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Abstract. Time-driven sensor networks are devoted to the continuous reporting 

of data to the user. Typically, their topology is that of a data-gathering tree 

rooted at the sink, whose vertexes correspond to nodes located at sampling 

locations that have been selected according to user or application requirements. 

Thus, generally these locations are not close to each other and the resulting 

node deployment is rather sparse. In a previous paper, we developed a heuristic 

algorithm based on simulated annealing capable of finding an optimal or 

suboptimal data-gathering tree in terms of lifetime expectancy. However, 

despite the enhanced lifetime, the overall link distance is not optimized, fact 

that increases the need for additional resources (relay nodes). Therefore, in this 

paper we propose the Link Distance Reduction algorithm, with the goal of 

reducing link distances as long as network lifetime is preserved. The benefits of 

this new algorithm are evaluated in detail. 

Keywords: Time-driven sensor networks, TDMA, spanning tree, minimum 

spanning tree, network planning. 

1   Introduction 

In time-driven or continuous monitoring sensor networks, communication is triggered 

by nodes, which regularly deliver sensed data to the user [1]. Thus, the traffic 

generated by these networks usually takes the form of a continuous and predictable 

flow, and therefore the use of a TDMA-based protocol becomes especially 

appropriate [2]. Furthermore, it is common that time-driven sensor networks are 

deployed in a structured manner [1][2], either by selecting strategic locations or by 

adopting some regular sampling pattern, and that data are routed to the sink through 

multi-hop predetermined paths [1]. These paths form a reverse multicast or 

convergecast structure called the data-gathering tree [2]. 

Because the strategic locations can well be far to each other or because the 

monitored variable can exhibit low spatial variability (as it is usually the case), it is 

not surprising that the resulting application-driven deployment is rather sparse. Sparse 

manually-deployed sensor networks have received less attention in literature (in 

contrast to dense and randomly-deployed networks), in spite of putting forward some 

interesting challenges. In essence, these come from the fact that large inter-node 



distances can be impractical or unattainable for sensor nodes. Inevitably, given the 

limited communication range of nodes, any solution demands the introduction of 

additional resources, basically in the form of relay nodes (nodes with their sensing 

capability deactivated). This could be done by randomly scattering them over the 

whole sensor field, but this would yield to prohibitively large amounts of nodes 

precisely in sparse areas. Thus, we suggest that the problem can be better addressed 

from a network planning perspective, which tries to control the number of additional 

resources as long as the functionality and lifetime of the network are preserved. 

As part of this strategy, in [3] we developed a heuristic method based on simulated 

annealing (SA) that finds an optimal (or suboptimal) data-gathering tree in terms of 

lifetime expectancy. However, in general the overall link distance of this tree can be 

substantially improved (decreased), fact that would contribute to reduce the amount of 

relay nodes required to make the network operational. Thus, in this paper we propose 

the Link Distance Reduction (LDR) algorithm, which starts from the data-gathering 

tree delivered by the SA-based algorithm, and then progressively reduces its overall 

link distance as long as the lifetime obtained from SA is not decreased. 

Accordingly, the rest of the paper is organized as follows. In Section 2, we 

describe our network planning approach to the problem of topology construction for 

sparse deployments, along with related work. In Section 3, we motivate the need for 

an algorithm that reduces the sum of link distances of the SA graph. In Section 4, we 

describe the new algorithm (LDR) in detail. Then, in Section 5, we evaluate its 

performance via simulation. This also includes the issue of computational complexity. 

Finally, in Section 6, we draw the main conclusions and suggestions for further 

research. 

2   �etwork Planning Approach and Related Work 

The problem of constructing a data-gathering tree can be faced up from a network 

planning perspective or as part of a protocol-oriented design. In the latter case, a real-

time distributed algorithm is designed, in order to be embedded into an adaptive 

routing protocol capable of supporting frequent topology updates. This strategy has 

been typically used in dense, randomly-deployed networks. In contrast, in the former 

case, the goal is to find an optimized static routing tree, and thus the algorithm to be 

designed is not subject to real-time requirements (although computation time is still of 

concern) and can be executed centrally. This approach becomes especially appropriate 

for sparsely-deployed sensor networks or for sensor networks where maintaining and 

updating a routing table at each node is computationally too expensive. 

