A Novel Content Distribution Mechanism in
DHT Networks*

Quanging Xu!, Heng Tao Shen?, Bin Cui!, Xiaoxiao Hou®, Yafei Dai!

! State Key Lab for Adv Opt Commun Syst & Networks, Peking University, 100871
Beijing, China
{xqq, dyf}@net.pku.edu.cn, bin.cui@pku.edu.cn
2 School of ITEE, The University of Queensland, Brisbane QLD 4072, Australia
{shenht}@itee.uq.edu.au
3 Department of Computer Science and Technology, Stony Brook University, U.S.A.
{xhou}@cs.sunysb.edu

Abstract. DHT (Distributed Hash Table) is a structured overlay net-
work that is widely utilized in P2P systems. Existing content distribu-
tion approaches do not completely exploit features of DHT and incur
heavy network bandwidth consumption. This paper analyzes existing
content distribution approaches including synchronous content distribu-
tion method in eMule based on DHT overlay networks and points out
that their network loads are too heavy. We propose a novel content dis-
tribution algorithm: asynchronous distribution, in DHT networks. Com-
pared with traditional distribution approaches, it is more effective and
scalable with lower network load. We apply the techniques of vector space
model and search frequency to the asynchronous distribution algorithm,
which effectively improves search hit ratio and reduces network load.
Simulation results based on real data from Maze system show that this
approach has low network overhead and publishing cost, high search and
download hit ratio.

Keywords: DHT, Content Distribution, Vector Space Model, Search
Frequency

1 Introduction

DHT, e.g., Chord [1] and Pastry [2], is a structured overlay network that is widely
utilized in P2P systems, e.g., file-sharing systems like eMule?, BitTorrent®, and
AmazingStore®. These file-sharing systems employ Kademlia [3] as their DHT

* This research has been supported by the National Grand Fundamental Research
973 program of China under Grant No.2004CB318204, Australian research grant
(ARC DP0773483) and National Natural Science foundation of China under Grant
No.60873051.

* http://www.emule-project.net

® http://www.bittorrent.com/

6 http://amazingstore.grids.cn

2 Quanging Xu, Heng Tao Shen, Bin Cui, Xiaoxiao Hou, Yafei Dai

infrastructure to improve performance. However, existing content distribution
approaches, e.g., synchronous distribution algorithm in eMule, do not adequately
exploit features of DHT and wastes precious network bandwidth. DHT maps
object keys to overlay nodes and offers a lookup primitive to send a message to
the node” responsible for a key. Overlay nodes maintain routing states to route
messages towards the nodes responsible for their destination keys, which brings
good locating performance. However, the retrieval ability of DHT is very limited
and DHT does not have the requisite ability to rank search results because DHT
only provides the exact match function.

We call content distribution (publishing): it is a procedure that contents are
provided to other people by given ways, which aims to implement resource-
sharing or resource-distributing. Distributed objects are sharing-files of various
formats, documents, etc. In this paper, we propose a novel Asynchronous Con-
tent Distribution approach (ACD). We analyze existing distribution approaches
including synchronous publishing method in DHT networks and points out that
their network load balances are heavy. We propose a novel asynchronous content
distribution algorithm in DHT networks. Compared with traditional distribution
approaches, it is more effective and scalable with lower network load. We apply
the techniques of vector space model and search frequency to the asynchronous
distribution algorithm, which improves search hit ratio and reduces network
load. The main contributions of this paper are threefold:

— We present an asynchronous content distribution algorithm under DHT en-
vironments, which solves existing issues in the synchronous distribution al-
gorithm;

— We utilize vector space model and user relevance feedback from traditional
information retrieval domain to improve search hit ratio and decrease pub-

lishing cost in DHT networks;
— We confirm the effectiveness and efficiency of our methods by conducting

an extensive performance measured by network overhead, publishing cost,
search and download successful ratio.

The remainder of this paper is organized as follows: Section 2 presents the
problem formulation and reviews related work. We design an asynchronous dis-
tribution algorithm in DHT networks in Section 3 and propose optimization
strategy in Section 4. Section 5 reports the experimental results. Section 6 con-
cludes this paper and discusses future work.

