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Abstract. Networking costs play an important role in the overall costs
of a modern data center. Network power, for example, has been estimated
at 10-20% of the overall data center power consumption. Traditional
power saving techniques in data centers focus on server power reduction
through Virtual Machine (VM) migration and server consolidation, with-
out taking into account the network topology and the current network
traffic. On the other hand, recent techniques to save network power have
not yet utilized the various degrees of freedom that current and future
data centers will soon provide. These include VM migration capabili-
ties across the entire data center network, on demand routing through
programmable control planes, and high bisection bandwidth networks.
This paper presents VMFlow: a framework for placement and migration
of VMs that takes into account both the network topology as well as
network traffic demands, to meet the objective of network power reduc-
tion while satisfying as many network demands as possible. We present
network power aware VM placement and demand routing as an optimiza-
tion problem. We show that the problem is NP-complete, and present
a fast heuristic for the same. Next, we present the design of a simula-
tor that implements this heuristic and simulates its executions over a
data center network with a CLOS topology. Our simulation results us-
ing real data center traces demonstrate that, by applying an intelligent
VM placement heuristic, VMFlow can achieve 15-20% additional savings
in network power while satisfying 5-6 times more network demands as
compared to recently proposed techniques for saving network power.
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1 Introduction

In current data centers, networking costs contribute significantly to the overall
expenditure. These include capital expenditure (CAPEX) costs such as cost
of networking equipment which has been estimated at 15% of total costs in a
data center [6]. Other networking costs include operational expenditure (OPEX)



such as power consumption by networking equipment. It has been estimated that
network power comprise of 10-20% of the overall data center power consumption
[9]. For example, network power was 3 billion kWh in the US alone in 2006.

Traditionally, data center networks have comprised of single rooted tree net-
work topologies which are ill-suited for large data centers, as the core of the
network becomes highly oversubscribed leading to contention [7]. To overcome
some of these performance problems of traditional data center networks, such
as poor bisection bandwidth and poor performance isolation, recent research in
data center networks has proposed new network architectures such as VL2 [7],
Portland [16], and BCube [8]. Data centers are also increasingly adopting vir-
tualization and comprise of physical machines with multiple Virtual Machines
(VMs) provisioned on each physical machine. These VMs can be migrated at
downtime or at runtime (live). Furthermore, emergence of programmable con-
trol plane in switches through standardized interfaces such as Openflow [3], has
enabled on demand changes in routing paths.

With the above recent advances, opportunities have emerged to save both
network CAPEX and OPEX. Network CAPEX is being reduced through sev-
eral measures such as increased utilization of networking devices, and a move
towards cheaper and faster data plane implemented in merchant silicon, while
all the intelligence lies in a separate sophisticated control plane [3]. Components
of OPEX, such as network power costs, are being reduced through techniques
that switch off unutilized network devices as the data center architectures move
to higher levels of redundancy in order to achieve higher bisection bandwidth.
However, most of the recent techniques to save network power usage do not
seem to utilize all the features that current and future data center will soon
provide. For instance, recent techniques to save network power in [9] exploit
the time-varying property of network traffic and increased redundancy levels in
modern network architectures, but do not consider VM migration. On the other
hand, current VM placement and migration techniques such as [19] mainly tar-
get server power reduction through server consolidation but do not take into
account network topology and current network traffic. A recent work by Meng
et. al [15] explored network traffic aware VM placement for various network
architectures. However, their work did not focus on network power reduction.

There are multiple reasons why saving network power is increasingly becom-
ing more important in modern data centers [13]. Larger data centers and new
networking technologies will require more network switches, as well as switches
with higher capacities, which in turn will consume more power. In addition,
rapid advances in server consolidation are improving server power savings, and
hence, network power is becoming a significant fraction of the total data center
power. Also, server consolidation results in more idle servers and networking de-
vices, providing more opportunity for turning off these devices. Finally, turning
off switches results in less heat, thereby reducing the cooling costs.

