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Abstract. We examine the influence of heterogeneous curing rates for
a SIS model, used for malware spreading on the Internet, informa-
tion dissemination in unreliable networks, and propagation of failures
in networks. The topology structures considered are the regular graph
which represents the homogenous network structures and the complete
bi-partite graph which represents the hierarchical network structures. We
find the threshold in a regular graph with m different curing rates.
Further, we consider a complete bi-partite graph with 2 curing rates
and find the threshold for any distribution of curing rates among nodes.
In addition, we consider the optimization problem and show that the
minimum sum of the curing rates that satisfies the threshold equation is
equal to the number of links in the graph. The optimization problem is
simplified by assuming fixed curing rates δ1, δ2 and optimization of the
distribution of curing rates among different sets of nodes.
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1 Introduction

The Susceptible-Infected-Susceptible (SIS) infection model, which arose in math-
ematical biology, is often used to model the spread of computer viruses [1], [2],
[3], epidemic algorithms for information dissemination in unreliable distributed
systems like P2P and ad-hoc networks [4], [5], and propagation of faults and
failures in networks like BGP [6].

The SIS model assumes that a node in the network is in one of two states:
infected and therefore infectious, or healthy and therefore susceptible to infection.
The SIS model usually assumes instantaneous state transitions. Thus, as soon
as a node becomes infected, it becomes infectious and likewise, as soon as a node
is cured it is susceptible to re-infection. There are many models that consider
more aspects like incubation periods, variable infection rate, a curing process
that takes a certain amount of time and so on [7], [1], [8]. In epidemiological
theory, many authors refer to an epidemic threshold τc, see for instance [7], [9],
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[1] and [3]. If it is assumed that the infection rate along each link is β while the
curing rate for each node is δ then the effective spreading rate of the virus can
be defined as τ = β/δ. The epidemic threshold can be defined as follows: for
effective spreading rates below τc the virus contamination in the network dies
out - the mean epidemic lifetime is of order log n, while for effective spreading
rates above τc the virus is prevalent, i.e. a persisting fraction of nodes remains
infected with the mean epidemic lifetime [2] of the order enα

. In the case of
persistence we will refer to the prevailing state as a metastable state or steady
state. It was shown in [10] and [2] that τc = 1/ρ(A) where ρ(A) denotes the
spectral radius of the adjacency matrix A of the graph. Recently, the epidemic
threshold formula has also been verified by using the N -intertwined model [11],
which consists of a pair of interacting continuous Markov chains.

It is the aim of this paper to derive results for the epidemic threshold in the
case of heterogeneous curing rates for regular and complete bi-partite graphs.
A regular graph is an approximation of the random graph for large N and it
represents a significant set of networks used in telecommunications. Further, the
complete bi-partite graph represents a hierarchal type of topology, also frequently
used in telecommunications. Notice that (core) telecommunication networks of-
ten can be modeled as a complete bi-partite topology. For instance, the so-called
double-star topology (i.e. KM ;N with M = 2) is quite commonly used because
it offers a high level of robustness against link failures. For example, the Ams-
terdam Internet Exchange,1 one of the largest public Internet exchanges in the
world, uses this topology to connect its four locations in Amsterdam to two
high-throughput Ethernet switches. Sensor networks are also often designed as
complete bi-partite graphs.

The rest of the paper is organized as follows. In Section 2, we present the
classical model by Kephart and White which describes the homogenous spread
of a virus on regular graphs and the SIS model for the complete bi-partite
graph also analyzed in [12]. In Section 2.1, we derive and analyze the spread of
viruses in regular graphs in case of m curing rates. In Section 2.2, we discuss a
specific case of regular graphs with 2 curing rates. In Section 2.3, we consider
the spread of viruses on the complete bi-partite graphs with two curing rates. In
the following section, we give solution for the optimization problem on complete
bi-partite graph in the heterogenous case. We summarize our results in Section
4.

2 Virus spread on regular and bi-partite graphs

In order to explain our model of spread for computer viruses with heterogeneous
curing rates, it is useful to first discuss the spread of viruses with homogeneous
curing rate.

