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Abstract. In large-scale P2P live streaming systems, it is shown that
peers in an unpopular channel often experience worse streaming quality
than those in popular channels. In this paper, by analyzing 130 GB worth
of traces from a large-scale P2P streaming system, UUSee, we observe
that a large number of “unpopular” channels, those with dozens or hun-
dreds of concurrent peers, tend to experience inferior streaming quality.
We also notice a short lifespan in these channels, which further exac-
erbates streaming quality. To derive useful insights towards improving
streaming performance, we seek to thoroughly characterize important
factors that may cause peer volatility in unpopular channels. Specifi-
cally, we conduct a comprehensive statistical analysis on the impact of
various factors on peer lifespan, using survival analysis techniques. We
found that the initial buffering level, the variance of peer indegree, and
the peer joining time all have important effects on the lifespan of peers.
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1 Introduction

Real-world live P2P multimedia streaming systems have been successfully de-
ployed in the Internet at a large scale, with hundreds of channels and hundreds of
thousands of users at any given time. With the large number of concurrent chan-
nels, practical experiences have revealed the widely uneven distribution of peers
across different channels: there may be thousands of concurrent users watching
a popular channel, and no more than a few hundred of peers in an unpopu-
lar channel. These unpopular channels, usually representing the majority of the
available channels in the streaming system, generally experience lower stream-
ing quality, as compared to large popular channels. While many research efforts
have been made to guarantee the performance of large popular channels, e.g.,
to accommodate a flash crowd scenario where a large number of peers join in
a short period of time, little attention has been devoted to the improvement of
streaming quality in unpopular channels.
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In this paper, we focus on unpopular channels in large-scale P2P stream-
ing systems. Using more than 130 GB worth of run-time traces from hundreds
of streaming channels in a large-scale real-world P2P live streaming system,
UUSee [1] (among the top three commercial systems in mainland China, along
with PPLive and PPStream), we have investigated the distribution of peer pop-
ulation and streaming quality across different channels, and observed inferior
streaming qualities that are empirically experienced by unpopular channels. We
have further discovered a short peer lifespan (severe peer volatility) in the un-
popular channels, which reveals a less than desirable situation that may lead to
a downward spiral of peer population: On one hand, the low streaming quality
in an unpopular channel may lead to short peer stay in the channel; on the other
hand, the more severe peer churn further exacerbates the streaming quality of
existing peers. To promote peer stability for a better streaming quality, it is
critical to thoroughly understand and characterize the important factors that
may have caused the peer volatility in unpopular channels.

Towards this objective, we conduct a comprehensive and in-depth statistical
analysis using the UUSee traces. Our objective is very clear: we wish to identify
critical performance metrics as risk factors that may influence the lifespan of
peers, in order to derive useful insights towards the improvement of stability
of peers in unpopular channels. To achieve this, we have parsed and imported
all run-time traces into a database, where we apply survival analysis techniques
such as the Cox proportional hazards model and the Mantel-Haenszel test to
discover such influential factors. We have found that the initial buffering level,
peer indegree and peer joining time all have important effects on the lifespan of
individual peers. We are able to discover these influential performance factors
from the real-world traces, which has not been possible in the existing literature.
Based on the results of our regression analysis, we have derived a number of useful
insights to guide the design of better P2P streaming protocols that promote the
stability of peers in unpopular channels.

The remainder of this paper is organized as follows. In Sec. 2, we present our
research methodologies with respect to collecting and parsing UUSee run-time
traces. In Sec. 3, we show our survival analysis of the traces to identify influential
factors on the peer lifespan. In Sec. 4, we model the impact of influential factors
using the Cox regression model. In Sec. 5, we discuss the implication of our
model and its usage in promoting peer stability. We discuss related work and
conclude the paper in Sec. 6 and Sec. 7, respectively.