In this context, this paper presents VMFlow: a framework for placement and
migration of VMs that takes into account both the network topology as well
as network traffic demands, to meet the objective of network power reduction
while satisfying as many network demands as possible. We make the following
contributions:



1. We formulate the VM placement and routing of traffic demands for reducing
network power as an optimization problem.

2. We show that a decision version of the problem is NP-complete, and present
a fast heuristic for the same.

3. We present the design of a simulator that implements this heuristic and
simulates its runs over a data center network with a CLOS topology.

4. We validate our heuristic and compare it to other known techniques through
extensive simulation. Our simulation uses real data center traces and the re-
sults demonstrate that, by applying an intelligent VM placement heuristic,
VMFlow can achieve 15-20% additional savings in network power while sat-
isfying 5-6 times more network demands as compared to recently proposed
techniques for saving network power.

5. We extend our technique to handle server consolidation.

The rest of this paper is organized as follows. We give an overview of related
research in Section 2. Section 3 presents the technical problem formulation. Sec-
tion 4 describes our greedy heuristic. We describe the design and implementa-
tion of our simulation framework and demonstrate the efficacy of our approach
through simulation experiments in Section 5. Section 6 extends our technique to
handle server consolidation. Finally, we conclude the paper in Section 7.

2 Background and Related Work

Data center network architectures. Conventional data centers are typically
organized in a multi-tiered network hierarchy [1]. Servers are organized in racks,
where each rack has a Top-of-Rack (ToR) switch. ToRs connect to one (or two,
for redundancy) aggregation switches. Aggregation switches connect to a few
core switches in the top-tier. Such a hierarchical design faces multiple problems
in scaling-up with number of servers, e..g, the network links in higher tiers be-
come progressively over-subscribed with increasing number of servers. Recently,
some new data center network architectures have been proposed to address these
issues [7, 8, 16].

VL2 [7] is one such recently proposed data center network architecture (Fig-
ure 1), where the aggregation and the core switches are connected using a CLOS
topology, i.e., the links between the two tiers form a complete bipartite graph.
Network traffic flows are load balanced across the aggregation and core tier using
Valiant Load Balancing (VLB), where the aggregation switch randomly chooses
a core switch to route a given flow. VL2 architecture provides higher bisection
bandwidth and more redundancy in the data center network.

Traffic-aware VM placement. VM placement has been extensively studied
for resource provisioning of servers in a data center, including reducing server
power usage [19]. Some recent papers have studied VM placement for optimizing
network traffic in data centers [12,15]. These approaches differ from VMFlow in
two important ways: (a) the techniques do not optimize for network power, and
(b) their solutions do not specify the routing paths for the network demands.
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Fig. 1. CLOS network topology

Network power optimiza-

tion. Most of the recent research on
data center energy efficiency has fo-
cused on reducing the two major com-
ponents of data center power usage:
servers and cooling [6, 9]. Recently,
some papers have focussed on reduc-
ing the power consumed by network-
ing elements (which we call, network
power) in a data center [9, 13, 17].
In the ElasticTree approach presented
in [9], a network power manager dy-
namically turns on or off the net-
work elements (switches and links),
and routes the flows over the active
network elements, based on the cur-
rent network traffic demands. In the
primary technique presented in Elas-
ticTree, called greedy bin-packing, ev-

ery demand is considered sequentially, and the demand is routed using the left-
most path that has sufficient capacity to route the demand. Here, a path is
considered to be on the left of another path if, at each switch layer of a struc-
tured data center topology, the switch on the first path is either to the left
or is identical to the switch on the second path. ElasticTree also proposes an
topology-aware approach that improves upon the computation time as compared
to greedy bin packing − however, it does not improve the network power in the
solution. The VMFlow framework that we present in this paper fundamentally
differs from ElasticTree [9] and from the work in [13, 17] because we exploit the
flexibility of VM placements that is available in the modern data centers. Also,
for a given demand, we jointly perform the VM placement and flow routing by
greedily selecting the VM placements as well as the routing paths that require
minimum additional network power.