The homogenous model for regular graph is based on a classical result by
Kephart and White [1] for SIS models. We consider a connected graph with

1 see www.ams-ix.net
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N nodes, where every node has degree k. We denote the number of infected
nodes in the population at time t by X(t). The probability that a randomly
chosen node is infected is v(t) ≡ X(t)/N . Now, the rate at which the infection
probability changes is due to two processes: susceptible nodes becoming infected
and infected nodes being cured. The change in probability v(t) due to the curing
of infected nodes is δv(t). The rate at which the infection probability v(t) grows
is proportional to the probability of a node being susceptible, i.e. 1 − v(t). For
every susceptible node, the rate of infection is the product of the infection rate
per node (β), the degree of the node (k) and the probability that on a given link
the susceptible node connects to an infected node (v(t)). Therefore, we obtain
the following differential equation describing the time evolution of v(t):

dv(t)

dt
= βkv(t)(1 − v(t)) − δv(t). (1)

The solution to Eq. (1) is

v(t) =
v0(1 − ρ)

v0 + (1 − ρ − v0)e−(βk−δ)t
, (2)

where v0 is the initial probability of infected nodes. The steady state solution
is

v∞ =
βk − δ

βk
(3)

An epidemic steady state only exist for v∞ > 0, therefore, the epidemic threshold
equals to τc = 1

k
. For k-regular graphs, the spectral radius of the adjacency

matrix [13] is equal to k, therefore τc = 1
k

is in line with the result in [10].
Further, we will consider the complete bi-partite graphs with one curing

rate δ. The SIS model for the complete bi-partite graph is presented in [12]. A
complete bi-partite graph KM,N consists of two disjoint sets S1 and S2 containing
respectively M and N nodes, such that all nodes in S1 are connected to all nodes
in S2, while within each set no connections occur. Figure 1 gives an example of
a complete bi-partite graph with 6 nodes. Since there are two sets of nodes
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Fig. 1. Complete bi-partite graph K2,4

with different degrees, equation (1) does not hold. A node from the set S1 is
connected to N nodes from the set S2. The probability that a randomly chosen
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node is infected in set S1 is v1(t) ≡ X1(t)/M . The rate at which probability v1(t)
grows is proportional to the probability that a node in the set S1 is susceptible
multiplied by the degree of the node N and the probability that a node connects
to an infected node from set S2, which is v2(t) ≡ X2(t)/N . For the set S1 and
S2, we can write differential equations

dv1(t)

dt
= βNv2(t)(1 − v1(t)) − δv1(t),

dv2(t)

dt
= βMv1(t)(1 − v2(t)) − δv2(t)

For dv1(t)
dt

= 0 and dv2(t)
dt

= 0, we have the steady state solution

v1∞ =
β2MN − δ2

Nβ(δ + βM)
, v2∞ =

β2MN − δ2

Mβ(δ + βN)

Now, the epidemic threshold equals τc = β
δ

∣

∣

∣

v∞=0
= 1√

MN
, which is the reciprocal

of the spectral radius of the adjacency matrix for the complete bi-partite graph
[13].

2.1 Virus spread on regular graphs with m curing rates

In this section, we derive the threshold for the spread of viruses on regular graphs
with m curing rates.

Assume that n1, n2, .., nm denotes the fraction of nodes with curing rate
δ1, δ2, .., δm (

∑m

i=1 ni = 1). It is important to note that one of the assumptions
is complete symmetry of the problem. For every node i, a fraction n1 of neighbors
has the curing rate δ1, a fraction n2 has curing rate δ2 and so on.

Denote the number of infected nodes of type i in the population at time t
by Xi(t). The probability that a randomly chosen node of type i is infected is

vi(t) ≡ Xi(t)
Nni

. Now, the rate at which the probability of infection for nodes of
type i changes is due to two processes: susceptible nodes becoming infected and
infected nodes being cured. The curing rate for an infection probability vi is δivi.
The rate at which the probability vi grows is proportional to the probability of a
node of type i being susceptible, i.e. 1−vi. For every susceptible node the rate of
infection is the product of the infection rate per node (β) and the probability that
on a given link the susceptible node connects to an infected node (

∑m
j=1(njk)vj).

Therefore, we obtain the following differential equation describing the time
evolution of vi(t):

dvi

dt
= βk(

m
∑

j=1

njvj)(1 − vi) − δivi, i = 1, .., m (4)

Note that for δ1 = δ2 = .. = δm, the system of equations (4) reduces to Eq. (1)
with v =

∑m
j=1 njvj .
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For the general case with different curing rates, it is impossible to obtain
an explicit solution for the system of equations (4). The standard approach for
this type of system of nonlinear differential equations, is to study the qualitative
behavior in the phase space.