Despite its importance, the network planning approach has received less attention 

than the approach centered on adaptive routing. Yet, some works deserve a 

description. For instance, the work presented in [4] considers the problem of 

designing a data-gathering tree with the goal of reducing the total amount of data 

transmitted. Hence, in contrast to our premises (see Section 3), its main focus is on a 

packet aggregation scheme. Analogously, the emphasis of [5] is also on packet 

aggregation. A common feature to these works, as stated by [6], is that their ultimate 

goal is to minimize the total energy consumption, thus ignoring the fact that some 



nodes may deplete their energy faster than others and cause loss of coverage. Thus, 

the algorithm proposed in [6] focuses on maximizing the lifetime of the network, 

defined as the time until first node death (optimization with strict coverage 

requirements). However, this work adopts several assumptions that significantly 

simplify the analysis of the problem. One of them is that nodes cannot adjust their 

transmission power, which is not always the case. This assumption eliminates the 

dependence on distance and thus it reduces the complexity of the proposed algorithm. 

Another simplifying assumption is the adoption of a packet aggregation scheme that 

reduces the number of packets to be forwarded by a node to the number of direct 

descendents it has. Compared to this work, our particular approach adopts the same 

definition of lifetime, but it uses a more complete energy consumption model that 

does not rely on the abovementioned assumptions. 

Another simplification present in [6] is the assumption that the initial network is 

fully connected. Since this is not necessarily true, especially in sparse deployments, 

the network planning perspective has also considered the possibility to introduce 

additional resources in the network, in the form of relay nodes. In this context, several 

works assume that nodes have a maximum transmission range, and then formulate the 

problem of introducing the fewest number of relay nodes so that a certain degree of 

network connectivity is achieved. Examples of these works are [7] and [8], which 

consider flat topologies, and [9] and [10], which assume a two-tiered architecture 

where relay nodes always belong to the backbone network. Essentially, the theoretical 

formulation of these topological problems is that of a Steiner tree with minimum 

number of Steiner points (ST-MSP), a problem that is known to be NP-hard. 

However, as stated above, the focus of these works is on network connectivity rather 

than on lifetime (at most, lifetime is partially addressed by considering transmission 

ranges and the so-called node degrees). By contrast, our network planning approach 

addresses both network lifetime and minimization of the number of Steiner points 

(resource optimization) by means of the following two stages: 

• Elementary tree construction. The construction of an elementary data-gathering 

tree consists of determining a spanning tree that connects all regular or duty nodes 

(nodes at locations of interest) to the sink, with a view to maximizing the lifetime 

of the sensor network. In this process, we assume that these nodes have full power 

control capability with the only limit of their own energy resources (battery). In 

other words, the likely existence of a maximum transmission range is ignored at 

this stage. Under this assumption, the work presented in [3] showed that the 

problem of finding a data-gathering tree with optimal lifetime, by including in the 

analysis the workload of every node to a maximum extent, is NP-hard. Then, a 

heuristic method based on simulated annealing was proposed, which it was shown 

to yield, in general, a spanning tree with near-optimal lifetime in linear time. 

• Placement of additional nodes. In the case of sparse deployments, the data-

gathering tree that results from the previous stage usually contains link distances 

that exceed some maximum transmission range. In this case, our strategy consists 

of regularly inserting the necessary number of relay nodes into the uplink of every 

regular node. This is the technique of steinerized edges, which was also considered 

in [7], [8], [10] and [11]. In the latter, the number of inserted nodes was related to 

the corresponding lifetime enhancement. 



3   Problem Motivation 

The work presented in this paper is halfway between the two stages of the topology 

construction process described in the previous section. The reason is that although the 

SA-based algorithm generates a spanning tree with optimal or suboptimal lifetime, in 

general the sum of the resulting link distances can be substantially decreased without 

penalizing such lifetime. This, in turn, may contribute to reduce the amount of 

additional resources required in the second stage. In this section, we illustrate these 

ideas by means of a simple test scenario; however, for the sake of completeness, we 

first set up a lifetime model for a time-driven sensor network with   nodes. 