3 Network-Aware VM Placement Problem

In this section we present the Network-Aware Virtual Machine Placement (NAVP)
Problem. Our problem formulation extends the ElasticTree formulation in [9].

Input. The data center network is composed of network switches and links
that connect the hosts (physical servers). The data center network topology is
modeled using a weighted directed graph G = (V, E), where V are the set of
vertices and the E ⊆ V × V is the set of directed edges. A link e = (u, v) has
capacity (maximum supported rate) of C(e). There are three types of vertices
in V : the switches, the hosts, and a special vertex vE . Vertex vE models the
external clients that communicate with the data center. The edges represent the
communication links between the switches, and between the switches and the



hosts. (We use edges and links interchangeably in this paper.) Let there be n
hosts H = {h1, . . . , hn}, and q switches W = {w1, . . . , wq}.

We consider a set of m Virtual Machines (VMs) M = {vm1, . . . , vmm}, where
m ≤ n, and at most one VM can be placed on a host (we consider the case of
multiple VMs per server in Section 6). The network traffic source or destination
is one of the m VMs or an external client. We model the traffic to and from any
external clients as traffic to and from vE , respectively. Let M ′ be M ∪ {vE}.
We are given a set of K demands (rates) among the nodes in M ′, where the jth

demand requires a rate of rj from source sj ∈ M ′ to destination dj ∈ M ′, and
is denoted by (sj , dj , rj).

When a switch wi or a link e is powered on, let P (wi) and P (e) denote
the power required to operate them, respectively. A VM placement is a (one-to-
one) mapping Π : M → H that specifies that the mapping of VM vmi to host
hΠ(vmi). In addition, we assume that in all VM placements, vE is mapped to
itself.

Constraints. We model the VM placement problem as a variant of the multi-
commodity flow problem [4]. A flow assignment specifies the amount of traffic
flow on every edge for every source-destination demand. We say that a flow
assignment on G satisfies a set of demands if the following three standard con-
straints holds for the flow assignment: edge capacity, flow conservation and de-
mand satisfaction. (Please see [14] for the detailed constraints.)

In addition, we consider another set of constraints that result from the power
requirements: (1) a link can be assigned a non-zero flow only if it is powered on,
and (2) a link can be powered on only if the switches that are the link’s end nodes
are powered on. Thus, the total (network) power required by a flow assignment
is the sum of the power required for powering on all links with non-zero flow
assignment, and the power required for powering on all switches that are end
nodes of some link that has a non-zero flow assignment.

Due to adverse effect of packet reordering on TCP throughput, it is unde-
sirable to split a traffic flow of a source-destination demand [11]. Therefore, the
NAVP problem requires that a demand must be satisfied using a network flow
that uses only one path in the network graph (unsplittable flow constraint).

The optimization problem. Given the above-mentioned K demands among
the nodes in M ′, we say that a given VM placement Π is feasible if there is a
flow assignment on G that satisfies the following K demands among the hosts:
the jth demands requires a rate of rj from source host Π(sj) to destination host
Π(dj). Then the Network-Aware VM Placement (NAVP) problem is stated as
follows: among all possible feasible VM placements, find a placement and an
associated flow assignment that has the minimum total power.

Problem Complexity: The following decision version of the NAVP problem
is NP-complete: given a constant B, does there exist a feasible VM placement
and an associated flow assignment that has total power less than or equal to B.
We show the NP-completeness by reduction from the bin packing problem [18].



Theorem 1. The decision version of the Network-Aware VM Placement (NAVP)
problem is NP-complete.

Please see [14] for the proof.

4 Heuristic Design

We now present a greedy heuristic for the NAVP problem. The algorithm con-
siders the demands one by one, and for each demand, the algorithm greedily
chooses a VM placement and a flow assignment (on a path) that needs mini-
mum increase in the total power of the network. We now describe the algorithm
in more details. (The pseudocode is presented in Figure 2.)