2 Preliminaries

2.1 Semantic Operations and Applications of DHTs

After DHTs appeared, there are increasing applications based on structured
P2P, and many mature DHT's are utilized in real systems. Thus, it is necessary
to analyze functions of a DHT and give formal definitions. From the standpoint

7 In this paper we use the terms “node” and “peer” interchangeably.

A Novel Content Distribution Mechanism in DHT Networks 3

of function, a DHT provides a hash function, publishes a content based on its key
and locates the content through its key in DHT networks. From the standpoint
of topology, a DHT provides a distributed routing algorithm that disperses the
routing function of overlay to all the peers: each peer can lookup other peers
and forward routing messages. A general DHT provides the following semantic
operations:

1) Put(Key, Value) Publishes a pair (Key, Value) into DHT networks;
2) Get(Key) Returns the Value of the Key;

3) Lookup(Key) Provides general access to the node maintaining the Key;

4) Routing(Key) Provides general access to the node responsible for the Key,

and to each node along the routing path.

A DHT provides two basic operations [4]: Put and Get. In fact, Put and Get
are functions of DHT application layer, while Lookup and Routing are functions
of DHT overlay layer. Put/Get and more complicated operations can be imple-
mented through Lookup and Routing operations. Therefore, Lookup/Routing
are basic operations of a DHT. OpenDHT [5] provides interfaces including Lookup,
Routing and Put/Get for upper applications.

2.2 Traditional Content Distribution Approaches in DHT Networks

A content distribution (publishing) and retrieval algorithm under DHT environ-
ments includes two phases: 1) publishing phase, it is a procedure that a peer
publishes its local information to DHT networks by a given policy; 2) retrieving
phase, it is a procedure that a peer employs a keyword to retrieve relevant re-
sults. After the publishing phase, there are a large number of contents in DHT
networks. Peers can retrieve relevant contents in the retrieving phase. There-
fore, different publishing policies determine index mechanisms and retrieval ap-
proaches used in DHT networks. Basically, every content distribution method in
DHT networks includes these two phrases. Note that they are independent in
logic but parallel in real systems. Generally, there are three interface functions:

1) Hash(Object) Calculates the hash value of an object;
2) Publish({Key, Value)) Publishes a pair (Key, Value);
3) Segment(Doc) Segments a document.

In traditional information retrieval (IR) field, a retrieval procedure is that a
relevant document list is achieved and ranked for a given query. Here we utilize
concepts in IR fields. A retrieval procedure in DHT networks is that a document
list is retrieved through a query that includes a term or several terms. In general,
a content publishing and retrieving algorithm is classified into three categories
according to publishing mode.

Term-based Content Publishing Approach We present a schematic di-
agram of term-based content publishing approach reads as shown in Figure 1.
Node; segments its documents into terms and publishes the terms into DHT
networks. Termy and Termso are maintained respectively by Nodes and Nodes
in Figure 1. The merits of this algorithm are: 1) each term of each document is

4 Quanging Xu, Heng Tao Shen, Bin Cui, Xiaoxiao Hou, Yafei Dai

published; 2) a fully distributed inverted index is created; 3) a peer can easily
achieve the global information of a term that it is responsible for and calcu-
lates the IDF (Inverse Document Frequency) value of this term; 4) each peer
can quickly retrieve and rank search results for a given query term in DHT
networks.

Doc, Term,: {Doc;} -

{term,, termy, ... term,} Term,: {Doc), Doc,}
Doca: (e » ... S

{termy, termy, termy,} Term,: {Doc,} Docs

g Node,
i\ I
[e,
{Doc,. Doc, ..., Docmt
Node,

(Term;_KEY €Node, KEYS)

Routing

- Routing DHT] Doc;: {termy, termy, ..., term,} _® _ Docy:ftermy, term, ..., term,}
F Termy Networks {Node,, Nodey, ..., Node,,} \)\M (_{Node,, Nodes, , Node}
@, . {Docz, Docs, ..., Docy} s

Node, Node, Nodes
(Term, KEY €Node; KEYS) (Doc;_KEY €Node, KEYS) (Doc, KEY €Node; KEYS)

Fig. 1. Term-based Publishing Approach Fig. 2. Doc-based Publishing Approach

Document-based Content Publishing Approach We give a schematic
diagram of this approach is shown in Figure 2. Node; publishes its documents
into DHT networks. Doc; and Docs are maintained respectively by Nodes and
Nodes in Figure 2. The advantage of this algorithm: each peer maintaining a
document can know all the terms of the document so that the similarity between
a term and a document can be calculated when a search is conducted. However,
its disadvantage is that it can not use DHT to perform a search for a term. In
fact, this approach is utilized in the DHT of BitTorrent: peers downloading the
same file resource publish their addresses so that a downloading peer can find
the peers including the file, which is helpful to improve multi-peers download
efficiency.

