
Handling Transient Link Failures Using

Alternate Next Hop Counters

Suksant Sae Lor, Raul Landa, Redouane Ali, and Miguel Rio

Network & Services Research Laboratory
Department of Electronic & Electrical Engineering

University College London, UK
{s.lor, r.landa, r.ali, m.rio}@ee.ucl.ac.uk

Abstract. In this paper, we propose a routing technique to alleviate
packet loss due to transient link failures, which are major causes of dis-
ruption in the Internet. The proposed technique based on Alternate Next
Hop Counters (ANHC) allows routers to calculate backup paths and
re-route packets accordingly, thereby bypassing transient failures. This
technique guarantees full repair coverage for single link failures, without
significantly changing the way traditional routing works and with min-
imal impact on the computation and memory requirements for routers.
We evaluate the performance of our proposed ANHC approach through
extensive simulations and show that the stretch of its pre-computed al-
ternate paths, its failure-state link load increase, and its computational
and memory overheads are minimal.

Key words: Internet routing, transient failures, fast re-routing.

1 Introduction

The development of error sensitive and critical applications over the Internet,
such as health services and military has demanded a rethinking of the tradi-
tional best effort service approach. Link failures, and in particular transient link
failures, represent major obstacles in guaranteeing reliability. There have been
many proposals that handle failures. A well-known framework for minimising
packet loss rates due to link and/or node failures is IP Fast Re-Route (IPFRR)
[1]. In [2], analysis shows that the duration of forwarding disruptions must in-
corporate the times taken to detect the failure, react to it, propagate the failure
notification, re-compute forwarding tables, and the time taken to actually install
the changes into the Forwarding Information Base (FIB). IPFRR eliminates the
time required by all of these except for the failure detection time, which can be
shortened by adjusting protocol parameters [3]. This significantly reduces disrup-
tion time, as it allows packets to be re-routed via pre-computed backup paths as
soon as the failure is detected. In this paper, we use the terms “backup” and “al-
ternate” interchangeably to refer to these paths. The idea of using fast re-route
to handle failures is not new. Several techniques such as Loop-Free Alternates
(LFAs) [4] and not-via addresses [5] have been proposed and implemented in

real networks. However, these techniques are not sufficient, since LFAs cannot
guarantee full protection against recoverable failures and the use of not-via ad-
dresses can lead to router performance degradation due to IP-in-IP tunnelling.
On the other hand, a technique such as Failure-Insensitive Routing (FIR) [6] does
not require a mechanism such as tunnelling to provide a 100% repair coverage
against single link failures. Nevertheless, a router requires an interface-specific
forwarding table which makes it more difficult to implement in hardware.

Other proposed approaches that deal with link and/or node failures include
Multiple Routing Configurations (MRC) [7], Resilient Overlay Network (RON)
[8] and Failure-Carrying Packets (FCP) [9]. MRC computes a number of config-
urations for various failure scenarios such that for a given failure, one or more
configurations can be used for bypassing. However, this technique requires ex-
cessive computational and memory overheads. RON identifies a subset of nodes
called the RON nodes that monitor the network and decide whether or not to
send packets directly or between themselves, thereby bypassing failures if de-
tected. A drawback of RON is that it requires continual probing of the alternate
paths, hence adding overhead. FCP embeds the failed link information in the
packet header. Based on this information, a router receiving FCP can calculate
the latest shortest path available. Nonetheless, this increases the packet overhead
and requires a very expensive dynamic computation.

In this paper, we propose a combination of an algorithm for computing
backup paths and a fast packet re-routing mechanism based on Alternate Next
Hop Counters (ANHC) which guarantees that packets can be fully recovered
in the presence of single link failures without any of the disadvantages of the
existing solutions.

The rest of the paper is organised as follows: we introduce our resilient routing
technique as an alternative to IPFRR mechanisms in Sect 2. To guarantee full
repair coverage and loop-free forwarding, we prove the properties of our routing
strategy. In Sect. 3, we evaluate the performance of the routing technique with
respect to various characteristics of the alternate paths, its impacts on network
traffic, and the overheads and conclude the paper in Sect. 4.