Primary variables. The algorithm maintains four primary variables: Won and
Eon which are the set of switches and edges that have been already powered on,
respectively, the set Hfree of hosts that have not yet been occupied by a VM,
and a function RC that gives the residual or free capacity of the edges. For each
VM v, we assume that initially the placement Π(v) is set to ⊥.

In each iteration of the main loop (in function VMFlow), the algorithm selects
a demand in the descending order of the demand rates, and tries to find a feasible
VM placement. If a feasible VM placement is found, then the primary variables
are updated accordingly; otherwise, the demand is skipped.

Residual graph. To find a feasible VM placement for a demand (sj , dj , rj),
the algorithm construct a residual graph Gres. The residual graph contains all
switches, and all hosts where VMs sj and dj can be possibly placed (sets Φ(sj)
and Φ(dj), respectively). Gres also contains every edge among these nodes that
have at least rj residual capacity. Therefore, in Gres, any path between two hosts
has enough capacity to route the demand.

The algorithm next focuses on finding VM placements for sj and dj such that
there is path between the VMs that requires minimum additional power. To that
end, the nodes and edges in the residual graph are assigned weights equal to the
amount of additional power required to power them on. Thus, the weight of a
switch v is set to 0 if it already powered on, and set to P (v), otherwise. Edges
are assigned weights in a similar manner. However, the weights of the hosts are
set to ∞ so that they cannot be used as an intermediate node in a routing path.
Next, the weight of a path in the residual graph (pathWt) is defined as the sum
of the weights of all intermediate edges and nodes on the path (and excludes the
weights of the end nodes of the path).

VM placement. In the residual graph Gres, the algorithm considers all possible
pairs of hosts for placing sj and dj (where the first element in the pair is from
Φ(sj) and the second element is from Φ(dj)). Among all such pairs of hosts, the
algorithm selects a pair of hosts that has a minimum weight path. (A minimum
weight path between the hosts is found using a variant of Dijkstra’s shortest path
algorithm whose description is omitted here due to lack of space.) The source
and the destination VMs for the demand (sj and dj) are placed at the selected



hosts, and the flow assignment is done along a minimum weight path. Note
that, sometimes Gres may be disconnected and each hosts may lie in a distinct
component of Gres. (For instance, this scenario can occur when the residual edge
capacities are such that no path can carry a flow of rate rj .) In this case, there is
no path between any pair of hosts, and the algorithm is unable to find a feasible
VM placement for this demand. Depending on the data center’s service level
objectives, the algorithm can either abort the placement algorithm, or continue
by considering subsequent demands.

1: Input: described in input part of Section 3

2: function Initialization
3: Won ← ∅; Eon ← ∅ {set of switches and edges currently powered on}
4: Hfree ← H {set of hosts currently not occupied by a VM}
5: ∀e ∈ E, RC(e) ← C(e) {current residual capacity of edge e}

6: function VMFlow
7: select a demand (sj , dj , rj) from the set of demands in the descending order of their rates

8: if Π(sj ) = ⊥ then Φ(sj)← Hfree else Φ(sj)← {Π(sj )}
9: if Π(dj) = ⊥ then Φ(dj)← Hfree else Φ(dj)← {Π(dj)}

10: Vres ← W ∪ Φ(sj) ∪ Φ(dj) {residual nodes}
11: Eres ← {(u, v) ∈ E : (RC(e) ≥ rj) ∧ (u, v ∈ Vres)} {residual edges}
12: Gres ← (Vres, Eres) {residual graph}
13: ∀v ∈ W , if v ∈ Won then WTres(v)← 0 else WTres(v)← P (v) {switch wt. in Gres}
14: ∀v ∈ Φ(sj) ∪ Φ(dj), WTres(v)← ∞ {host wt. in Gres}
15: ∀e ∈ Eres, if e ∈ Eon then WTres(e)← 0 else WTres(e)← P (e) {edge wt. in Gres}
16: minWt ← Min{pathWt(Gres , u, v) : (u ∈ Φ(sj)) ∧ (v ∈ Φ(dj)) ∧ (u 6= v)} {see Sec. 4}
17: if (minWt <∞) then {found a routing for this demand}
18: (Π(sj ), Π(dj)) ← any (u, v) s.t. (u ∈ Φ(sj)) ∧ (v ∈ Φ(dj)) ∧ (u 6= v) ∧