Hybrid Content Publishing Approach Analyzing merits and demerits
of the above two approaches, Tang et al. [6] in eSearch presented a hybrid con-
tent publishing algorithm: executing a two-phase protocol to publish a content
(document). In the first phase, it utilizes the publishing algorithm based on term
objects and employs DHT routing to locate the peers responsible for top terms
in the document. In the second phase, it uses the publishing algorithm based on
document objects. The initiator can build the term list for the document and
multicast the term list or the document itself. This publishing algorithm has
two advantages: 1) The returned results can be ranked based on the similar-
ity between a query and a document; 2) It can support complex queries. With
document in hand, eSearch can search exact matches for quoted text, provide
sentence context for matching terms, and support a “cached documents” features
to decrease network load. However, this publishing algorithm is proposed as a
full text retrieval approach in DHT networks. Each term is published with lots
of documents, which causes very huge network load. Therefore, this algorithm
is not suitable for fully opening P2P systems.

A Novel Content Distribution Mechanism in DHT Networks 5

The first two publishing approaches are commonly used under DHT envi-
ronments. The third approach aims to utilize DHT as an infrastructure for dis-
tributed full text retrieval where the published object is a document or web
page, which often includes hundreds of terms. The third one is executed among
relatively stable peers, e.g., all the machines in a lab or PlanetLab®, and very
large bandwidth consumption is generated. These algorithms do not consider an
opening P2P system, which needs to face high node churn and limited band-
width.

2.3 Other Related Work

Coral [7] is a free P2P content distribution network designed to mirror web con-
tent. One of Coral’s key goals is to avoid ever creating hot spots that might pre-
vent peers from running the Coral because of concerning about overload. Coral
uses an indexing abstraction called a distributed sloppy hash table (DSHT) to
achieve this goal. Self-organizing clusters of nodes are created by DSHTs to fetch
information from each other, which can avoid communicating with more distant
or heavily-loaded servers. Yang et al. [8] proposed a Chord-based distributed
architecture for content-based publish/subscribe services. This infrastructure
is a scalable platform and can simultaneously support many publish/subscribe
schemas. Steiner et al. [9] studied the content management process implemented
of KAD as implemented in aMule?. CoBlitz [10] is a scalable Web-based dis-
tribution system for large files, which distributes large files without requiring
any modifications to standard Web servers and clients, since all the necessary
support is located on the CoDeeN content distribution network.

3 Asynchronous Content Distribution Algorithm

3.1 Requirement Analysis of Search in P2P File-sharing Systems

In this subsection, we briefly analyze existing problems about information re-
trieval that need to be considered in P2P file-sharing systems. The published
and indexed objects are files shared by users in P2P file-sharing systems. These
file objects have particular characteristics.

Each file has a unique file name used by a specific user. However, the same
file often has many different file names applied by different users due to:

1) Different users have different habits of naming sharing files: some users like

making file names normal, while others like making file names arbitrary;
2) Some users often insert many hot query terms into an ordinary file for at-

tracting other users to download it.

Thus, each file often has different file names, which increases the retrieval diffi-
culty in P2P file-sharing systems.

8 http://www.planet-lab.org
9 http://www.amule.org/

6 Quanging Xu, Heng Tao Shen, Bin Cui, Xiaoxiao Hou, Yafei Dai

Generally speaking, there are two different requirements when initializing a
query:
1) A relevant file list is achieved through a keyword used by a user. The user
wants to retrieve as many files as possible and ranks these files so that the

user can select the desired files and download these files quickly;
2) The user uses the key of a file object to retrieve as many users that own this

file object as possible so that he/she can download it from many users.

It is easy to meet requirement 2), while it is hard to satisfy requirement 1)
in DHT systems. The above-mentioned three traditional index structures can
not satisfy the two requirements. Only the synchronous publishing algorithm in
eMule can meet them.