2 Alternate Next Hop Counting

If source routing is available, the use of backup paths is greatly simplified. In con-
trast, it has been proven difficult to design hop-by-hop resilient routing protocols
that can recover from failure quickly while keeping complexity to a minimum.
The main cause of this difficulty lies in topology inconsistency among routers
during re-convergence, which often leads to packet loss and forwarding loops.

Alternate next hop counting is a novel mechanism used in conjunction with
specific backup path computation to provide fast re-route in traditional IP net-
works. Re-routing in this technique relies on the Alternate Next Hop Counter
(ANHC) in the packet header to ensure correct forwarding. After the normal
shortest paths are calculated, a router first determines the sum of all link weights
Wt. For each node pair (s, d), a router adds Wt to the weights of the links present

in the shortest path between s and d and re-calculates the shortest path from s

to d. This secondary path is used to calculate the alternate next hop that s will
use to send packets to d if the shortest path is unavailable. To allow consistent
routing only on the basis of alternate next hops, each router sets the ANHC
value for every destination equal to the number of times the packet needs to be
forwarded using the alternate next hop. If the ANHC holds a positive number, a
router decreases its value by 1 and forwards the packet to the alternate next hop
corresponding to its own secondary path to d. If the ANHC value equals to 0,
the router forwards the packet via its normal path to d (the next hop according
to the shortest path route).

2.1 Computing Backup Paths

Let G = (V,E) be the graph with vertices V = {v1, v2, ...} and edges E ∈ V ×V

representing the network topology. Given an edge (i, j), we assign it a weight
w(i, j) ∈ IR > 0. We define Wt as the total weight of all links in E:

Wt :=
∑

(i,j)∈E

w(i, j) (1)

We seek to assign to each destination vi a maximally disjoint secondary path,
so that the backup path will have as few links in common with the normal path
as possible.

Let Ep(s, d) be the set of links used in a normal path from s to d. The
primary next hop and its alternate are denoted as np(s, d) and ns(s, d). Using
Wt as a link weight re-calculation factor, Algorithm 1 is run on each router for
each source-destination pair. In Algorithm 1, the output of ShortestPath is a
shortest path tree Ts rooted at s, with Ts(d) being the shortest path from s to
d excluding s, and φ(Ts(d)) the first node in Ts(d).

Algorithm 1 Computing the alternate next hop.

Input: s, d, G, Ep(s, d)
Output: ns(s, d)
1: G′ ← G

2: for all (i, j) ∈ Ep(s, d) do

3: w′(i, j) ← w(i, j) + Wt

4: end for

5: T ′

s = ShortestPath(G′, s)
6: Hs(s, d) ← T ′

s(d)
7: ns(s, d) ← φ(T ′

s(d))
8: return ns(s, d)

The outputs of Algorithm 1 construct S(d) = {ns(v1, d), ns(v2, d), ...}, the
alternate next hop nodes that every node will use to route packets to d under
failure conditions, and Hs(s, d) = {h1, h2, ...}, where Hs(s, d) is the backup path

from s to d excluding s, and hi represents the i-th next hop in the backup path
from s to d. Thus, Algorithm 1 calculates an alternate next hop for each source-
destination pair, which is the first hop of an alternate path that is maximally
link disjoint from its corresponding normal path. Of course, each node s ∈ G

will calculate a different ns(s, d) for a given destination d: alternate paths for a
destination d are not consistent throughout the network. Our technique is differ-
ent from some other resilient mechanisms precisely because the alternate path
locally known to each router does not have to be consistent: there is no guaran-
tee that a path formed by concatenating the alternate next hops to a particular
destination will be loop-free. Thus, we need to employ a mechanism that uses
these pre-computed alternate next hops to route packets to their destinations
via loop-free paths.

We propose a mechanism called alternate next hop counting to eliminate this
path inconsistency problem.

2.2 Computing ANHC Values

As each router in the network may have different backup paths for the same
destination, forwarding must be aided with an additional mechanism that allows
correct operation under failure conditions. Our technique uses alternate next hop
counting to ensure that no forwarding loop is possible in the presence of a single
link failure. We now illustrate how, with inconsistent information on the local
alternate paths, packets can be forwarded consistently under our routing scheme.