2 Trace Overview: A First Glance at Unpopular Channels

2.1 Collecting Real-World Traces

Starting from 2006, we have been monitoring the performance statistics of a
real-world commercial P2P streaming system, offered by UUSee Inc. [1]. Simi-
lar to all current-generation mesh pull-based P2P streaming protocols, UUSee’s
streaming protocol design is based on the principle of allowing peers to serve
each other by exchanging blocks of data, that are received and cached in their



local playback buffers. To dynamically monitor the entire system, we have imple-
mented detailed measurement and reporting capabilities within the UUSee client
application. Each peer collects a set of its vital statistics, and encapsulates them
into “heartbeat” reports to be sent to the tracking servers every 5 minutes via
UDP. The statistics include its IP address, the channel it is watching, its buffer
availability map, the number of consecutive blocks in its current playback buffer
(henceforth referred to as the buffering level), instantaneous aggregate down-
load and upload throughput from and to all partners, as well as its download
and upload bandwidth capacities.

Though we have been continuously monitoring the performance of UUSee,
the study in this paper features a most recent set of run-time traces, collected be-
tween Thursday, May 29, 2008 (GMT+8) and Monday, June 2, 2008 (GMT+8),
which contains continuous-time snapshots of the streaming system throughout
the period, featuring over 16 million peer sessions. We believe these recent traces
best captured the up-to-date characteristics of peers in the millions-of-users scale,
to which the application has expanded over the years. Here, a peer session refers
to the lifespan between the joining and the departure of a peer.

2.2 Observations on Unpopular Channels

Why do we need to investigate the streaming performance in unpopular channels
and popular channels distinctively in such a large-scale system? First of all, we
observe that the popularity differs significantly across channels: a small number
of most popular channels (≈ 2%) with an average peer population over 5000,
a small percentage of less popular channels (≈ 31%) with a population in the
range of 500 to 5000, and the majority of UUSee channels accommodating a
peer population less than 500 (≈ 67%). Fig. 1 plots the correlation between the
streaming quality and peer population in all UUSee channels in two representa-
tive snapshots, 9 a.m. on May 30 and 9 p.m. on May 30. Here, we evaluate the
streaming quality in a channel at each time as the percentage of high-quality peers

in the channel, where a high-quality peer has a buffering level of more than 80%
of the total size of its playback buffer (buffer size in UUSee is 500 media blocks).
The criterion of the buffering level (i.e., the number of consecutive blocks in the
playback buffer of a peer, starting from the current playback position) has been
extensively used in the actual UUSee streaming protocol to evaluate the current
streaming quality of a peer. Accordingly, we also use the peer buffering level as
our basic streaming quality metric, based on the rationale that the more blocks
a peer has cached in its buffer, the higher chance it has to enjoy a smooth play-
back. We can observe from Fig. 1 that unpopular channels generally represent
worse streaming quality, as compared to large popular channels. The less than
satisfactory streaming performance in unpopular channels—which represent the
majority of streaming channels in UUSee—exposes a critical challenge in im-
proving the performance of real-world streaming systems: How shall we boost
the streaming quality of unpopular channels?

In P2P streaming systems, peer instability represents a “killer” factor that
negatively affects the achievable streaming quality. It is even more so in unpop-
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tween channel popula-
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Fig. 2: Correlation be-
tween channel popula-
tion and peer longevity.
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Fig. 3: Correlation be-
tween peer longevity and
streaming quality.

ular channels, as observed by our trace studies in Fig. 2 and Fig. 3. We found
that the peer lifespan (also referred to as peer longevity) tends to be shorter in
the unpopular channels from Fig. 2, while in most cases the more severe peer
churns further exacerbate the streaming quality in those channels, as shown in
Fig. 3. All these observations have pointed to the following fact: To promote the
streaming quality in unpopular channels, a key step is to improve the peer stabil-
ity in these channels, by promoting peer online times. In order to promote peer
stability, we find it important to obtain a thorough and in-depth understanding
of the critical factors that influence peer online times in unpopular streaming
channels, which constitutes the major objective of our study in this paper.