Theorem 1. Consider connected regular graphs where each node has exactly k
neighbors. Assume that the infection rate along each link is β while the curing
rate for each node is δi for a fraction ni of the nodes, with i = 1, .., m 6 k
and

∑m
i=1 ni = 1. Complete symmetry is assumed, where each node sees the

same fraction of different curing rates. If we define the effective spreading rate
as τ = β

δ∗
, where δ∗ is defined as the weighted harmonic mean of δ1, ..., δm, i.e.

δ∗ =

(

m
∑

i=1

ni

δi

)−1

, then the epidemic threshold satisfies τc = 1
k
.

Proof. We denote the fraction of infected nodes of type i (1 6 i 6 m) at time t
as vi(t). This leads to a system of m differential equations (4).

We will use a Lyapunov function [14] to show that, under the condition

β

m
∑

t=1

nt

δt
− 1

k
≤ 0, the origin is a global attractor for {v1 ≥ 0, v2 ≥ 0, .., vm ≥ 0},

hence, that the virus dies out. Let V (v1, v2, .., vm) =

m
∏

j=1

δj

m
∑

s=1

vs

δs
. Then, we have

dV

dt
= −

(

m
∑

s=1

vs

)



βkV − βk
m
∏

j=1

δj

m
∑

t=1

nt

δt

+
m
∏

j=1

δj





= −
(

m
∑

s=1

vs

)



βkV − k

m
∏

j=1

δj

(

β

m
∑

t=1

nt

δt

− 1

k

)



 .

The claim follows directly by applying Lyapunov’s stability theorem. Next we

consider the case β
m
∑

t=1

nt

δt
− 1

k
> 0. We first note that any trajectory of the system

(4) can never leave the box B = {(v1, ..., vm)|0 ≤ v1 ≤ 1, ..., 0 ≤ vm ≤ 1}. This
follows from dv1

dt
|v1=0 = βk(

∑m

j=1 njvj) ≥ 0, and similar inequalities at the
borders of the box B.

From the construction of the above Lyapunov function V , we can see that

for β

m
∑

t=1

nt

δt
− 1

k
> 0, and for (v1, ..., vm) ∈ B and sufficiently close to the origin,

dV
dt

> 0. This implies that the origin has an unstable manifold in B. Therefore,
since any trajectory of system (4) can never leave the box B, system (4) has an
attractor as the ω-limit set and, hence, the virus does survive. This finishes the
proof of the theorem. �
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2.2 Virus spread on regular graphs with two curing rates

The two dimensional case (m = 2) of virus spread on a regular graph can be
analyzed in more details. Applying Theorem 1, the spreading process has a
threshold at τ = β

δ∗
= 1

k
, where δ∗ = δ1δ2

n1δ2+n2δ1

.
The phase portrait of two examples are depicted in Figure 2. The attractor

for the case where virus survives is given by (v1, v2) = (0.22, 0.17).

a) b)

Fig. 2. Phase portrait for a regular graph with the two curing rates where a) virus
dies out β = 0.2, δ1 = 0.8, δ2 = 1.2, k = 4, n1 = n2 = 0.5. b) virus survives β = 0.4,

δ1 = 0.8, δ2 = 1.2, k = 4, n1 = n2 = 0.5.

For system (4) where m = 2, it can be proven that the attractor is an
equilibrium point of a nodal type, situated on a straight line L. It can also be
shown that the system does not contain other equilibrium points in A or closed
orbits. Therefore, in the case m = 2, this equilibrium point is a global attractor
of system (4) in A.

Lemma 1. The set of differential equations given by (4) for m = 2, has a
straight line solution of the form v2 = λv1.

Proof. We have that
(

dv2

dt
= λ

dv1

dt

)

v2=λv1

−v1(βkn1λ
2 + (βk(n1 − n2) − δ1 + δ2)λ − βkn2) ≡ −v1f(λ)

f(λ) has got exactly one negative root and one positive root. The positive root
λ1 satisfies

λ1 =
βk(n2 − n1) + δ1 − δ2 +

√
∆

2βkn1
,
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where ∆ = β2k2 +2βk(n1 −n2)(δ2 − δ1)+ (δ1 − δ2)
2. Therefore the straight line

L : v2 = λ1v1 is a solution of system (4) for m = 2, which for 0 ≤ v1 ≤ 1 is
situated in A.