Alternate next hop counting makes use of an Alternate Next Hop Counter
(ANHC) stored in the packet header. A few bits in the Type of Service (ToS)
field of IPv4 or the Traffic Class field of IPv6 are sufficient to store the ANHC.

If we recall S(d) = {ns(v1, d), ns(v2, d), ...} and Hs(s, d) = {h1, h2, ...}, the
AHNC(s, d) value can be obtained using Algorithm 2.

Algorithm 2 Computing the ANHC value.

Input: s, d, Hs(s, d), S(d)
Output: ANHC(s, d)
1: ANHC ← 0
2: current node ← s

3: i ← 1
4: while hi 6= d do

5: if hi == ns(current node, d) then

6: ANHC ← ANHC + 1
7: current node ← hi

8: i ← i + 1
9: else

10: break

11: end if

12: end while

13: return ANHC

The algorithm first considers the current node which is initialised with s.
The first hop in the alternate path from s to d is then compared with the
alternate next hop of current node to d. If they are the same node, ANHC(s, d)
is incremented by 1 and the alternate next hop of current node to d becomes
current node. After that, the second hop in the alternate path from s to d is used
for comparison. This process iterates until either it reaches d or the condition
fails, implying that it is no longer necessary to route via the alternate next hop.
From this point, the packet can be forwarded normally. When the algorithm is
terminated, ANHC(s, d) is obtained.

2.3 Packet Forwarding

Since the alternate next hop counting mechanism does not affect normal route
calculation, packets can be forwarded to all destinations via the shortest paths
in the absence of failures. When a node v detects a failure in one of its outgoing
links, it marks those packets which would be forwarded through the affected
link with the ANHC value corresponding to the destination router of the packet.
If an alternate path to that node exists, it decrements the ANHC value in the
packet and forwards it to its alternate next hop. When a node receives a marked
packet, it determines the value of ANHC. If ANHC holds a positive number, its
value is decremented by 1 and the packet is forwarded to the node’s alternate
next hop. However, if the ANHC value is 0, the node forwards the packet to its
normal next hop until it reaches the destination. Algorithm 3 summarises the
operations when a packet arrives at each node.

Algorithm 3 Packet processing at node s.

Input: in pkt

Output: out pkt

1: if in pkt.ANHC == 0 then

2: if (s, np(s, in pkt.d)) == failed then

3: in pkt.ANHC ← ANHC(s, in pkt.d) − 1
4: return out pkt ← in pkt

5: else

6: return out pkt ← in pkt

7: end if

8: else

9: if (s, ns(s, in pkt.d)) == failed then

10: Drop(in pkt)
11: return null
12: else

13: in pkt.ANHC ← in pkt.ANHC − 1
14: return out pkt ← in pkt

15: end if

16: end if

It is important to note that, our routing technique handles only single link
failures. Certain cases of multiple failures can lead to forwarding loops. However,
this problem can be trivially corrected. We propose the use of an extra bit
to indicate a re-routed packet. That is, if a packet encounters a failure, the
detecting node also marks it using this bit, in addition to the ANHC. If a marked
packet experiences a failure again, it will be dropped immediately as the routing
technique does not handle multiple failures.

Intuitively, the resilient routing technique described will, in case of failure,
route packets along the first hops of maximally disjoint paths terminating on
their destination node until, after a number of hops equal to the ANHC, a node
is reached where they can be routed using the normal shortest path tree of the
network. The shortest path route from this node need not be equal to the backup
path calculated by the failure-detecting node - in fact, it is frequently shorter,
as it does not need to be maximally disjoint. Thus, the length of the actual path
that the packets will traverse under failure scenarios is no greater than the length
of the backup path to their destination starting from their failure-detecting node.

Furthermore, since all failure-avoiding packets will traverse a number of hops
equal to their ANHC before they are shortest-path routed, the length of the
actual path that the packets will traverse under failure scenarios is no shorter
than the ANHC to their destination starting from their source.