3 Deciphering Peer Instability in Unpopular Channels

3.1 Survival Analysis and Censoring

Survival analysis [2] represents a set of statistical methods for the analysis of
death or failure events and involves the modeling of time to event data, i.e.,
the survival time. In our analysis of peer longevity in each streaming channel,
a peer’s departure represents a failure or death event, and the time between its
joining and departure, the peer longevity, is the survival time to be considered. In
survival analysis, a survival function is frequently used to describe the probability
that an individual survives to a specific time t. Let a random variable T represent
the longevity of a peer session, the survival function is defined as: S(t) = Pr(T >

t) = 1−Pr(T ≤ t) = 1−F (t), where F (t) is the cumulative distribution function



(CDF) of the longevity. A standard estimator of the survival function, based on
a number of measured survival times, is proposed by Kaplan and Meier, referred
to as the product-limit estimator or the K-M estimator [2]. We now seek to
investigate critical factors that influence peer longevity in unpopular channels
based on correlation plotting and survival function K-M estimator.

3.2 Buffering Level

Intuitively, the higher buffering level a peer experiences, the smoother its stream-
ing is, and the more likely it will stay longer in the channel. Therefore, we start
by investigating: Do peer longevity patterns differ significantly under different

buffering levels? To answer this question, we explore the relevance between peer
longevity and various statistical metrics of the buffering level, including the aver-
age buffering level during a peer session, the standard deviation of the buffering
level throughout a peer session and the initial buffering level, as the first buffer-
ing level measured when a peer starts its playback. As a statistics to represent
the distribution of peer longevity among a group of sessions, we define an EDR(t)
function, i.e., Early Departure Rate function, as the percentage of peers whose
lifespan is less than or equal to t minutes within a group. In each sub-figure in
Fig. 4, we plot the EDR(15 min) of each session group categorized according to
different levels of the respective buffering level metric, as well as the smoothed
lowess curves. Note that in all our studies hereinafter, we use peer session data
from all the unpopular channels, i.e., channels with less than 500 peers most of
the time, in order to derive insights useful for their performance enhancement.
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Fig. 4: Correlation of EDR(15 min) with metrics of buffering level.

Fig. 4(a) reveals a negative correlation between the early departure rate and
the average buffering level within the buffering level range of 200−475, showing
that the departure rate is higher (peer lifespan is shorter) when the average
buffering level is lower in this majority range. The positive correlation between
the standard deviation of buffering level and early departure rate, as shown
in Fig. 4(b), meets our expectation that the less stable the buffering level is,
the shorter the peers are staying. We further investigate the tolerance of peers
towards the initial buffering level, by plotting the correlations in Fig. 4(c). A
strong negative correlation is observed in Fig. 4(c) between the early departure



rate and initial buffering level within the buffering level range of 0 − 120 and
320 − 500, respectively. This reveals that at the two ends of the spectrum, an
excellent initial buffering level brings a longer peer online time, and a very poor
initial buffering level will almost definitely result in an early departure. In our
study, we have varied t in the EDR(t) function from 5 minutes to 60 minutes,
and made similar observations.

3.3 Peer Incoming Degree

In P2P streaming, the number of supplying peers a peer can obtain in a stream-
ing channel, i.e. its incoming degree or indegree, and how stable these incom-
ing connections are, affect the streaming quality it obtains, and thus affect the
longevity of the peer in the channel. To investigate such impact of peer indegree,
we plot in Fig. 5 the EDR(15 min) values of session groups at different levels
of the average indegree during a peer session and the standard deviation of the
indegree throughout a peer session, respectively.

0 10 20 30 40 50 60
Average Incoming Degree

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ED
R(

15
)

(a) (b)

Fig. 5: Correlation of EDR(15 min) with metrics
of peer indegree.
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Fig. 5(a) shows an interesting phenomenon: When the peer indegree is at a
smaller value (< 20), a negative correlation exists between the average indegree
and the early departure rate, meaning that the more suppliers a peer has, the
longer it may stay; however, when the indegree goes up, a positive correlation
result, showing that the departure rate is high even when peers know many
others in the same channel. To explain the latter part of the observation, we have
further observed that the majority of peers in unpopular channels in UUSee have
an indegree lower than 30, and only a few may have large indegree up to one
hundred. Interesting enough, the peers with large indegrees are generally those
with poor buffering levels, which thus strive to find more possible suppliers,
but are nevertheless unable to get a satisfactory streaming quality. Fig. 5(b)
plots a positive correlation between the standard deviation of indegree and the
early departure rate. This reveals the following: when the number of incoming
connection fluctuates significantly at a peer, the peer may not be experiencing
smooth streaming, and thus is more prone to early departure.