(pathWt(Gres, u, v) = minWt)
19: assign the minimum weight path P from Π(sj ) to Π(dj) to the flow for (sj , dj , rj)
20: for all switches v on path P , Won ← Won ∪ {v}
21: for all edges e on path P , Eon ← Eon ∪ {e}; RC(e) ← RC(e)− rj

22: Hfree ← Hfree \ {Π(sj ), Π(dj)}
23: else
24: skip demand (sj , dj , rj) {cannot find a VM placement for this demand}

Fig. 2. A greedy algorithm for NAVP

It is easy to see that each iteration selects a placement and flow routing
that require minimum increase in network power. Thus, although the heuristic
is sub-optimal, each iteration selects a locally optimal placement and routing.

Lemma 1. In each iteration, for a given traffic demand, the heuristic selects
source and destination VM placements and a flow routing that need minimum
increase in network power.

A practical simplification. We now present a simple observation to reduce
the computation time of our heuristic. We observe that in most conventional
and modern Data Center network architectures, multiple host are placed under
a Top-of-the-Rack (ToR) switch. Thus, for a given demand, if a source (or des-
tination) VM is placed on a host, then the parent ToR of the host needs to be
turned on (if the ToR is not already on) to route the demand. Therefore, for VM



placement, we first try to place both the source and destination VMs under the
same ToR. If such a placement is possible, then only the common parent ToR
needs to be turned on to route the demand. If no such ToR is available, then we
compute a minimum weight path between all possible pairs of ToRs (where path
weights include the end ToR weights), instead of computing minimum weight
paths between all possible pairs of hosts. This simplification significantly re-
duces the computation time because the number of ToRs is much lower than the
number of hosts.

5 Experimental Evaluation

We developed a simulator to evaluate the effectiveness of VMFlow algorithm. It
simulates a network topology with VMs, switches and links as a discrete event
simulation. Each server (also called host) is assumed to host at most one VM (the
case of multiple VMs per host is discussed in Section 6). VMs run applications
that generate network traffic to other VMs, and VMs can migrate from one node
to the other. Switches have predefined power curves − most of the power is static
power (i.e. power used to turn on the switch). At each time step, network traffic
generated by VMs (denoted by an entry in the input traffic matrix) is read and
the corresponding VMs are mapped to hosts as per the algorithm described in
Section 4. The corresponding route between the hosts is also calculated based on
the consumed network power, the network topology and available link capacities.
At each time step of the simulation, we compute the total power consumed by
the switches and the fraction of the total number of network demands that can
be satisfied. A new input traffic matrix (described below), that represents the
network traffic at that time stamp, is used at each time step of the simulation.

Network Topology: The simulator creates a network based on the given topol-
ogy. Our network topology consisted of 3 layers of switches: the top-of-the-rack
(ToR) switches which connect to a layer of aggregate switches which in turn
connect to the core switches. Each ToR has 20 servers connected to it. At most
one virtual machine (VM) can be mapped to a server (the case of multiple VMs
per server is discussed in Section 6). We assume a total of 1000 servers (and
VMs). There are 50 ToR switches, and each server connects to a ToR over a 1
Gbps link. Each ToR connects to two aggregate switches over 1 or 10 Gbps links.
We assume a CLOS topology between the aggregate and core switches similar to
VL2 [7] with 1 or 10 Gbps links as shown in Figure 1. All switches are assumed
to have a static power of 100 watts. This is because current networking devices
are not energy proportional and even completely idle switches (0% utilization)
consume 70-80% of their fully loaded power (100% utilization) [9].