3.2 Asynchronous Publishing

There are two kinds of objects that need to be published: file object and file name
(term) object in P2P file-sharing systems. The owner of a file object is respon-
sible for publishing the file object and its file name object in eMule. We define
synchronous publishing, as the method where these two objects are published
by the same peer. The advantage of synchronous publishing is that both a file
object and its file name object are published by the same logic role. Therefore,
its system architecture is relatively easy to be understood and implemented.
Moreover, synchronous publishing is relatively good in performance, which is
seen from that eMule is widely popular.

However, synchronous publishing does not consider the following problems:

1) Although the same file has different file names applied by different users,
most of important terms are the same. However, these terms are published
repeatedly by different users. Therefore, this method brings too many re-

dundant messages;
2) Some file names have many terms. However, some of these terms are not

relevant, e.g., stop words, which are not necessary to be published. A user
can not publish terms according to the importance of terms because the user
do not know the file names of the same file applied by other users and can

not determine which terms are important to this file;
3) There is no global information for a file object. A peer responsible for a

term object can not determine the relevance between this term and its cor-
responding files.

We comprehensively analyze these three defects and draw a conclusion that
the owner of a file object published the terms of this file and results in short of
useful information when publishing these terms. If the file names of a file object
can be obtained, and the terms of the file object are published, this problem can
be solved. Therefore, we propose an asynchronous publishing algorithm to solve
the before-mentioned issues. The basic idea is that the owner of a file object
publishes this file, and the maintainer of this file integrates all the file names
of this file. The maintainer segments these file names to get the relevant terms,
and publishes these terms in DHT networks. We introduce the details of this
algorithm in the next subsection.

A Novel Content Distribution Mechanism in DHT Networks 7

3.3 Specific Algorithms

The basic idea of the asynchronous publishing algorithm is that the owner of a
file only publishes this file itself and the maintainer of this file publishes those
terms in the names of this file. We present the asynchronous publishing algo-
rithm as shown in Algorithm 1, the search and download algorithm as shown in
Algorithm 2.

Algorithm 1: Content Asynchronous Publishing Algorithm

W N =

10
11

12
13

14

// Publishing F'ile objects

for File € Node; do
File_Key=Hash(File);
File_Value={Node_Addr,File_Name};
Publish((File_Key, File_Value));

// Merging File objects

Node; receives the published File (File_Key € Nodea_Keys) object from

nodes;

/* A file list includes:(a) Node_Addrs, which is used to find much
more download links; (b) File_Names, which records file names
used by different peers x/

Nodea merges the values of Flile and maintains them;

// Publishing Term objects

Nodes segments the Flile_Name list of the files maintained by it and get the

Terms;

for Term € Terms do
Key=Hash(Term);

Make File_Key and File_Name be the value of T'erm;
Publish({Key, Value));

// Merging Term objects

Nodes receives the published T'erm object from nodes in DHT networks;
Nodes maintains a file object list for each received term object;

// for all the files in DHT networks

All the nodes repeat the above steps;

Algorithm 2: Content Search and Download Algorithm

N O vk woN

Input: Term

// Nodei uses a term to perform a search
Term_Key=Hash(Term);// Term_Key € Nodez_Keys

// routes to Nodes through DHT

Nodes searches its local information based on Term_Key;
Nodes returns the F'ile object list of Term_Key to Node;
Node, selects Flile; from the F'ile object list to download;
Nodes=Lookup(File1_Key) by Nodex;

Nodes returns all the nodes including F'iles;

Node; downloads F'ile; from those nodes;

The asynchronous publishing algorithm’s schematic diagram is shown in Fig-

ure 3. The algorithm integrates all the different file names of the same file, seg-
ments these file names into terms and publishes these terms. This algorithm can

8 Quanging Xu, Heng Tao Shen, Bin Cui, Xiaoxiao Hou, Yafei Dai

decrease redundant messages to some extent and integrate the file names of files
to distinguish fake files because users may name them with fake names. Most of
all, this algorithm can integrate the global information of a specific file in the
same peer, it can also integrate the global information of a specific term in the
same peer. We can use this global information to optimize the publishing algo-
rithm. Although a term is published with full file name of a file in this algorithm,
the full file name is much shorter than a document. Therefore, compared with
the full text retrieval in DHT networks, this algorithm will not bring too much
network load.