3.4 Time Effects

Intuitively, the time when a peer surfs the Internet also influences its viewing
behavior. We then explore any possible effect of the time of the day, using sessions
starting at different times on a same day and classify sessions according to the
hours they start. Fig. 6 exhibits visible differences among survival curves for
session groups of four different starting times on May 30. We further statistically
validate our observations using the Mantel-Haenszel test [2], also referred to
as the log-rank test. The log-rank test is commonly applied to test the null
hypothesis that a set of survival functions are statistically equivalent, in which
the null hypothesis is rejected if the result p-value is lower than the significance
level of 0.05. The log-rank test result of p ≈ 0, rejects the null hypothesis that
survival functions are equivalent and validates our observations.

4 Modeling Peer Longevity: Cox Regression

4.1 The Cox Regression Model

The Cox proportional hazards model [2] is a classical regression model for the
analysis of survival times with respect to their relationship with covariates (which
are the terminologies in Cox modeling for influential factors). It models the rela-
tionship between the covariates and survival times based on the hazard function.
A hazard function λ(t), also referred to as the hazard rate, represents the instan-
taneous failure rate for a session that has survived to time t. Let T denote the
duration of a survival session. The hazard function is defined as:

λ(t) = lim
∆t→0

Pr(t ≤ T ≤ t + ∆t|T ≥ t)

∆t
.

In Cox regression modeling, it models the hazard rate at time t for a session
with covariate vector z = (z1, . . . , zp) as a function of a baseline hazard function
and the influential factors. The basic Cox model is:

λ(t; z) = λ0(t) exp(βT z) = λ0(t) exp(

p
∑

k=1

βkzk), (1)

where λ(t; z) is the hazard rate at time t for a session with covariate vector z;
λ0(t) is an arbitrary non-negative baseline hazard function, which is computed
during the regression process; and β = (β1, . . . , βp) is a column p-vector of
coefficients corresponding to the covariates in z. A major property of the Cox
model is that given two sessions with covariate vector z1 and z2, the ratio of
their hazard rate is independent of the time:

λ(t; z1)

λ(t; z2)
=

λ0(t) exp(βT z1)

λ0(t) exp(βT z2)
= exp(βT (z1 − z2)).

Such a property also imposes the proportional hazards assumption for applying
the Cox model, that the hazard rate ratio for any two sessions should be always
proportional, i.e., dependent only on their covariate values.



In our regression modeling, the potential covariates are selected correspond-
ing to the influential factors we have observed. The potential covariates, along
with their description and type, are listed in Table 1. In order to use the Cox
regression model in (1) to formulate the relationship among these covariates and
the hazard rate, we first need to check if the proportional hazards assumption is
satisfied, and may adjust the form of the covariates in Table 1, in order to meet
the proportional requirement. Once the assumption check is passed, we proceed
to derive the values of regression coefficients βk, k = 1, . . . , p in the model. Using
the Cox model, we can then estimate the probability that a session lasts to any
specific time t (i.e., the survival curve of the session), given the values of the
covariates for the session and using the derived coefficients.

Table 1: Potential covariates in Cox Regression Model

Covariate Description Type

BUFAVG Average buffering level of the session Continuous

BUFSTD Standard deviation of buffering level during the session Continuous

BUFINIT Initial buffering level of the session Continuous

INDAVG Average incoming degree during the session Continuous

INDSTD Standard deviation of incoming degree during the session Continuous

TOD
Joining time of the day

Categorical
(TOD ∈ {0, 1, . . . , 23}, corresponding to the hours of the day)

4.2 Proportional Hazards Assumption Check

Categorical Factor One approach to check the proportional hazards assump-
tion for a categorical covariate, i.e., whether or not the hazard ratio of sessions
with different values of a categorical factor is a constant, is to group the sessions
based on the values of the corresponding categorical factor, and plot the values
of − log(Ŝ(t))) against t for each session group [2], where Ŝ(t) is the estimated
survival function of the group. The plot for the categorical covariate TOD in our
model is shown in Fig. 7(a). If the hazard ratios do not change with time, the
curves in the figure should be approximately parallel, i.e. there is an approximate
constant vertical distance between each pair of them at all times. However, in
Fig. 7(a), we observe that the curves intersect with each other, indicating the
violation of the proportional assumption for TOD.

