. 1 gives an example of a complete bi-partite graph on 10 
nodes. 

 
Fig. 1. Complete bi-partite graph K2,8 

 
Notice that (core) telecommunication networks often can be modeled as a complete 
bi-partite topology. For instance, the so-called double-star topology (i.e. KM,N with M 
= 2) is quite commonly used because it offers a high level of robustness against link 
failures. For example, the Amsterdam Internet Exchange (see www.ams-ix.net), one 
of the largest public Internet exchanges in the world, uses this topology to connect its 
four locations in Amsterdam to two high-density Ethernet switches. Sensor networks 
are also often designed as complete bi-partite graphs. 
 
In [12] a model for virus spreading on the complete bi-partite graph KM,N was 
presented. Using differential equations and two-state Markov processes it was shown 

in [12] that, above the epidemic threshold  
MNc
1

=τ , the fraction of infected 

nodes for  KM,N satisfies  
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It is easy to verify that for the case M = N, Eq. (4) reduces to Eq. (2), with k = N. 

2.3   Comparing the fraction of infected nodes for two graphs 

In this subsection we consider two networks on 10 nodes, the Petersen graph (see 
Fig. 2) and K2,8. Note that the Petersen graph is a regular graph where every node has 
3 neighbours, i.e. k = 3 in the notation of section 2.1. 

 

 
Fig. 2. Petersen graph 

 
Using Eq. (2) and Eq. (4) we can compare the fraction of infected nodes y∞ at 

steady state for the Petersen graph and K2,8, see Fig. 3.  
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Fig. 3. Fraction of infected nodes for Petersen graph and K2,8  

 
 
If we only look at the epidemic threshold, we see that the Petersen graph 

outperforms K2,8. However, for τ sufficiently large, K2,8 performs better because then 
the fraction of infected nodes is lower than for the regular graph. Note that this effect, 



that regular graphs have a higher fraction of infected nodes than non-regular graphs 
for large values of τ, was already observed in [16]. 

 
 This section shows that in order to compare for two networks the robustness with 

respect to virus spread, it does not suffice only to look at the epidemic threshold.   
 

3   Viral conductance  

In this section we propose a new metric for robustness with respect to virus spread 
that takes into account the complete range of τ  values. 

A natural way to take all values of τ  into account is by considering the area under 
the curve that gives the fraction of infected nodes. However, because this will lead to 
divergent integrals, from now on, instead of considering the effective spreading rate τ 
we look at the reciprocal of τ, that is the effective spreading rate s = δ/β.  

We are interested in y∞(s), the fraction of infected nodes in steady state, as a 
function of the effective curing rate. Note that the behaviour of y∞ (s) around s = 0 
reflects the behaviour of the original system for  τ  ∞. 

 
We are now in the position to suggest a new robustness measure with respect to 

virus spread that takes into account all values of τ, and hence s. 
 
Definition. The viral conductance V of a network G is given by  
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where  y∞ (s) denotes the fraction of infected nodes in steady state and s = δ/β. 
 
 
Note that it is possible to come up with other metrics that take the full range of τ 

values into account, but in our opinion the viral conductance is the simplest one. 
Determination of the operational meaning of the viral conductance is left for further 
study.   We will now state some theorems for the viral conductance V(G). 

 
Theorem 1: For regular graphs Hk, where every node has k neighbours, it holds 

that V(Hk) = k/2. 
 
Proof. This follows directly from Eq. (2) and Eq. (5). 
 
 
Theorem 2: For complete bi-partite graphs KM,N, it holds that  V(KM,N) = 
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Proof. This follows from applying Eq. (5) to Eq. (4). 

4   A heuristic for the viral conductance  

For general networks we cannot compute the fraction of infected nodes y∞(s), and 
hence the viral conductance, explicitly. Therefore, in this section we propose a 
heuristic for the computation of the viral conductance for general networks.  

We start with listing some properties of the fraction of infected nodes y∞ (s). 
 
Lemma 1 For any connected graph G let A denote its adjacency matrix and ρ(A) 

the largest eigenvalue of A. Then y∞ (ρ(A))=0. 
 
Proof.  This is just the threshold theorem, see e.g. [17]. 
 
Lemma 2 Consider a connected graph on N nodes and denote the degree of node i 

by di. Then )(111)( 2
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Proof.  This follows from Section IV in [17]. 
 
Conjecture For any connected graph G on N nodes, let A denote its adjacency 
matrix, ρ(A) the largest eigenvalue of A, di the degree of node i and E[di] the mean 

nodal degree.  Then 2
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Motivation. The conjecture is true for regular and complete bi-partite graphs and 

also is supported by numerical evidence. 
 
We will use the above lemmas and conjecture to construct a heuristic for 

estimating the new robustness metric V. 
 

We first approximate the curve y∞(s) by two straight lines, y∞1(s) and y∞2(s) such that 
y∞1(s) is the linearization of y∞(s) at s = 0 and y∞2(s) is the linearization of  y∞(s) at s = 
ρ. 

 
From Lemma 2 and the conjecture it follows that 
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Hence we obtain for this heuristic 
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Next we approximate the curve y∞(s) by a non-linear curve y∞NL(s) of the following 

form d
NL csbsasy ++=∞ )( such that y∞NL(s) and y∞(s) have the same 

linearization, both at s = 0 and at s = ρ. A straightforward calculation shows that 
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Note that for non-regular graphs ][ idE>ρ , see e.g. [5], from which it can be 

deduced that d > 1, hence the derivative of y∞NL(s) at s = 0 is finite. 
 