3.1 Lifetime Model 

A lifetime model requires an energy consumption model. The energy consumption 

model used in the present paper was first developed in [3] (on the basis of a radio 

model described in [12]), under the following premises: 

• Only the energy wasted by the node transceivers is considered. 
• No data aggregation, since the spatial correlation among samples (readings) in 

sparse scenarios tends to be low. In addition, by ignoring data aggregation a worst-

case lifetime analysis is performed. 

• Some low duty-cycle MAC protocol, such as TDMA, governs the access of nodes 

to the wireless medium. 

• Time is divided into rounds or reporting periods, whose duration is specified at the 

application or user levels and is typically much larger than the duration of packets 

and TDMA frames. In addition, this allows for neglecting the delays incurred by 

TDMA, whatever slot assignment scheme is used and despite the absence of a 

packet aggregation scheme. 

Then, in order to characterize the traffic workload of each node i = 1Ω , two 

magnitudes were introduced: 

• g(i): number of packets to be generated by node i per communication round 

(generating parameter). This specification takes into account heterogeneous 

scenarios where the sampling process needs to be more intensive in some locations 

than in others. 

• σ(i): number of packets to be forwarded by node i during every communication 

round (forwarding parameter). 

Note that these magnitudes become time-independent when dealing with static 

data-gathering trees, as it is the case of the present paper. Note also that if CH(i) 

denotes the set of child nodes of node i, the following equality holds: 
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Now, let EG(i) (EF(i)) be the energy consumed by node i to generate and transmit 

(receive and forward) a packet. Then, the total energy consumed by this node during a 

communication round, namely E(i), can be expressed as follows: 
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Furthermore, if ER is the energy consumed by any node to receive a packet and 

ET(i) is the energy consumed by node i to transmit a packet at distance d(i), we can set 

up the following equations: 
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The energy consumed to receive a packet is the energy dissipated by the node 

transceiver circuitry to perform such operation. Because all nodes are assumed to be 

provided by the same vendor, this energy can be considered constant throughout the 

network. On the other hand, the energy wasted to transmit a packet includes a 

distance-dependent component in addition to the energy dissipation, and thus it 

generally varies from node to node (in spite of being provided by the same vendor). 

These statements are made explicit via the so-called radio model [12]: 
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Here, Eelec stands for the energy dissipated by the transceiver circuitry to transmit 

or receive a single bit, )(idE f
w ⋅  is the energy radiated to the wireless medium to 

transmit a single bit over a link of distance d(i), f is the path-loss exponent and m is 

the packet size in bits. In turn, the distance-dependent component depends on the 

distance itself: 
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Equation (5a) models free space propagation, which is valid below the reference 

distance (d0) (although beyond the so-called far-field region of the transmitting 

antenna [12]), whereas equation (5b) reflects multi-path fading effects. In this latter 

case, a typical value for the path-loss exponent is 4. By combining equations (2), (3a)-

(3b) and (4a)-(4b), the total energy wasted by a node in every communication round 

can be rewritten in the following way: 
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Note that in this analysis the energy wasted to wake up a node has been neglected. 

This is an acceptable and usual approximation, which in addition makes the analysis 

independent of the particular slot assignment scheme in the case of TDMA. It can also 

be noticed that expression (6) reveals that the energy consumed by a node depends on 

three major factors: workload, represented by the traffic parameters g(i) and σ(i), 
target distance and packet size. 