By application of the Poincaré-Bendixson theorem [14] on A, the ω-limit set
for the system (4) for m = 2, can be either an equilibrium point or an isolated
periodic orbit. From the fact that there is a line solution through the equilibrium
point, it follows that the ω-limit set is the equilibrium point. �

2.3 Virus spread on complete bi-partite graphs with two curing

rates

We will now derive a model for virus spread on the complete bi-partite graph
KM,N with two different spreading rates. The result is general and it can be
reduced to the case with all nodes in one set (S1) having one curing rate δ1 and
in the other (S2) δ2.

Let us assume that a fraction p, with p ∈ [0, 1], of nodes belonging to S1 and
a fraction q, with q ∈ [0, 1], of nodes belonging to set S2 have a curing rate δ1,
the rest have a curing rate δ2. The total fraction of nodes with the curing rate
δ1 is s = Mp+Nq

M+N
.

Denote the number of infected nodes of type 1 in the population of nodes
from set S1 at time t by Xi1(t). The probability that a randomly chosen node

of type 1 from set S1 is infected is vi1(t) ≡ Xi1(t)
Mp

. Similarly, let vi2 denote the

infection probability for nodes of type 2 from set S1, (vj1 denotes type 1, set
S2; and vj2 denotes type 2, set S2). Now, the rate at which the probability of
infection for nodes of type 1, set S1 changes is due to two processes: susceptible
nodes becoming infected and infected nodes being cured. The curing rate for an
infection probability vi1 for nodes of type 1, set S1 is δ1vi1. The rate at which
the probability vi1 grows is proportional to the probability of a node of type
1, set S1 being susceptible, i.e. 1 − vi1. For every susceptible node the rate of
infection is the product of the infection rate per node (β), the degree of the node
(N) and the probability that on a given link the susceptible node connects to
an infected node (qvj1 + (1 − q)vj2).

Similarly, we obtain the differential equations for the other probabilities
(vi2, vj1, vj2):















dvi1

dt
= βN(qvj1 + (1 − q)vj2)(1 − vi1) − δ1vi1,

dvi2

dt
= βN(qvj1 + (1 − q)vj2)(1 − vi2) − δ2vi2,

dvj1

dt
= βM(pvi1 + (1 − p)vi2)(1 − vj1) − δ1vj1,

dvj2

dt
= βN(pvi1 + (1 − p)vi2)(1 − vj2) − δ2vj2,

(5)

The same set of equations can be obtained by the N -intertwined model [11].
In order to simplify the system of equations, we will substitute

i1 = pvi1, i2 = (1 − p)vi2, j1 = qvj1, j2 = (1 − q)vj2

and



8 Effects of heterogeneous Protection in Networks

i = i1 + i2, j = j1 + j2

Therefore, we obtain the following differential equations for i1(t), i2(t), j1(t),
j2(t):















di1
dt

= pβNj − βNji1 − δ1i1,
di2
dt

= (1 − p)βNj − βNji2 − δ2i2,
dj1
dt

= qβMi − βMij1 − δ1j1,
dj2
dt

= (1 − q)βNi − βNij2 − δ2j2,

(6)

By solving the system of equations 6 for the steady state (di1
dt

= di2
dt

= dj1
dt

=
dj2
dt

= 0) we can calculate the threshold:

β

δ∗
= τc =

1√
MN

(7)

δ∗ =
δ1δ2

√

δ2
1(1 − p)(1 − q) + δ2

2pq + δ1δ2(p(1 − q) + q(1 − p))

Theorem 2. Consider complete bi-partite graphs KM,N consisting of two dis-
joint sets S1 and S2 containing respectively M and N nodes. Assume that the
infection rate along each link is β. For the nodes in S1 a fraction p has curing rate
δ1 and in S2 a fraction q of the nodes has curing rate δ1, while the curing rate for
a fraction (1−p)((1−q)) of the nodes is δ2. If we define the effective spreading rate
as τ = β

δ∗
, where δ∗ is defined as δ∗ = δ1δ2√

(1−p)(1−q)δ2

1
+pqδ2

2
+δ1δ2(p(1−q)+q(1−p))

,

then the epidemic threshold satisfies τc = 1√
MN

.