Our simulator has a topology generator component that generates the re-
quired links between servers and ToRs, ToRs and aggregate switches, and aggre-
gate switches and core switches. It takes in as input the number of servers and
the static power values for each kind of switch. It then generates the number
of ToR switches (assuming 20 servers under 1 ToR) and the number of aggre-
gate and core switches using the formulae given in [7] for a CLOS topology.



For (d*d)/4 ToRs, the number of aggregate switches are d and the number of
core switches are d/2. For 1000 servers and 50 ToRs, this results in around 15
aggregate switches and around 8 core switches.

Input Data: To drive the simulator, we needed a traffic matrix (i.e. which VM
sends how much data to which VM). Such fine grained data is typically hard
to obtain from real data centers [5, 10] because of the required server level
instrumentation. We obtained data from a real data center with 17,000 VMs
with aggregate incoming and outgoing network traffic from each VM. The data
had snapshots of aggregate network traffic over 15 minute intervals spread over
a duration of 5 days. To understand the variance in the data, we compared the
discrete time differential (∆) with the standard deviation (σ) of the data. Data
that satisfied the following condition was considered constant: −σ/2 ≤ ∆ ≤
+σ/2. A histogram of percentage of data that was constant for all VMs is given
in Figure 3.
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It can be observed that most of the VMs have a very large percentage of
data that is constant and does not show much variance. A very large variance
can be bad for VMFlow, as it will mean too frequent VM migrations, whereas a
low variance means that migration frequency can be kept low.

Our first task was to calculate a traffic matrix out of this aggregate per VM
data. Given the huge data size, we chose data for a single day. Various methods
have been proposed in literature for calculating traffic matrices. We used the
simple gravity model [20] to calculate the traffic matrices for all 17,000 VMs
at each time stamp on the given day. Simple gravity model uses the following
equation to calculate the network traffic from one VM to another: Dij = (Dout

i ∗
Din

j )/(ΣkDin
k ). Here Dout

i is the total outgoing traffic at VM i, and Din
j is the

total incoming traffic at VM j. Although, existing literature [10] points out that
traffic matrices generated by simple gravity model tend to be too dense and those
generated by sparsity maximization algorithms tend to be too sparse than real
data center traffic matrices, simple gravity model is still widely used in literature
to generate traffic matrices for data centers [15].

After generating the traffic matrices for each time stamp for the entire data
center (17,000 VMs), we used the traffic matrices for the first 1000 VMs in order
to reduce the simulation time required. Since gravity model tends to distribute
all the traffic data observed over all the VMs in some proportion, it resulted in



a large number of very low network demands. In order to make these demands
significant, we used a scale-up factor of 50 for all the data (i.e. each entry in all
the input traffic matrices was multiplied by 50).

Simulation Results: The simulator compares VMFlow approach with the Elas-
ticTree’s greedy bin-packing approach proposed by Heller et. al [9] to save
network power. Recall that the ElasticTree’s bin-packing approach chooses the
leftmost path in a given layer that satisfies the network demand out of all the
possible paths in a deterministic left-to-right order. These paths are then used
to calculate the total network power at that time instance. For placing VMs for
the ElasticTree approach, we followed a strategy that placed the VMs on nodes
that had the same id as their VM id.

We assume that all the network power comprise of power for turning on the
switches, and the power required for turning on each network link (i.e., for ports
on the end switches of the link) is zero. We calculated the total power consumed
by the network and the proportion of network demands that were unsatisfied at a
given time stamp for both VMFlow and ElasticTree approaches. In the first set of
experiments, we simulated an oversubscribed network where the ToR-aggregate
switch links and aggregate-core switch links had 1 Gbps capacity. This resulted
in a 10:1 over subscription ratio in the ToR-aggregate switch link layer. The
results for the oversubscribed network are shown in Figure 4(a) and Figure 4(b),
respectively.