The energy consumption model given by (6) can now be embedded into a lifetime 

model. By assuming that lifetime is defined as the time until first node death, we can 

express it in rounds as follows (B is the energy initially available at all nodes, that is, 

the battery): 
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3.2 Illustrative Example 

We consider the scenario detailed in Fig. 1, where 8 regular nodes are supposed to 

send 1 packet to the sink per round of communication, that is,  iig K1,1)( ==  (for 

simplicity, with no loss of generality). For the radio model, we take the data from a 

realistic radio module previously introduced in [13]: Eelec = 50 nJ/bit, Ew = 10 

pJ/bit/m
2
 and f = 2 if the transmission distance is below 75 m (the so-called reference 

distance), Ew = 0.0013 pJ/bit/m
4
 and f = 4 if the transmission distance is above 75 m, 

and B = 15 kJ. For the packet size, we assume a slightly large value of 125B, although 

the choice for this parameter is not relevant to our analysis. Under all these 

assumptions, Fig. 1 also shows the graph generated by the SA algorithm developed in 

[3]. This graph yields a lifetime of 722168 rounds, determined by node 8 – see 

expression (7). Besides, this graph reveals one of the main features of the SA 

algorithm: it focuses on maximizing the lifetime of the network as defined by (7), but 

not on enhancing the lifetimes or transmission distances of particular nodes unless 

this could have a positive impact on the final result. For instance, it is very probable 

that node 4 could have been connected to node 2 instead of node 5 without perturbing 

the lifetime of the network. 
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Fig. 1. Node deployment and graph generated by the SA algorithm. Forwarding parameters are 

indicated. 

 

In this context, a reference algorithm is the Minimum Spanning Tree, which finds 

the spanning tree that minimizes the overall link distance (if link cost is defined as the 

Euclidean distance). In particular, when applied to the node deployment of Fig. 1, the 

result is the graph shown in Fig. 2 in solid lines. The average link distance has 

decreased from 207.970 m (with SA) to 148.302 m, which is the minimum achievable 

value. This represents a reduction of approximately 30%. However, the lifetime of the 

network has also decreased to 514451 rounds (this time determined by node 7), which 

is also about 30% smaller. The reason is that, by focusing exclusively on the total link 

distance, the MST algorithm ignores the workload supported by nodes and thus it 

does not optimize the lifetime of the network. 
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Fig. 2. MST and enhanced graphs. Forwarding parameters are indicated, including the 

change of σ(7) from one graph to the other. 

 

Obviously, a question that arises is whether an intermediate solution is feasible. In 

this respect, the graph shown in Fig. 2 – with the dashed line instead of line 8-7, 

constitutes a positive answer. This graph, which results from applying the combined 

SA+LDR algorithm (LDR is described in the next section), exhibits the same lifetime 

as the SA graph (722168 rounds, again determined by node 8), but its average link 

distance is now 148.855 m, very close to the minimum achieved by the MST 

algorithm. In fact, it can be noticed that the two graphs in Fig. 2 are very similar, 

although their small dissimilarity has an important effect on network lifetime. 



4   Link Distance Reduction Algorithm 

Starting from the spanning tree generated by the SA algorithm, the proposed Link 

Distance Reduction algorithm is a heuristic iterative method that is intended to 

transform this tree into another one with less average link distance, as long as lifetime 

is not degraded. In essence, the strategy is to check the connections of all nodes to 

their parents, trying to find closer parents while preserving the tree structure (no 

cycles are formed) and maintaining or even increasing the lifetime of the network 

(recall that, in general, the SA algorithm yields a near-optimal solution). 

Before proceeding to the specification of the algorithm, let us introduce some 

useful definitions and naming conventions: 

• Let ),( EVt =  denote a particular spanning tree, where V is the set of 1+  

vertices representing the   (regular) nodes and the sink, and E is a collection of 

two-element subsets of V that represent connections between pairs of nodes. Let T 

denote the set of all trees spanning all vertices in V. 

• Given that t is a spanning tree, every edge in E can be expressed as a pair 

 iipi K1)),(,( = , where )(ip  denotes the parent of node i (that is, the node to 

which node i sends packets on the way to the sink). Thus, 0)( =ip  if node i is 

directly connected to the sink (it is assumed that node 0 is the sink). 

• As stated above, the algorithm explores potential parents for each node. Thus, we 

introduce )(* ip  to denote the parent that is tried for node i at a particular stage of 

the execution process. 