Given the non-proportionality of the categorical factor, we modify our model
in (1) to the stratified Cox model [2], in order to accommodate the categorical
factor. The stratified Cox model extends the basic Cox model by incorporating
strata, where each stratum corresponds to one hazard rate function, that models
the hazard rate of sessions corresponding to one specific value of each categorical
factor. The stratified Cox model with n strata (i = 1, . . . , n) is given by:

λi(t; z) = λ0,i(t) exp(βT z), i = 1, . . . , n. (2)



In our modeling, we have one categorical variable with 24 possible values, and
thus the total number of strata n is 24. We note that in such a stratified Cox
model, each stratum may have different baseline hazard functions, but all strata
share the same coefficient vector β as all other non-stratified factors are required
to have a constant influence to the hazard functions.
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Ŝ
(t)

)

TOD = 4
TOD = 10
TOD = 16
TOD = 22

(a) TOD

0 100 200 300 400 500
−

2
−

1
0

1
2

3
Average Buffering Level

P
oi

ss
on

 R
es

id
ua

l

460

(r
em

ov
ed

)

(b) BUFAVG

0 50 100 150 200 250

−
1.

0
0.

0
1.

0
2.

0

Std. Dev. of Buffering Level

P
oi

ss
on

 R
es

id
ua

l

40

16

(r
em

ov
ed

)

(c) BUFSTD

0 100 200 300 400 500

−
0.

5
0.

0
0.

5
1.

0

Intial Buffering Level

P
oi

ss
on

 R
es

id
ua

l

48
351

(d) BUFINIT

0 10 20 30 40 50 60

−
2

−
1

0
1

2

Average Indegree

P
oi

ss
on

 R
es

id
ua

l

(e) INDAVG

0 5 10 15 20 25 30
−

1.
0

0.
0

0.
5

1.
0

Std. Dev. of Indegree

P
oi

ss
on

 R
es

id
ua

l

7

(r
em

ov
ed

)
(f) INDSTD

Fig. 7: Proportional hazards assumption check for covariates.

Continuous Factors For a continuous covariate, the proportional hazards
assumption implies that it should have a linear influence on the hazard ra-
tio, i.e., the hazard ratio between a session with BUFINIT = 300 and one
with BUFINIT = 340 should be the same as that between a session with
BUFINIT = 400 and one with BUFINIT = 440. The approach to conduct such
an assumption check is to plot the Poisson residual curve [2] for each continuous
factor. The Poisson residual of a covariate reflects the impact of this specific
factor in the hazard rate function: a positive Poisson residual implies a positive
impact, i.e., the hazard rate is greater with a larger value of the covariate, while
a negative Poisson residual indicates a negative impact, vice versa. The Poisson
residual curve should be approximately linear if the hazard ratio between any
two sessions with two specific values of the factor is a time-independent constant.
We plot the Poisson residual curves (black solid lines) for all our continuous fac-
tors in Fig. 7(b)–(f), along with their standard error confidence bands (black
dashed lines), and the linear approximation lines (in red). The plots show that
many of the Poisson residual curves are not satisfactorily linear, reflecting vio-
lation of the proportionality in certain value ranges of the factors. We thus seek



to make necessary adjustments for the form of the covariates, such that all the
new covariates have a linear influence on the hazard ratio.