VMFlow outperforms the ElasticTree approach by a factor of around 15%
and the baseline (i.e., all switches on) by around 20% in terms of network power
at any given time instance. More importantly, one can see the effectiveness of
VMFlow in the percentage of network demands that remain unsatisfied. VMFlow
saves all the network power while satisfying 5-6 times more network demands as
compared to ElasticTree approach.
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Fig. 4. Comparison at different time steps in the simulation

Since the input data had very little variation over time, we conducted an
experiment to compare VMFlow with and without any migration after the first
placement was done using the VMFlow algorithm. In order to simulate no mi-
gration, VMFlow simulator calculated an optimal placement of VMs based on
the first input traffic matrix (representing the traffic for the first time stamp)



and only calculated the route at each subsequent time step. Figure 4(a) and
Figure 4(b) show the performance of VMFlow approach without any migration.
One can note that even with low variance input data, VMFlow with migration
outperforms VMFlow without migration slightly by a margin of 5% in terms
of power. Both the approaches perform roughly the same with respect to per-
centage of unsatisfied network demands. This indicates that migration frequency
has to be properly tuned keeping in mind the variance in network traffic. Each
VM migration has a cost associated with it that depends on the size of VM, its
current load, the nature of its workload and the Service Level Agreement (SLA)
associated with it. We are currently working on a placement framework that will
take into account this cost and the potential benefit a migration can achieve in
terms of network power and network demand satisfaction.
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Fig. 5. Comparison at various scale factors in the simulation

We also compared the effect of using various scale-up factors on the input
network traffic data. In this set of experiments we used a single input traffic
matrix (representing the traffic at the first time stamp) and simulated both
an oversubscribed network (ToR-aggregate and aggregate-core switch links have
1 Gbps capacity) and a network with no over subscription(ToR-aggregate and
aggregate-core switch links have 10 Gbps capacity). The results are shown in
Figure 5(a) and Figure 5(b). VMFlow outperforms the ElasticTree approach
consistently, both in terms of network power reduction as well as percentage un-
satisfied demands in the oversubscribed network (1G). However, in the no over
subscription case (10G) the performance difference between VMFlow and Elas-
ticTree is relatively lower. This is along expected lines, since VMFlow is expected
to outperform mainly in cases where the top network layers are oversubscribed.

6 Handling Server Consolidation

In the earlier sections, we have assumed that at most one VM can be mapped
to a host; i.e., the VM placement mapping Π is one-to-one. It is, however, easy
to modify our algorithm to handle the case when multiple VM are mapped to
a host, i.e., in case of server consolidation. In modern data centers, server con-
solidation is often employed to save both on the capital expenditure (e.g., by
consolidating several VMs onto a small number of powerful hosts), and opera-
tional expenditure (e..g, any unused host can be turned off to save power) [19].



Although the basic idea of server consolidation is simple, deciding which VMs
are co-located on a host is a complex exercise that depends on various factors
such as fault and performance isolations, and application SLA. Thus, a group
of VMs co-located during server consolidation may not be migrated to different
hosts during network power optimization. Nevertheless, a group of VMs mapped
to a single host can be migrated together to a different host, provided the new
host has enough resources for that group of VMs. We now describe, how our
greedy algorithm can be easily extended to handle server consolidation.

We assume that we have an initial server consolidation phase which maps
zero, one or more VMs to each host. A set of VMs that is mapped to the same
host during server consolidation is called a VMset. We make the following two
assumptions: (1) while placing VMs on the host, the only resource constraint we
need to satisfy is on the compute resource, and (2) a group of VMs consolidated
on a host are not separated (i.e., migrated to different hosts) during the net-
work power optimization phase. Now, our greedy algorithm requires two simple
modifications to handle server consolidation. First, instead of mapping a VM to
a host, the algorithm maps a VMset to a host, and the traffic demand between
two VMsets is the sum of the demands of individual VMs comprising the two
VMsets. Second, in each iteration for placing the source and destination VMset
of a traffic demand, the set of possible hosts (Φ(sj) and Φ(dj)) is defined as the
set of free hosts that have equal or more compute resources than the respective
VMsets. We omit details of these simple modifications from this paper.