Evidently, the computation of alternate next hops and their corresponding
ANHC values implies additional computations for network elements. Since these
only need to be performed for stable topology configurations to pre-compute
and cache relevant values (as opposed to be carried out constantly), these can
be “amortised” over longer time periods. Thus, it is feasible to perform the
algorithm at practical speeds, even using commodity hardware.

If additional efficiency is required, optimised shortest path algorithms can
be used. One such algorithm is the incremental shortest path first algorithm
(iSPF) [10], which avoids the calculation of the whole shortest path tree and
instead terminates the computation once the shortest path between the source
and destination has been found. This significantly reduces the computation time
of the alternate next hops.

2.4 Properties

The two key properties of our routing technique are a) full repair coverage for
recoverable single link failures, and b) loop-free forwarding. These properties
are guaranteed if the routing scheme is complete and correct in the presence
of recoverable failures. Definitions for these concepts are now given. For the
remainder, we assume that equal-cost paths can be distinguished, so that all
paths are essentially cost-unique, and all algorithms choose from between equal
cost paths following a deterministic algorithm. Typical ways of achieving this
involve differentiating by the number of hops on each path, or choosing on the
basis of the interface ID for the first link.

Definition 1. A single link failure is recoverable for a source-destination node
pair if there is at least one alternate path from the source to the destination
which does not traverse the failed link.

Definition 2. The routing technique is complete if the combination of local
alternate next hops and the packet forwarding mechanism guarantees a successful
packet delivery in case of any single link recoverable failures.

Definition 3. The routing technique is correct if the combination of local al-
ternate next hops and the packet forwarding mechanism can forward packets to
the destination in case of any single link recoverable failures without traversing
through the failed links.

First, we show that our routing strategy is complete in the presence of any
recoverable single link failures.

Theorem 1. If G is not disconnected after the removal of link (s, np(s, d)),
then there exists a path from s to d via (s, ns(s, d)) that does not traverse link
(s, np(s, d)) under fast re-route with ANHC.

Proof. We call D the set of paths from s to d that do not include (s, np(s, d)).
If D = ∅, the failure is non-recoverable by definition. Thus, we proceed to prove
that if D 6= ∅, the ANHC algorithm will always find an alternate path from s to
d in D.

We proceed by contradiction, assuming that D 6= ∅ and nonetheless the
algorithm has found that np(s, d) = ns(s, d). This implies that the weight of
all paths in D is strictly higher than Wt, since the algorithm adds Wt to the
weight of each one of the links of the primary shortest path in order to find the
alternate path from s to d, and w(i, j) > 0; ∀(i, j). However, the longest path
from s to d over G would be an Eulerian path, whose weight could be of at most
Wt, and thus the weight of all paths in D could be of at most Wt. Hence, we
have a contradiction, and D 6= ∅ implies that np(s, d) 6= ns(s, d). ⊓⊔

Second, we also show that incorporating the pre-computed alternate next
hops with the alternate next hop counting mechanism can forward re-routed
packets to the destination correctly under failure scenarios. Note that, the packet
forwarding in normal case is based on the shortest path tree and hence, it is
correct.

Theorem 2. If there exists a path from s to d without link (s, np(s, d)), fast re-
route using ANHC can forward packets from s to d without traversing (s, np(s, d).

Proof. Let Tp(d) be the shortest path tree rooted at d and Hs(s, d) = {h1, h2, ...}
be the hop sequence of the alternate path from s to d excluding s, which is locally
known to s. We denote Tp(ds) as the subgraph of Tp(d) below s, which includes
s with a set of vertices N .

Given E is a set of vertices in N that are employed by the alternate path
from s to d. Each node ei in E has the alternate next hop, ns(ei, d). As each
node ei shares some links in the Tp(d) with s, Hs(s, d) must involve ns(ei, d).

A re-routed packet can encounter a failed link (s, np(s, d)) if and only if it
traverses along Tp(d) starting from any node in E. However, a node will forward
a re-routed packet through Tp(d) only if the ANHC value is 0 - after this the
packet will no longer be routed by using alternate next hops.