Fig. 7(b) shows an approximated linear curve in the majority range of the
average buffering level, except in the range of 460 to 500. To include BUFAVG
into the Cox model, we only keep its value range of [0, 460), i.e., we exclude
sessions with BUFAVG in the range of [460, 500] when we derive the model
coefficients, which nevertheless only represent a small portion (≈ 7%) of all the
sessions based on our measurement study. The major part of the Poisson curve
in Fig. 7(c) can be approximated by two linear segments.To include BUFSTD
into our Cox model, we exclude sessions with BUFSTD in the range of [0, 16]
(which only represent a few extremely short sessions), and include a new variable
BUFSTD L to describe the section of BUFSTD with larger values, corresponding
to the range of the second linear segment we approximate in Fig. 7(c):

BUFSTD L =

{

BUFSTD − 40 if BUFSTD ≥ 40
0 otherwise

The Poisson curve in Fig. 7(d) can be approximated by three line seg-
ments connected at two knots at 48 and 351, respectively. Since each section
of BUFINIT includes a substantial number of sessions, we include two new co-
variates, BUFINIT M and BUFINIT L, to describe the sections of BUFINIT
corresponding to linear segments in the middle and to the right, respectively:

BUFINIT M =

{

BUFINIT − 48 if BUFINIT ≥ 48
0 otherwise;

BUFINIT L =

{

BUFINIT − 351 if BUFINIT ≥ 351
0 otherwise.

In Fig. 7(e), the Poisson curve of INDAVG can be nicely fitted by one line,
revealing the proportionality of the factor on the hazard ratio. In Fig. 7(f), we
remove the leftmost part (corresponding to INDSTD in the range of 0 − 7 with
a few sessions), and fit the rest of the curve with a line.

After the adjustment, a covariate vector z = (z1, . . . , zp) with p = 8 com-
ponents is used in our stratified Cox model. The covariates are summarized in
Table 2. We note that in Fig. 7(b)–(f), all the linear approximation lines fall
within the confidential bands of the original Poisson residual curves, indicating
that the Poisson curves in those sections can be effectively approximated by the
linear segments. Therefore, after the adjustment, all the covariates we now use
in the Cox modeling satisfy the proportional hazards assumptions.

4.3 Estimation of the Coefficients and Model Validation

We next use a specific Cox regression technique proposed by Andersen and
Gill [3], to estimate the stratified baseline functions λ0,i, i = 1, 2, . . . , 24 and
the coefficient vector β in our stratified Cox model in (2).

Table 2 gives the coefficients of the covariates along with their standard
errors, estimated using information of 12866 session from 20 unpopular channels



in our traces. The 20 channels, whose average concurrent population varies from
48 to 457, are randomly chosen from all 530 unpopular channels contained in our
traces. The purpose for such sampling is not only to expedite the speed of the
regression process, but also to exhibit the usefulness of our model, trained using
only a limited set of samples, as is to be illustrated in the following subsection.
We have also computed the p values to test the significance of all the coefficients,
which are all far below 0.05, suggesting the significance of the covariates.

Table 2: Covariates and Coefficients for the Cox Model in (2)

Covariate β Std. Err. Covariate β Std. Err.

BUFAVG −0.0074 1.7e-3 BUFINIT 0.011 1.8e-3

BUFSTD 0.059 2.9e-3 BUFINIT M −0.012 1.9e-3

BUFSTD L −0.044 2.9e-3 BUFINIT L −0.0029 4.9e-4

INDAVG −0.051 1.9e-3 INDSTD 0.046 2.1e-3

With the Cox regression model established, we can now derive the survival
curve of a session with covariate vector z in a certain category of TOD. The
estimator of the survival function with covariate vector z at time t is given by
Si(t; z) = exp(−

∫ t

0
λi(u; z)du), where λi(u; z) is the stratum corresponding to a

specific category of TOD of sessions. We may use the expected session time of the
survival curve corresponding to a session with z, as the most probable duration
of the session. In this way, given a covariate vector z and the corresponding TOD,
we are able to predict the most probable duration of a session using our stratified
Cox model. Recall that our regression model is trained using only a limited set
of session data from 20 randomly selected unpopular channels. We now evaluate
its accuracy in estimating the duration of sessions in other channels.
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Fig. 8: Regression model validation by prediction of the peer longevity.