We evaluated the performance of VMFlow in presence of server consolidation
using the same simulation framework described in Section 5. Typically server
consolidation is done based on the CPU and memory demands of the VMs and
the individual host CPU and memory capacities. Since we did not have access
to the CPU data for the 1000 VMs that were used in the earlier experiments,
we generated synthetic CPU demands that were normally distributed with a
given mean and standard deviation. We used the methodology given in [12], to
generate mean and standard deviation of the CPU demands. We assumed the
servers to be IBM HS22v blades [2], that go into a Bladecenter H chassis (each
chassis can host 14 blades). We simulated an oversubscribed network where the
server-TOR links, the ToR-aggregate switch links and aggregate-core switch links
had 1 Gbps capacity. We assumed 3 different configurations of HS22v blades and
created a VM packing scheme based on CPU demands using first fit decreasing
(FFD) bin-packing algorithm. Following 3 configurations of HS22v blades (with
increasing CPU capacity) were used in the simulation:

1. 1 Intel Xeon E5503 with 2 cores at 2.0 GHz - assuming a mean of 1.6 GHz
and std. dev of 0.6, 1000 VMs with normally distributed CPU demands
were packed into 612 servers (a packing ratio of 1.63 VMs per server). This
required a network with 44 TORs, 14 Aggregate and 7 Core switches.

2. 1 Intel Xeon X5570 with 4 cores at 2.93 GHz - assuming a mean of 2.34 Ghz
and std. dev of 0.93, 1000 VMs with normally distributed CPU demands
were packed into 265 servers (a packing ratio of 3.76 VMs per server). This
required a network with 19 TORs, 9 Aggregate and 5 Core switches.

3. 2 Intel Xeon X5570 with 4 cores at 2.93 GHz - assuming a mean of 2.34 Ghz
and std. dev of 0.93, 1000 VMs with normally distributed CPU demands



were packed into 119 servers (a packing ratio of 8.39 VMs per server). This
required a network with 9 TORs, 6 Aggregate and 3 Core switches.
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Fig. 6. Comparison at various scale factors and configurations in the server consolida-
tion scenario simulation

The input network traffic matrix was modified such that input and output
network demands for VMs that were packed together to create a VMset, were
added. VMsets resulting from the VM packing step were then used by the simula-
tor to compare VMFlow and Elastic tree at various network traffic scale factors.
Results for network power and percentage unsatisfied demands are shown in Fig-
ures 6(a) and 6(b),respectively. VMFlow continues to outperform Elastic tree
even in presence of server consolidation. While the network power savings are
consistently in the range of 13-20% at higher scale factors, the gains for percent-
age unsatisfied demands decrease (5x at 1.63 packing ratio, 3x at 3.76 packing
ratio, and 2x at 8.39 packing ratio) as more VMs are packed into a single server
and network traffic matrix becomes denser.

7 Future Work

This paper presented VMFlow, a framework for reducing power used by network
elements in data centers. VMFlow uses the flexibility provided by VM placement
and programmable flow-based routing, that are available in modern data centers,
to reduce network power while satisfying a large fraction of the network traffic
demands. We formulated the Network-Aware VM Placement as an optimization
problem, proved that it is NP-Complete, and proposed a greedy heuristic for
the problem. Our technique showed reasonable improvement (15-20%) in net-
work power and significant improvement (5-6 times) in the fraction of satisfied
demands as compared to previous network power optimization techniques.

Each VM migration in a data center has a cost associated with it. Similarly,
the benefits that can be achieved by a VM migration in terms of network power
reduction and meeting more network demands, depends on the variance in net-
work traffic over time. In future, we plan to work on a placement framework that
takes into account this cost and the potential benefit a migration can achieve in
terms of network power and network demand satisfaction. We also plan to apply
our technique to other network topologies and evaluate its benefits.
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