Proof. First, we will show that if β
δ∗

6 1√
MN

, the virus dies out. (0, 0, 0, 0)

is an equilibrium point for system (5). We will use a Lyapunov function to
show that, under the condition β

δ∗
6 1√

MN
, the origin is a global attractor for

i1 ≥ 0, i2 ≥ 0, j1 ≥ 0, j2 ≥ 0.
Let V (i1, i2, j1, j2) = δ1δ

2
2i1 +δ2

1δ2i2 +βN(pδ2+(1−p)δ1)(δ2j1 +δ1j2). Then,

dV

dt
= (β2MN((1 − p)(1 − q)δ2

1 + pqδ2
2+

+ δ1δ2((1 − p)q + (1 − q)p)) − δ2
1δ

2
2)(i1 + i2)

− βNδ2(βM(pδ2 + (1 − p)δ1) + δ1δ2)i1j1

− βNδ1(βM(pδ2 + (1 − p)δ1) + δ2
2)i1j2

− βNδ2(βM(pδ2 + (1 − p)δ1) + δ2
1)i2j1

− βNδ1(βM(pδ2 + (1 − p)δ1) + δ1δ2)i2j2.

The extinction of the virus follows directly by applying Lyapunov’s stability the-
orem. Next we will show that if β

δ∗
> 1√

MN
, the virus survives. We first note that
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any trajectory of the system (5) can never leave the box B = {(i1, i2, j1, j2)|0 ≤
i1 ≤ 1, 0 ≤ i2 ≤ 1, 0 ≤ j1 ≤ 1, 0 ≤ j2 ≤ 1}. This follows from di1

dt
|i1=0 =

pβN(j1 + j2) ≥ 0, and similar inequalities at the borders of the box B.

From the construction of the Lyapunov function, we can observe that for
β2MN((1−p)(1− q)δ2

1 +pqδ2
2 + δ1δ2((1−p)q +(1− q)p))− δ2

1δ
2
2)− δ2

1δ
2
2 > 0 and

for (i1, i2, j1, j2) ∈ B and sufficiently close to the origin, dV
dt

> 0. This implies
that the origin has an unstable manifold in B. Therefore, because any trajectory
of system (5) can never leave the box B, system (5) has an attractor as the
ω-limit set and hence the virus does survive. �

The result from Theorem 2 holds for non-symmetric cases: a node from set
S1 sees different portion of nodes with curing rate δ1 than a node from set S2

(p 6= q). In the symmetric case (p = q), a more general result with m different
curing rates can be derived, as in the case of the regular graph, described in
Theorem 1.

3 Optimal heterogenous protection of complete bi-partite

graphs

We will not consider the simple case of optimization for a regular graph.

For any bi-partite graph, the threshold for the heterogenous case is fixed
and equal to δ∗ = β

√
MN . The threshold can be reached for different values of

δ1, δ2, p and q. For example, for (δ1 = βM, δ2 = βN, p = 1, q = 0) the threshold is
reached with δ1 applied on nodes from set S1, while for (δ1 = βM, δ2 = βN, p =
1, q = 0) the threshold is also reached and the curing rate δ1 is now applied on
the nodes from the other set. The question is how can we decide which solution
is better. One of the options is to minimize the total protection strategy applied
on the network, while reaching the threshold. The total protection strategy can
be defined as a sum of all protection strategies and we will denote it by D

D =
M+N
∑

l=1

δl = Mpδ1 + M(1 − p)δ2 + Nqδ1 + N(1 − q)δ2 (8)

For the previous two cases, the total protection strategy is different. In case (δ1 =
βM, δ2 = βN, p = 1, q = 0), the total protection strategy is D = β(M2 + N2),
and in the other case, D = 2βMN , which is always smaller than or equal to the
first case.

Let us formulate the optimization problem as follows:

Problem 1. Minimize

D = Mpδ1 + M(1 − p)δ2 + Nqδ1 + N(1 − q)δ2 (9)
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subject to the conditions

β
√

MN =
δ1δ2

√

(1 − p)(1 − q)δ2
1 + pqδ2

2 + δ1δ2(p(1 − q) + q(1 − p))
(10)

0 ≤ p, q ≤ 1

0 < δ1, δ2

The optimization problem is non-linear with non-linear conditions. However,
from [15], we know that the minimum of the function D for any graph and any
set of curing rates is equal to the number of links L in the network, multiplied
by 2β,

Dmin = 2βL.

In the case of the complete bi-partite graph, the minimum is Dmin = 2βMN and
it is reached for (δ1 = βM, δ2 = βN, p = 1, q = 0) or (δ1 = βN, δ2 = βM, p =
0, q = 1). This means that for N > M , the larger curing rate proportional to
the number of links in set S1 will be assigned to the nodes from that set. The
larger curing rate is assigned to the more connected nodes.