We calculate the overall influence of the continuous covariates by βT z, re-
ferred to as the global impact to the hazard rate. We group all the sessions in the
unpopular channels in UUSee (other than the 20 channels for the regression), by
their values of global impact and TOD, and plot the median session duration for
session groups at different levels of their global impact in different cases of TOD,



as shown by the bar plotting in Fig. 8. In solid curves, we also plot the session du-
ration predicted using our Cox model in (2) at each global impact level, and the
75% confidence intervals (in dashed lines). The actual median session durations
in all four figures fall into the confidence intervals, which validates the useful-
ness of our regression model—derived using a small portion of session data—in
accurately capturing the session duration patterns for unpopular channels.

5 Model Implications to Unpopular Streaming Channels

5.1 Impact of the Streaming Quality Factors

Three streaming quality factors are involved in our Cox regression model. We
seek to investigate the relative significance of their impact on peer longevity,
by calculating an impact value, βkzk − miny(βkyk), for each individual session
with a specific zk, with respect to the three streaming quality factors of average
buffering level, standard deviation of buffering level and initial buffering level,
respectively. Here, miny(βkyk) is the minimal impact value for the corresponding
streaming quality factor over all the sessions. We then compute the ratio of
the impact values of the three streaming quality factors for each session, and
derive the average ratio across all sessions. The normalized average ratio in the
percentage format is 16% : 33% : 51%, which exhibits the relative level of user’s
intolerance to the three streaming quality factors, respectively.

An intriguing discovery is that the initial buffering level is the most important
streaming quality factor affecting peer longevity. Using the coefficients in Table 2,
we derive the coefficient β corresponding to the initial buffering level factor in the
range of 48 to 351 is βBUFINIT +βBUFINIT M = −0.001, and the coefficient corre-
sponding to the range of 351 and 500 is βBUFINIT + βBUFINIT M + βBUFINIT L =
−0.0039. The more negative coefficient in the latter case illustrates that when the
initial buffer is relatively full, a small increase of buffering level induces more sig-
nificant decrease of failure probability, i.e., more evident effect in keeping peers
longer in the system. Therefore, to promote the stability of high-contribution
peers, efforts should be made to guarantee them a high initial buffering level.

5.2 Impact of the Incoming Degree Factors

Following a similar methodology, we further compare the impact of the average
peer indegree and the standard deviation of peer indegree, and derive a user’s
intolerance ratio of 38% : 62% to the two factors. It confirms that in unpopular
channels, peers are much less tolerant to neighbor churns than the average level
of neighbor numbers. Therefore, the P2P protocol should always try to find
stable good neighbors for each peer, the number of which may be small, but is
much desirable than a large number of transient neighbors.

6 Related Work

With respect to P2P measurements related to peer longevity, Hei et al. [4] char-
acterized the distribution of peer life time in PPLive, and exhibited different



life-time patterns among popular and unpopular channels. Li et al. [5] have also
observed a heavy-tailed peer lifetime distribution in their measurement study of
Coolstreaming. Based on simulations, Tang et al. [6] have shown that the longer
peers stay, the better the overall streaming quality is in a streaming channel.
Focusing on P2P applications other than live streaming, Stutzbach et al. [7]
have characterized peer arrivals and departures in three popular P2P file-sharing
systems (BitTorrent, Kad and Gnutella). Chen et al. [8] have investigated the
influence of network QoS metrics on peer session lengths in a P2P VoIP appli-
cation, Skype. Our work distinguishes itself from all the existing measurement
work, by focusing on a thorough understanding of the causes to peer lifetime
patterns in unpopular channels, in order to improve their streaming quality.

7 Concluding Remarks

This paper focuses on improving the streaming quality in the large number
of unpopular channels in real-world P2P live streaming systems. Utilizing over
130 GB worth of traces from a large-scale commercial system, UUSee, we thor-
oughly characterize the important factors that influence peer longevity. Our key
contributions include: first, we successfully identify the key factors that decide
the duration of peer sessions, including the initial buffering level, incoming degree
and peer joining time; second, we model their relationship into a Cox regression
model, using a survival analysis approach; third, we discuss implications of our
model and derive a number of useful insights to promote peer stability in un-
popular channels. As important applications of our Cox model, we can compute
and compare the relative stability of peers during the peer selection process, and
can promote the online time of high-contribution peers by guaranteeing them a
better initial buffering level and stable download bandwidth. All these assist in
improving the stability and streaming quality in unpopular channels.
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