• In our formal specification of the algorithm, a state corresponds to a particular 

spanning tree. Accordingly, three variables are managed. The first one is Initial 

State, which denotes the spanning tree obtained from the SA algorithm. The LDR 

algorithm starts from this state. Then, Current State and New State denote 
the spanning trees at the beginning and end of each iteration, respectively. 

Therefore, New State is different from Current State as long as at least one 
parent of any node is changed during the corresponding iteration. 

• Let ),( jid  be the Euclidean distance between any two vertices  ji K0, = . 

Accordingly, let A be an  x  matrix such that ivu =),(A  and jvu =)',(A  with 

'vv <  means that ),(),( judiud ≤ , with  vvu K1',, = ,  ji K0, =  and uji ≠, . 

This matrix depends exclusively on the deployment of the network and thus it 

needs to be calculated only once. Also, let B be a row vector with   components 

such that iv =)(B  and jv =)'(B  with 'vv <  means that ))(,())(,( jpjdipid ≥ , 

with  vvji K1',,, = . Essentially, for a given spanning tree, B is the list of nodes 

in decreasing order of their uplink distances. Thus, it depends on the particular 

spanning tree. In the algorithm, B is re-calculated at the beginning of each 

iteration.  

• Finally, No Cycle and Lifetime Not Degraded are two self-explanatory 
logical variables that represent the two conditions that must be fulfilled in order to 

accept a potential parent. The former implies determining that the connection of a 

node to a potential parent does not form any cycle. Under this condition, the latter 



implies the re-evaluation of network lifetime according to (6) and (7) (note that the 

two conditions should be checked in this order). 

Based on these definitions, the pseudo-code for the algorithm can be written as 

follows: 

 
Link Distance Reduction Algorithm 
1 Set A; 

2 New State ← Initial State; {Initial State = Spanning tree 
obtained from SA} 

3 repeat 

4  Current State ← New State; 
5  Set B; 
6  for i = 1 to N do 

7   j ← 1; 
8   p*(B(i)) ← A(B(i), 1); 
9   while p*(B(i)) <> p(B(i)) do 
10    if (No Cycle == True) and (Lifetime Not Degraded 

== True) then 
11     p(B(i)) ← p*(B(i)) 
12    else 

13     j ← j+1; 
14     p*(B(i)) ← A(B(i), j); 
15    end if 
16   end while 
17  end for 
18 until New State == Current State 

 

In this algorithm, lines 3-18 correspond to a single iteration. During an iteration, 

the connections of all nodes to their parents are checked in decreasing order of their 

link distances (lines 6-17), and, for each node, potential parents are examined in 

increasing order of their distance to such node, that is, starting with the closest one 

(lines 9-16). Thus, for any given node, in the worst case this process yields the same 

parent node as the previous iteration. Also note that, as stated before, the algorithm 

executes a new iteration as long as at least one change is registered in the previous 

one. In effect, any change requires revisiting the situation of all nodes in a subsequent 

iteration; for instance, if node i was checked before node j in iteration k, and the 

connection of node j was changed during such iteration, maybe a potential parent for 

node i that was rejected in iteration k can now be accepted in iteration k+1. 

5   Simulation Results 

In order to validate the proposed algorithm and evaluate its computational 

complexity, we performed several simulation experiments using the Mathematica 

software. The scenario for these experiments was a 1000m x 1000m field, with 

coordinate ]1000,0[∈x  and coordinate ]500,500[−∈y . We placed the sink at )0,0(  

and for the radio model we used the values of subsection 3.2. Each simulation 

experiment corresponded to a given number of nodes, which was varied between 10 



and 100 in steps of 10. The number of runs in all simulation experiments was adjusted 

so as to produce 95% confidence intervals below 10%. In turn, each run consisted of 

generating a random deployment with the corresponding number of nodes, and then 

executing, on the one hand, the MST algorithm, and, on the other hand, the SA 

followed by the LDR algorithms. The result of each run consisted of the graphs 

generated by the MST, SA and SA+LDR algorithms, as well as several performance 

metrics evaluated on these graphs. Specifically, the most significant performance 

metrics were the following ones: 

• Average link distance. For any data-gathering tree, this is the sum of link distances 

divided by the number of nodes (there are as many links as nodes). In order to 

reduce the amount of additional resources that could be required, the goal is to 

reduce the average link distance as much as possible. 