Node;: (File,_KEY €Node, KEYS)
[i] File;:
File;_Name List:
{File,_Name,, File;_Name,, ... }
Node_ List:
{Node;, Node,, ... , Node,,}

Nnde; (Term;_KEY €Node;_KEYS) Routi
outing

\N» L

Term Llst Routing

Term;:

{File,. {File,_] Namm , File;_Namey} —F116| {term,, termy, ... , term,}
F1102 {Fllc Namc. , File,_ Namey} }

Fig. 3. The Schematic Diagram of Asynchronous Publishing Algorithm

4 Optimizations for Asynchronous Publishing

Generally, different term in a file name has different importance to the same
file object. Therefore, we can improve the asynchronous publishing algorithm
based on the importance of terms in a file object when publishing these terms.
Important terms are published with high frequency, while those unimportant
terms are published with low frequency or are not even published, which can
dramatically reduce bandwidth consumption and guarantee search performance.
Moreover, the same term has different weights in different files. Thus, we can
utilize some weight schemes to calculate a term’s weight in a file name, which
can rank search results and improve users’ experience. In this section, we present
two optimizations for asynchronous publishing based on weight schemes of vector
space model (VSM) [11], which is widely used in information retrieval.

4.1 Optimization I: Term Frequency

TF*IDF (Term Frequency - Inverse Document Frequency) is a weight rule often
used in information retrieval. A TF*IDF weight is a statistical measure used to
evaluate how important a term is to a document in a corpus. The importance
increases proportionally to the number of times (TF) that a term appears in a
given document but is offset by the document frequency (DF) of the term in the

A Novel Content Distribution Mechanism in DHT Networks 9

corpus. In unstructured P2P networks, however, it is impossible for us to calcu-
late the global IDF values since the calculation involves counting the document
frequency of terms. On the contrary, it is easy to calculate the global IDF values
since the same term is maintained by the same peer in DHT networks. Therefore,
an effectively calculating formula reads as follows: IDFiepp, = 10og(N/DFierm),
where N is a maximum unsigned integer.

Each file may have different file names for different users in P2P systems. If
these file names are integrated into a “document”: using the weight of a term
in this document to indicate the importance of this term in this file object.
The key of this approach is to get the TF and IDF values of this term. In
the synchronous publishing method in eMule and the publishing methods in
Section 2.2, the two values can not be achieved simultaneously. However, both
of them can be obtained in the asynchronous publishing method. The concrete
approach reads as follows:

In line 7 of the asynchronous publishing algorithm, when Nodes segments the
File_Name list of all the files maintained by it, it can count terms’ frequency
in file names. These terms with their TFs are published. Nodes receives the
published Term object from nodes in DHT networks, inserts it into the local
Term list and counts file (document) frequency (DF) of this term. Nodes returns
this term’s IDF to Nodes. Therefore, both Nodes maintaining the file object and
Nodes maintaining the term object have a TF for this term in a given file and
the IDF of this term. These two nodes can utilize the two values to do different
things.

Nodes can use TF*IDF to measure the relevance of each term in a file object
so that search results can be ranked according to this relevance when a user
performs a search for a term. Moreover, if a user wants to search a file, he/she
can use a term considered as the most relevant term to that file. In other words,
the more relevant to a file a term is, the more possible it is utilized to find this
file by a user. In addition, a file has many terms, the weights of some of them
are small and are not used to find this file by a user. Thus, Nodes can decide the
publishing frequency of a term maintained by it according to its TF*IDF. If a
term has a high relevance, it will be published with normal publishing frequency.
If not, it will be published with a lower publishing frequency, which can decrease
network load.

This approach seems to increase a little network load: 1) The length of a mes-
sage is increased because of adding TF values in the phase of publishing terms;
2) Nodes needs to respond with IDF values to Nodeg, which increases message
numbers. However, both TF and IDF are so short that they are negligible and
an IDF can be inserted into a response message of Nodes. Therefore, they have
marginal influence on network load. In addition, network load can be reduced
because publishing frequencies of irrelevant terms are decreased.