Since all nodes in E have alternate next hops that coincide with the alternate
path from s to d, no re-routed packets arriving at ei will have a zero value ANHC.
Thus, packets will not be routed along Tp(d) starting from ei. Furthermore,
packets will not be routed via Tp(d) starting from a node in N that does not
belong to E either, since N − E and Hs(s, d) are disjoint sets.

Finally, routing via Tp(d) from any node outside N will not cause packets to
traverse (s, np(s, d)), because these nodes are not elements of Tp(ds).

Therefore, we conclude that a path for re-routing packets from s to d does
not involve the failed link (s, np(s, d)). ⊓⊔

It is important to note that, alternate path locally known to each router
is used for ANHC value calculation only and the routing technique does not
hinder the network operator from knowing the actual alternate path used for
packet re-routing.

3 Performance Evaluation

This section presents our evaluation of fast re-route resiliency using ANHC.
The broad areas we investigate include protocol overhead, characteristics of the
alternate paths, the impact of failures and associated recovery mechanisms on
link load.

3.1 Method

We create our own software model to compute alternate next hops and their
corresponding ANHC values. We run our simulations on a machine with a 2.16
GHz Intel Core 2 Duo processor and 2 GB memory. We use the Abilene [11]
and GEANT [12] topologies, with corresponding real traffic matrices [13]. To
illustrate that our technique can perform well for arbitrary network topologies,
we also use the Abovenet and Sprintlink topologies inferred from Rocketfuel data
[14], and synthetic topologies generated by BRITE [15] based on Waxman and
Barabasi-Albert (BA) models.

We use the gravity models [16] to generate traffic matrices composed of edge-
to-edge flows. To use realistic inputs to the gravity models, we use data from
the U.S. Census Bureau [17] and the United Nations Statistics Division [18] to
calculate the city population of each node in the network. Furthermore, we use
a technique based on the Breadth-First Search (BFS) algorithm to assign link
capacity [19]. To examine the traffic characteristics, we scale the traffic matrices
such that the maximum link utilisation does not exceed 100% under normal
routing or after re-convergence.

We use the normal shortest path routing as a benchmark comparison. The
path used upon completion of the re-convergence process is denoted as OSPF

re-route. Of course, ANHC achieves the performance level reported immediately
after a failure is detected, whereas OSPF re-route normally requires several
seconds of re-convergence stabilisation before it can achieve its reported perfor-
mance.

3.2 Overheads

We evaluate the computational overhead of our routing strategy by reporting the
time required for computation of the alternate next hops and their correspond-
ing ANHC values as evaluation metrics. The largest topology (i.e. Sprintlink)
requires less than 100 ms for alternate next hop computation. ANHC value com-
putation time is negligible for all topologies. Table 1 summarises the simulation
results based on different topologies. Overall, results show that the algorithms
used to compute essential parameters (i.e. alternate next hops and ANHC val-
ues) of our routing scheme do not incur any significant computational overhead.

Table 1: Summary of topologies used in simulations and the corresponding computa-
tional overhead introduced by fast re-route using ANHC.

Topology Type
Number of Number of In-/Out- Computation time (ms)

nodes links degree ANHs ANHC Total

Abilene Real 11 28 1.273 0.108 0.006 0.114
GEANT Real 23 74 1.609 0.120 0.008 0.128
Abovenet Inferred 138 744 2.906 11.920 0.020 11.940
Sprintlink Inferred 315 1944 3.086 77.091 0.051 77.142
Waxman Random 100 400 2.000 3.091 0.015 3.106
Barabasi-Albert Random 100 394 1.970 3.383 0.016 3.339

In order to enable re-routing with alternate next hop counting, a router must
store additional information for each existing destination. That is, apart from
the normal next hop, its alternate and the corresponding ANHC value must
be maintained. However, no additional routing table entries are required and,
hence, our routing technique does not entail excessive memory overhead.