• Lifetime. This is the network lifetime as given by (7). 

•  umber of relay points. This refers to the total number of relay points (nodes) that 

should be marked on the graph of the network in order to fulfill some maximum 

transmission range requirement. 
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 (a) (b) 

Fig. 3. Average link distance (a) and lifetime (b) versus number of nodes. The SA and 

SA+LDR curves in (b) are in full agreement. 

Fig. 3 shows the results obtained for the first two metrics. In particular, Fig. 3(a) 

shows the downward trend of the average link distance (in meters) with the number of 

nodes, irrespective of the algorithm. This behavior was completely predictable, 

because the greater the amount of nodes deployed in a fixed-size region, the closer 

they are to each other. Moreover, this figure shows that the lowest average link 

distance corresponds to the MST algorithm, which is obvious since the only goal of 

MST is to minimize the sum of link distances. On the other hand, since the SA 

algorithm only takes link distances into account as long as they contribute to increase 

the lifetime of the network, it generates an average link distance substantially greater 

than that of MST. Between these two extreme cases, the combined SA+LDR 

algorithm represents the best tradeoff, as it tries to reduce the overall link distance as 

long as the lifetime obtained from SA is not degraded. Specifically, it can be noticed 

that the gap between the SA and SA+LDR curves is significant, fact that validates the 

role of the LDR algorithm. Finally, another observation is that the MST curve is 

smoother than the others. This is due to the inherent randomness of the simulated 

annealing technique on which the SA and SA+LDR algorithms are based, which 



generally leads to a larger solution space than with the MST algorithm (in this case 

the solution space is typically a single graph or at most a very small set of graphs). 

The downward trend of curves in Fig. 3(a) is in line with the upward trend of the 

lifetime curves shown in Fig. 3(b). This is due to the fact that transmission distance 

plays a dominant role in energy consumption, and its progressive decrease with the 

number of nodes has more impact than the corresponding increase in traffic load 

(represented by the forwarding parameters) – see expression (6). As it can also be 

noticed, the curves corresponding to SA and SA+LDR are completely superposed, 

which is not surprising as the LDR algorithm does not degrade the lifetime of the SA 

graph, and usually does not improve it either. Finally, another observation about Fig. 

3(b) is the growing value of the gap between the two curves. This is explained by the 

fact that only the SA and SA+LDR algorithms focus on network lifetime. 
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Fig. 4. Number of relay points versus number of nodes. 

 

Fig. 4 plots the evolution of the number of relay points as the number of nodes 

increases, for a maximum transmission range of 250m. In this case, the three 

algorithms experience different trends. These can be explained by viewing the 

average link distance and the number of nodes as separate factors: on the one hand, 

reducing the average link distance (obviously as a consequence of increasing the 

number of nodes) contributes to reducing the number of relay points required for 

network connectivity; on the other hand, since there can be one or more relay points 

per (regular) node, there is some positive correlation between these two magnitudes. 

In the case of MST, which focuses exclusively on reducing the overall link distance, 

the former factor dominates. However, the opposite happens with SA, since the whole 

set of link distances play a secondary role in this algorithm. Again, the SA+LDR 

curve is in an intermediate position, and thus it exhibits a local maximum at a 

relatively low number of nodes. In particular, the gap between the SA and SA+LDR 

curves as well as the decreasing trend of the latter beyond its local maximum validate 

the significance of LDR as a resource optimization algorithm. 

In addition to guaranteeing network connectivity, the introduction of relay nodes 

enhances the lifetime of the network beyond the values shown in Fig. 3(b) (according 

to the energy consumption model considered so far). Certainly, this is applicable to 

both the SA+LDR and MST algorithms, but the difference is that the starting point is 

generally better for the former than for the latter. Thus, the enhanced lifetime is 

expected to be greater with SA+LDR than with MST, at least in a statistical sense. 