4.2 Optimization II: Search Frequency

To some extent, the TFIDF rule can distinguish the importance of each term, but
it can not totally reflect this importance. Therefore, we may better distinguish

10 Quanging Xu, Heng Tao Shen, Bin Cui, Xiaoxiao Hou, Yafei Dai

the importance of each term if we consider users’ search behaviors. It is easy
to perform this in P2P file-sharing systems. If a user wants to search a file,
he/she uses a keyword, which is considered by him/her to be the most relevant
term to this file. In other words, a term is published to make users easily find
corresponding files. A term often used by users for retrieval should be important.
Thus, we can use search frequency to measure the relevance between a term and
a file.

In line 5 of Algorithm 2, Node; may send the used keyword in line 1 to Nodes
when performing a lookup to find all the nodes publishing File_Key via Nodes
for downloading files. Therefore, Nodes can know keywords used by users when
these users download the files maintained by Nodes. Nodes can locally save
these keywords’ frequencies for being used to retrieve. This frequency is called
as search frequency (SF). Nodes can utilize search frequency to optimize the
proposed asynchronous publishing approach.

Note that there are no users’ feedbacks at the beginning of file-sharing. Thus,
this approach may be employed with TF*IDF. TF and SF are similar, which are
used to measure the relevance between a term and a file. However, SF is a result
of users’ feedbacks and is much more important than TF. Therefore, the weight
of SF is higher than that of TF when they are both utilized. This approach
only adds a keyword before users find much more files and download them. This
keyword is so short that the increment of network load may be negligible.

5 Experiments

5.1 Data Sets

The data sets come from shared files from 28/10/2007 to 09/11/2007 in a real
P2P system: Maze!'®. There are 7,565 active users and 30,001,293 files totally.
First of all, we preprocess the shared files, e.g., removing shared files in a system
disk (e.g., C:\), WINDOWS installation directory (e.g., C:\WINDOWS) and
programs installation directory (e.g., C:\Program Files), which are shared by
free riders. Then, we choose 6,144 active users, and the files they shared are
5,543,293. To simulate users’ feedbacks, we utilize the search log in 10/2007 to
extract the data with high search frequency. We extract real users’ queries from
a real log from 28/10/2007 to 09/11/2007 in Maze system to be employed as
queries in our simulations. In addition, We utilize online, offline and enter time
data of active users from logs of Maze system to simulate peer churns of P2P
systems, where time interval At is 375 minutes. Kademlia [3] is utilized as our
DHT infrastructure. Table 1 summarizes experimental parameters. Notations in
the experiments are shown in Table 2.

5.2 Experimental Results

Experiment 1: Comparison of Synchronous and Asynchronous Pub-
lishing Algorithms In this experiment, we compare existing synchronous pub-

19" A P2P file sharing system with millions of registered users, http://maze.pku.edu.cn.

A Novel Content Distribution Mechanism in DHT Networks 11

Table 1. Parameter Setting Table 2. Notations
|Parameter |Setting | |Symbol Description
of nodes 64,128,. ..,1024,2048,3072,. ..,6144 | N Network Size
Publishing ratio 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0| P Publishing Ratio
of queries 18,846 | U Index Update Time
Updating (h) 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0| U, Index Update Copies
of copies 1,2,3,4,5,6 | Npm, # of Messages

lishing algorithm in eMule with the proposed asynchronous one. File objects
need to be published in both algorithms. Therefore, we only concern the pub-
lishing procedure about file name objects. The procedure is that term objects
are published as file names are segmented. Synchronous and asynchronous pub-
lishing algorithms are only different in publishing mode. They do not affect
final publishing and retrieval results because the same file and term objects are
maintained by the same peer according to DHT’s principle.

Compared with the synchronous publishing approach in eMule, the asyn-
chronous one can reduce more messages as there are increasing peers in DHT
networks, which is shown in Figure 4(a). The reason for this is that the asyn-
chronous publishing approach concerns that the same file has many copies in
P2P file-sharing systems and most of them have the same important keywords.
For the synchronous publishing, these keywords are repeatedly published by
different users so that a lot of redundant messages are produced.

x10° x10°

gt| Il Synchronous | _ ' Asynchronous
Il Synchronous ‘ =
I__ 'Asynchronous 7+
3 4]
& 6r D6l
® b
s i 4
= ¥ S 5S¢
5, ' 5
5 0 B4
£ | £
g 3r | S 3l
z : | z
|
22) 21
|
|
1t x 1t
o o F B R R R [o
64 128 256 512 1024 2048 3072 4096 5120 6144 01 02 03 04 05 06 07 08 09 10
the Number of Peers the Publishing Ratio
(a) Performance with Different N, (P.=1.0) (b) Performance with Different P, (N,=6144)

Fig. 4. Comparison of Synchronous and Asynchronous Publishing Algorithms

In addition, we also explore changes of messages’ quantity produced by these
two algorithms as the publishing ratio varies with the popular degree of key-
words. The smaller the publishing ratio of keywords is, the bigger the percentage
of messages deceased by the asynchronous approach is, as shown in Figure 4(b).