Our forwarding scheme requires a few bits to store the ANHC value. We
suggest that a part of the ToS field can be used for IPv4, and a part of the
Traffic Class field can be used for IPv6. From simulation results, more than
90% of the alternate paths have an ANHC value of less than 3. In practice, a
maximum ANHC of 7 is needed in the packet, as the failure-detecting node will
decrement the ANHC value before it forwards the packet to its alternate next
hop. To prevent forwarding loops in the presence of multiple failures, we propose
the use of an extra bit to indicate a re-routed packet. With this in mind, our
routing technique needs no more than 4 bits for an optimal packet re-routing in
practical topologies.

3.3 Path Stretch

We measure the excess latency or weight required for delivery via alternate
paths using stretch. Although the main objective of the IPFRR framework is
to prevent packets from being dropped in case of failures, it is important that
packet delivery via alternate paths does not cause too high delay so that end
users of sensitive applications can perceive a poorer Quality of Service (QoS).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

P(
St

re
tc

h
>

 x
 |

pa
th

)

Stretch

OSPF re-route
ANHC re-route

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

P(
St

re
tc

h
>

 x
 |

pa
th

)

Stretch

OSPF re-route
ANHC re-route

(b) GEANT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

P(
St

re
tc

h
>

 x
 |

pa
th

)

Stretch

OSPF re-route
ANHC re-route

(c) Abovenet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

P(
St

re
tc

h
>

 x
 |

pa
th

)

Stretch

OSPF re-route
ANHC re-route

(d) Sprintlink

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

P(
St

re
tc

h
>

 x
 |

pa
th

)

Stretch

OSPF re-route
ANHC re-route

(e) Waxman

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

P(
St

re
tc

h
>

 x
 |

pa
th

)

Stretch

OSPF re-route
ANHC re-route

(f) Barabasi-Albert

Fig. 1: Stretch comparison between OSPF re-route and IPFRR using ANHC.

As can be seen in Fig. 1, our fast re-route technique offers recovery via alter-
nate paths that are near optimal regardless of the underlying network topology.
The average of optimal stretch across all topologies is 1.221 while the average of
stretch provided by our proposed technique is 1.305. In most cases, the cost of
an alternate path is close to that of the shortest path.

3.4 Maximum Link Utilisation

We analyse the maximum link utilisation over different failure scenarios of each
topology. Figure 6 illustrates the fraction of links in the network with maximum
link utilisation exceeding the value in x-axes. Interestingly, unlike other IPFRR
techniques [20], none of the links in all topologies are overloaded under our
routing strategy. Fast re-route with ANHC also performs as well as normal re-
convergence in any arbitrary network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P(
M

L
U

 >
 x

 |
lin

k)

Link utilisation

OSPF
OSPF re-route

ANHC re-route

(a) Abovenet (PoP-level)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P(
M

L
U

 >
 x

 |
lin

k)

Link utilisation

OSPF
OSPF re-route

ANHC re-route

(b) Sprintlink (PoP-level)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P(
M

L
U

 >
 x

 |
lin

k)

Link utilisation

OSPF
OSPF re-route

ANHC re-route

(c) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P(
M

L
U

 >
 x

 |
lin

k)

Link utilisation

OSPF
OSPF re-route

ANHC re-route

(d) GEANT

Fig. 2: Maximum link utilisation before and after single link failures of different topolo-
gies.

4 Conclusion

Packet dropping due to transient failures is a major cause of disruption in to-
day’s Internet and will become more critical as more demanding applications
are developed. Several approaches such as IPFRR, multi-homing and multi-path
routing, and overlay networks have been proposed to alleviate the problem. Al-
though IPFRR provides better modularity, none of its techniques can guarantee
full protection against single failures without using mechanisms (e.g. tunnelling)
that degrade the performance of a router.

We proposed a new IPFRR technique based on the Alternate Next Hop
Counter (ANHC) to handle transient link failures. In the normal scenario, pack-
ets are forwarded along the shortest path calculated similarly as in traditional
IP routing. When a link fails, the detecting router is responsible for setting the
pre-computed ANHC value in the packet header. This value is used by interme-
diate routers to determine the packet’s next hop. We presented two algorithms
for computing the alternate paths and their corresponding ANHC values. Fur-
thermore, we proved that our technique is complete and correct.