In addition to the above metrics, we introduced two complementary measures: 

• Average energy consumption. This is the average energy consumed by a node per 

round of communication. It is the result of dividing the total energy consumed by 

the network during a round of communication by the number of nodes. Although 

the definition of lifetime used in this paper relegates this measure to a secondary 

role, it could achieve more importance from alternative viewpoints. For instance, if 

electrical power supply for nodes was feasible (as it is the case of some scenarios), 

lifetime would not be crucial anymore, but preserving energy consumption would 

still be a relevant issue (for environmental protection). 

•  umber of cross-points. This is the number of crossing or intersection points 

among the edges of the graph that represents the sensor network. It can be viewed 

as a rough estimate of the entropy of such graph. Although this measure may also 

appear to be secondary, it could become more meaningful in some scenarios. For 

instance, in case directive antennas were used for inter-node communication, the 

number of cross-points would have an impact on the amount of interferences. 
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Fig. 5. Average energy consumption (a) and number of cross-points (b) versus number of 

nodes. 

 

Fig. 5 plots the evolution of these additional metrics as the number of nodes 

increases, for the three algorithms considered so far. In particular, the results shown in 

Fig. 5(a) (expressed in nJ) are completely correlated with those in Fig. 3(a). Again, 

this is due to the fact that transmission distance plays a dominant role in energy 

consumption. So, we can conclude that MST outperforms SA and SA+LDR when the 

emphasis is put on the overall energy consumption, in contrast to what is shown in 

Fig. 3(b), which focuses on network lifetime. Regarding Fig. 5(b), we should recall 

that the SA algorithm focuses on maximizing the lifetime of the network as defined 

by (7), but not on enhancing the connections of the nodes that do not determine this 

lifetime. This, in addition to the inherent randomness of this algorithm, makes the 

resulting graph rather chaotic, with a large amount of cross-points that obviously 

increases with the number of nodes. From this point of view, the MST algorithm 

exhibits an opposite behavior: it produces a graph with no cross-points, as shown in 

Fig. 5(b). Between these two extremes, the SA+LDR curve also shows an upward 

trend, but smoother than in the SA case. 

Finally, we also evaluated the computational complexity of the proposed 

algorithm. Although from a network planning perspective the topology design 



algorithms are not subject to strong real time requirements, the issue of computational 

complexity is still of concern, since these algorithms may have to be executed from 

time to time for network reconfiguration. In this sense, the results obtained for LDR 

are very satisfactory, since the trend of the regression curve shown in Fig. 6 is 

practically linear. Specifically, this curve represents the evolution of the average 

number of iterations (see Section 4) as the number of nodes increases. In addition to 

its linear trend, this average takes on relatively moderate values, as it varies from 

approximately 30 for 10 nodes to around 1800 for 100 nodes. 
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Fig. 6. Computational complexity of LDR as a function of the number of nodes. 

6   Conclusions and Further Research 

In this paper, we have developed the Link Distance Reduction algorithm, a heuristic 

method that minimizes the overall link distance of a time-driven sensor network graph 

while preserving or even improving its lifetime. This algorithm uses hill-climbing 

without backtracking, and thus it could stop at a local optimum.  However, in 

contrast, this limitation has favored its simplicity and computational efficiency, and at 

the same time it has not precluded the algorithm from yielding significant reductions 

in average link distance and number of relay points. 

The work presented in this paper can be extended to other energy-consumption 

models, as well as to scenarios where the deployment density is kept constant or the 

maximum transmission range of nodes is varied. A more advanced research would 

consist of developing a modified version of the original SA algorithm that included 

the average link distance minimization, in order to enable the achievement of the 

global optimum (although at the expense of increasing the computational complexity). 

Another issue would be the distributed implementation of the proposed algorithms. 

Also, the issues of connectivity, lifetime enhancement and fault-tolerance could be 

jointly treated by replacing single nodes with clusters of cooperative transmitting 

nodes (see [14] for a survey on MIMO/MISO techniques). Finally, our research 

results are progressively being integrated in  etLife, a software tool for planning 

time-driven sensor networks. 
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