12 Quanging Xu, Heng Tao Shen, Bin Cui, Xiaoxiao Hou, Yafei Dai

There is the same reason as explained about Figure 4(a). Moreover, the more
popular keywords are, the more files including these keywords are. Therefore, the
asynchronous publishing algorithm produces less messages than the synchronous
one. Compared with the synchronous method, the asynchronous method can
decrease bandwidth consumption, achieve better publishing performance and
scalability.

Experiment 2: Comparison of Asynchronous Publishing and Op-
timized Counterparts This experiment mainly explores three kinds of algo-
rithms:

1) Random: it is the randomly asynchronous publishing algorithm, where the
published keywords are randomly selected in the asynchronous publishing
algorithm;

2) TF*IDF: it is the asynchronous publishing algorithm with optimization I:
Term Frequency, where the published keywords are selected according to the

TFIDF rule;
3) SF*IDF': it is the asynchronous publishing algorithm with optimization II:

Search Frequency, where the published keywords are selected according to
the TFIDF rule with search frequency.

We utilize search hit (successful) ratio and publishing cost to evaluate these
three algorithms. Search hit ratio is a percentage that indicates the proportional
amount of the number of successful queries to the number of all the queries.
Publishing cost (PC) is the bandwidth consumption when publishing file name
objects in the procedure of asynchronous publishing, which is defined by:

PC = Z Z (Iterm|| + 16 + 20 x Peer Numierm) (1)

peer term

where ||term|| represents the length of term, a file object is represented by MD5
(16 bytes), each peer’s ID is represented by 160 bits (20 bytes) according to
Kademlia.

For the test data sets, SF*IDF achieves the best performance among the
three algorithms as shown in Figure 5(a) and Figure 5(b). TF*IDF is better than
Random in search hit ratio, but it increases the publishing cost, which leads to
heavier load in each peer. It is because when a proportion of popular keywords are
published in DHT networks, their publishing frequencies are higher than those
of common keywords. Based on the TFIDF rank rule, TF*IDF selects keywords
from file names. The published keywords’ records include more peers and files
than those in Random and SF*IDF. SF*IDF is directed by search frequency, so
it is better than TF*IDF, and is similar to Random in publishing cost. However,
SF*IDF is better than TF*IDF and much better than Random in search hit
ratio. From the results in Figure 6(a) and Figure 6(b), these algorithms based on
the rank rule is much better than Random in search hit ratio as the publishing
ratio is smaller. Moreover, SF*IDF is better than the other algorithms in the
overall performance as the publishing ratio is smaller. The reasons for this are
similar to those of Figure 5(a) and Figure 5(b), where they are not explained in
detail.

A Novel Content Distribution Mechanism in DHT Networks 13

0.8 ‘ ‘ ‘ ‘ ‘ ‘ ‘ , ©10°
o Random) B —— -
0.7 | -~ TF*IDF RS -$§n.(§pm I
—— SF*IDF B R 3 12f [It
0.6 = o] I SF*IDF ;1
o . © |
T e % 100 [
@ 05F " e 3]
= L > i
[R c 8r [\
S04 S Z [
& o a i
= 4 2 gt |
I og e 2 i
) RS |
£ - 2 [
0.2 =4 a
J e !
o |
0.1t s 2 "
g8 o I

d ol e mm W
84 128 256 512 1024 2048 3072 4096 5120 6144 64 128 256 512 1024 2048 3072 4096 5120 6144
the Number of Nodes the Number of Nodes
(a) Search Hit Ratio (b) Publishing Cost

Fig. 5. Comparison of Publishing Performance with Different N, (P.=0.1)