As the path provided by OSPF re-route is the shortest path after a failure,
we used it as a benchmark throughout our evaluation. From simulation results,
we concluded that fast re-route using ANHC requires no significant overheads
and can be easily deployed without major modifications. Moreover, it can fully
protects single link failures using low stretch alternate paths and has minimal
impact on network traffic. We greatly believe that fast re-route using ANHC can
greatly enhance the network reliability without any expensive requirements.

References

1. Shand, M., Bryant, S.: IP fast reroute framework. RFC 5714 (Jan 2010)
http://tools.ietf.org/html/rfc5714.

2. Li, A., Francois, P., Yang, X.: On improving the efficiency and manageability of
notvia. In: Proc. ACM CoNEXT, New York, NY (Dec 2007) 1–12

3. Goyal, M.R., Feng, K.K.W.: Achieving faster failure detection in OSPF networks.
In: Proc. IEEE ICC, Anchorage, AK (May 2003) 296–300

4. Atlas, A., Zinin, A.: Basic specification for IP fast reroute Loop-Free Alternates.
RFC 5286 (Sep 2008) http://tools.ietf.org/html/rfc5286.

5. Bryant, S., Shand, M., Previdi, S.: IP fast reroute using not-via addresses. IETF
Internet draft (Jul 2009) http://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-notvia-
addresses-04.

6. Nelakuditi, S., Lee, S., Yu, Y., Zhang, Z.L., Chuah, C.N.: Fast local rerouting for
handling transient link failures. IEEE/ACM Transactions on Networking 15(2)
(Apr 2007) 359–372

7. Kvalbein, A., Hansen, A.F., Cicic, T., Gjessing, S., Lysne, O.: Fast IP net-
work recovery using multiple routing configurations. In: Proc. IEEE INFOCOM,
Barcelona, Spain (Apr 2006) 23–29

8. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient Overlay
Network. In: Proc. ACM SOSP, Banff, Canada (Oct 2001) 131–145

9. Lakshminarayanan, K., Caesar, M., Rangan, M., Anderson, T., Shenker, S., Stoica,
I.: Achieving convergence-free routing using failure-carrying packets. In: Proc.
ACM SIGCOMM, Kyoto, Japan (Aug 2007) 241–252

10. McQuillan, J.M., Richer, I., Rosen, E.C.: The new routing algorithm for the
ARPANET. IEEE Transactions on Communications 28(5) (May 1980) 711–719

11. Zhang, Y.: The Abilene topology and traffic matrices. Online (Dec 2004)
http://www.cs.utexas.edu/∼yzhang/research/AbileneTM/.

12. GEANT: The GEANT topology. Online (Dec 2004)
http://www.geant.net/upload/pdf/GEANT Topology 12-2004.pdf.

13. Uhlig, S., Quoitin, B., Balon, S., Lepropre, J.: Providing public intradomain traffic
matrices to the research community. ACM SIGCOMM Computer Communication
Review 36(1) (Jan 2006) 83–86

14. Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies
with Rocketfuel. IEEE/ACM Transactions on Networking 12(1) (Feb 2004) 2–16

15. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: an approach to universal
topology generation. In: Proc. IEEE MASCOTS, Cincinnati, OH (Aug 2001) 346–
353

16. Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix
estimation: Existing techniques and new directions. In: Proc. ACM SIGCOMM,
Pittsburgh, PA (Aug 2002) 161–174

17. U.S. Census Bureau: Census 2000 gateway. Online (Apr 2000)
http://www.census.gov/main/www/cen2000.html.

18. United Nations Statistics Division: Demographic and social statistics. Online (Aug
2008) http://unstats.un.org/unsd/demographic/.

19. Liu, W., Karaoglu, H.T., Gupta, A., Yuksel, M., Kar, K.: Edge-to-edge bailout
forward contracts for single-domain Internet services. In: Proc. IEEE IWQoS,
Enschede, The Netherlands (June 2008) 259–268

20. Menth, M., Hartman, M., Martin, R., Cicic, T., Kvalbein, A.: Loop-free alter-
nates and not-via addresses: A proper combination for IP fast reroute? Computer
Networks (2009)