Hence we obtain for this heuristic 
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Because VNL always seems to lead to an overestimation of V, while VPL 
underestimates V, as the final heuristic VH for the viral conductance we propose a 
weighted average of VPL and VNL:  

 
0.95* 0.05*H PL NLV V V= +  .   

 
The choice of the weight (0.95) is based upon the results of the next section. We 

will now validate the heuristic for the complete bi-partite graph KM,N, for which we 
can determine the new robustness measure V explicitly, see Theorem 2. 

 
The results are given in Table 1. 

 
 



Table 1: Comparison viral conductance V with heuristic VH for KM,N 

M N V VH Relative error 
10 90 11.38 10.23 -10% 
30 70 21.85 21.49 -2% 
50 50 25 25 0% 
10 990 20.14 14.08 -30% 

100 900 113.77 102.34 -10% 
250 750 200.24 194.71 -3% 

 
Apart from the case K10,990, the heuristic VH performs reasonably well.  

5   Viral conductance for realistic networks 

In this section we will determine the viral conductance for a number of real-life 
networks and for some toy networks that are commonly used to model realistic 
networks. 

5.1   Considered networks 

The following networks are considered in this section: the Abilene backbone 
network, a scale free network, HOT (Heuristically Optimal Topology), the Erdös-
Rényi  graph, the Stanley Ring, the Stanley Mesh and a 2D-lattice.  The Stanley Ring 
and Stanley Mesh were proposed in [15] to maximize network robustness against both 
random and targeted attacks while minimizing the network cost.  

More information on the considered networks can be found in [12], [15] and [16]. 
 

All networks contain approximately 1000 nodes.  This value reflects the number of 
nodes in current inter-domain network design and thus provides a comparatively real-
life scenario.  Some of the considered networks are visualized in Fig. 4. 

 

 
   
  a) Abilene network       b) Scale free network 



        

  c) HOT network      d) Stanley Ring 
 

Fig. 4. Visualization of some of the considered networks 

5.2   Numerical results 

Because for general networks no explicit expression for the fraction of infected 
nodes y∞(s) is available, we have used numerical analysis to determine the viral 
conductance for the considered networks. The first step is to obtain steady state values 
for the number of infected nodes, for a given value of the effective curing rate s. For 
this we use the discrete, deterministic expression for pi,t, the probability that node i is 
infected at time t, as given in [18]. By summing over all nodes and after the 
appropriate rescaling we obtain y∞(s). This fraction of infected nodes is evaluated for 
100 equidistant values of s, between 0 and ρ(A), the spectral radius of the adjacency 
matrix A. Finally, the viral conductance V is determined by means of a simple 
triangular integration method. The results are given in Table 2. 

 

Table 2: Viral conductance V for realistic networks 

Network N L <d> τc V VH rel. error 
Abilene 886 896 2.02 0.11 1.43 1.46 3% 

Scale free 1000 1049 2.10 0.10 1.49 1.54 3% 
HOT 1000 1049 2.10 0.11 1.46 1.53 5% 

Erdös-Rényi   1000 2009 4.02 0.19 2.20 2.15 -2% 
Stanley Ring 1000 1000 2.00 0.14 1.79 1.34 -25% 

Stanley Mesh 1000 1275 2.55 0.04 2.81 1.96 -30% 
2D-lattice 900 1740 3.87 0.25 2.00 1.96 -2% 

 
In Table 2 N denotes the number of nodes, L the number of links, <d> the average 

nodal degree and τc the epidemic threshold. VH denotes the viral conductance 
according to the heuristic proposed in Section 4. Several conclusions can be drawn 
from Table 2. We confine ourselves to mention just a few: 
 



• Of the considered networks Abilene has the lowest viral conductance; hence it is 
the most robust with respect to virus spread. 

• The threshold of the Erdös-Rényi graph is almost twice as high as that of 
Abilene, yet its viral conductance is about 50% higher. 

• For the Stanley Ring and Mesh the heuristic VH leads to an underestimation of 
the viral conductance in the order of 30%. For the other considered networks the 
heuristic is very accurate.  

• Rewiring the links of the Stanley Ring could lead to a reduction of the viral 
conductance of about 44%.  

 
The last conclusion follows from the fact that every ring topology has a viral 

conductance of 1, see Theorem 1.   

6  Conclusions  

In this paper we have proposed the viral conductance as a new metric for robustness 
with respect to virus spread in networks. The viral conductance takes the complete 
range of values the effective spreading rate can attain into account. We have given an 
explicit expression for the viral conductance in case of regular and complete bi-partite 
graphs. For general networks we have proposed a heuristic. Next we have determined 
the viral conductance for a number of realistic networks, by means of numerical 
computation.  
 
The main conclusions are the following: 
• of the considered networks Abilene has the lowest viral conductance; hence it is 

the most robust with respect to virus spread; 
• For the Stanley Ring and Mesh the heuristic VH leads to an underestimation of 

the viral conductance in the order of 30%. For the other considered networks the 
heuristic is very accurate.. 

 
The following issues will be subject of our future work: 
• determination of operational meaning of the viral conductance; 
• design of topologies, with given number of nodes and links, which minimize the 

viral conductance; 
• construction of a more accurate heuristic for the computation of the viral 

conductance; 
• computation of the viral conductance for networks of a larger scale. 
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