8

1 3x10° ‘ ‘

0.95} Il Random
25 __ITF*IDF

0.9F [sF*IDF

o
o
@

°
N €
SLIPN
T

the Search Hit Ratio
o
- 0

the Publishing Cost
P
o

o Random

|
[
|
[
|
|
|
|
|
[
|
|
|
|
[
i
|
[
|
!
. I
01 02 03 04 05 06 07 08 0.9 1.0 01 0.2 04 05 06 0.7 08

07 o I
m
0.65§ ‘8= TF*IDF || 0.5 i
—— SF*IDF mRtl ‘
[l | I I} 1]
o5 9 10
the Publishing Ratio the Publishing Ratio
(a) Search Hit Ratio (b) Publishing Cost

Fig. 6. Comparison of Publishing Performance with Different P, (N,=6144)

6 Conclusions and Future Work

In this paper, we firstly analyzed existing publishing algorithms including syn-
chronous publishing method in eMule and points out that their network loads
are too heavy. The proposed method is more effective and scalable with lower
network load than traditional publishing algorithms. We applied two optimiza-
tion techniques to the proposed algorithm, which can effectively improve search
hit ratio and reduce network load. Simulations based on real data from Maze
system show that this approach has low network overhead and publishing cost,
high search and download hit ratio.

Future work includes: Integrating a real P2P system with the proposed ap-
proach in this paper and applying this approach to full text retrieval under
DHT environments, etc. Lunar!! is an ongoing project in our research team,

' http://maze.pku.edu.cn/lunar.htm

14 Quanging Xu, Heng Tao Shen, Bin Cui, Xiaoxiao Hou, Yafei Dai

which aims to provide a general middleware for P2P systems, such as P2P file-
sharing systems, P2P storage systems. There are several problems that need
urgent solutions: how to publish contents to decrease bandwidth under DHT en-
vironments? how to design a better retrieval algorithm to rank returned results?
how to design a better index mechanism to improve the availability of systems.
Based on Lunar, a new Maze system: LMagze is developed. Although the proposed
approach in this paper is designed for information retrieval in P2P file-sharing
systems, it is also suitable for full text retrieval under DHT environments, such
as Overcite [12].

References

1. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM.
(2001) 149-160

2. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Guerraoui, R., ed.: Middleware.
Volume 2218 of Lecture Notes in Computer Science., Springer (2001) 329-350

3. Maymounkov, P., Maziéres, D.: Kademlia: A peer-to-peer information system
based on the xor metric. In Druschel, P., Kaashoek, M.F., Rowstron, A.I.T.,
eds.: IPTPS. Volume 2429 of Lecture Notes in Computer Science., Springer (2002)
53-65

4. Dabek, F., Zhao, B.Y., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common
api for structured peer-to-peer overlays. In Kaashoek, M.F., Stoica, 1., eds.: IPTPS.
Volume 2735 of Lecture Notes in Computer Science., Springer (2003) 33—44

5. Rhea, S.C., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S.,
Stoica, I., Yu, H.: Opendht: a public dht service and its uses. In Guérin, R.,
Govindan, R., Minshall, G., eds.: SIGCOMM, ACM (2005) 73-84

6. Tang, C., Dwarkadas, S.: Hybrid global-local indexing for efficient peer-to-peer
information retrieval. In: NSDI. (2004) 211-224

7. Freedman, M.J., Freudenthal, E., Maziéres, D.: Democratizing content publication
with coral. In: NSDI. (2004) 239-252

8. Yang, X., Hu, Y.: A dht-based infrastructure for content-based publish/subscribe
services. In Hauswirth, M., Wierzbicki, A., Wehrle, K., Montresor, A., Shahmehri,
N., eds.: Peer-to-Peer Computing, IEEE Computer Society (2007) 185-192

9. Steiner, M., Carra, D., Biersack, E.W.: Faster content access in kad. In Wehrle,
K., Kellerer, W., Singhal, S.K., Steinmetz, R., eds.: Peer-to-Peer Computing, IEEE
Computer Society (2008) 195-204

10. Park, K., Pai, V.S.: Scale and performance in the coblitz large-file distribution
service. In: NSDI. (2006)

11. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11) (1975) 613-620

12. Stribling, J., Li, J., Councill, I.G., Kaashoek, M.F., Morris, R.: Overcite: A dis-
tributed, cooperative citeseer. In: NSDI. (2006)