Further, we can have a situation, where curing rates (δ1, δ2) are fixed and we
will optimize the parameters (p, q). This optimization problem can be formulated
as follows.

Problem 2. For two fixed curing rates δ1, δ2, minimize function (8), subject to
the conditions (10).

From the threshold condition we can determine one of the variables p or q.
We will derive equations for variable q (the case with p is analogue),

q =
δ1(MNδ1(1 − p) + MNδ2p − δ1δ

2
2)

MN(δ2
1(1 − p) + δ1δ2(2p − 1) + δ2

1)
(11)

By substituting q in D, the total sum of curing rates becomes a function of
parameter p only and optimization is simplified. The function is of the form

D(p) = P2(p)
P1(p) where P1(p) is a polynomial of the first order in p and P2(p) is a

polynomial in the second order in p.

Lemma 2. For any fixed δ1, δ2, the optimal solution of minimization problem 2
is on the boundary of the region (p = 0 or p = 1 or q = 0 or q = 1).

Proof. The function D(p) is not defined for P1(p) = 0, which holds for p = δ1

δ1−δ2

.

The value δ1

δ1−δ2

does not belong to the interval [0, 1]. The second derivative of
D(p) is strictly negative in the interval q ∈ [0, 1].

d2D(p)

dp2
= − 2δ2

1δ
2
2(δ1 − δ2)

2

(δ1(1 − q) + δ2q)
< 0, q ∈ [0, 1]

Therefore, D(p) is concave in the interval of interest and minimum is on the
boundaries of the interval. �
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For given δ1, δ2, it is not always possible to reach the threshold. In the case
δ1, δ2 < β

√
MN , the threshold cannot be reached and the network is in the state

of permanent infection. For example, if δ1, δ2 < β
√

MN and δ1 > δ2, if we take
only the larger curing rate for the whole network, we have β

δ1

< β 1√
MN

. In the

case δ1, δ2 > β
√

MN , the network is cured, however, the network is above the
threshold and a higher curing rate than necessary is applied.

If the threshold can be reached, Lemma 2 shows that either set S1 or set S2

is completely protected with only one curing rate. In order to minimize the sum
of curing rates we are interested how many times we can apply smaller curing
rates. Without loss of generality, let δ1 < β

√
MN < δ2 and N > M . Firstly, we

will assign δ2 to all the nodes from larger set with N nodes and δ1 to the smaller
set. If the effective spreading rate obeys β

δ∗
> 1√

MN
, than p = 1, and q can be

calculated from equation (11). In the case β
δ∗

< 1√
MN

, the network is cured and

below the threshold. Then q = 0 and p can be calculated from the condition for
the threshold.

4 Conclusion

The epidemic theory is widely applied on many networking problems. The SIS
model, on which we have focused here, is applied in malware modeling in the
Internet [1], [2], [3], information dissemination in P2P and ad-hoc networks [4],
[5] and propagation of faults and failures [6]. The two types of topologies that we
considered, namely the regular graph and the complete bi-partite graph, arise as
subnet structures in telecommunication networks. We have studied the influence
of heterogenous protection in regular and complete bi-partite graphs.

Using Lyapunov’s stability theorem, we have shown that for regular graphs,
the epidemic threshold satisfies β

δ∗
= 1

k
, where δ∗ is defined as the weighted

harmonic mean of δ1, ..., δm. This result holds under the assumption of complete
symmetry, where each node sees the same fraction of different curing rates.
Without this assumption, the problem becomes significantly complex [16].

Further, we have considered the heterogenous case with 2 curing rates for
the complete bi-partite graph. The threshold, given by Eq. (7) becomes the
geometric mean of curing rates δ1, δ2 for p = 1, q = 0 and the weighted harmonic
mean if p = q. For other values of p and q, total curing rate δ∗ belongs to the
interval [δ1, δ2].

Many different pairs of curing rate can satisfy the threshold equation, there-
fore the question which solution is more optimal rises. We consider the optimality
of heterogeneous protections for complete bi-partite graph with the respect to
sum of all applied curing rates and concluded that global optimum in this respect
is equal to the number of links in the complete bi-partite graph. For the case of
fixed δ1 and δ2, the optimal solution is on the boundaries of (p, q) ∈ [0, 1]× [0, 1].
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