Machine Learning Approach for IP-Flow Record
Anomaly Detection

Cynthia Wagner, Jérome Francois, Radu State, and Thomas Engel

University of Luxembourg - SnT,
Campus Kircherg, L-1359 Luxembourg, Luxembourg
{cynthia.wagner, jerome.francois,
radu.state, thomas.engel}@uni.lu
http://www.securityandtrust.lu

Abstract. Faced to continuous arising new threats, the detection of
anomalies in current operational networks has become essential. Network
operators have to deal with huge data volumes for analysis purpose. To
counter this main issue, dealing with IP flow (also known as Netflow)
records is common in network management. However, still in modern
networks, Netflow records represent high volume of data. In this paper,
we present an approach for evaluating Netflow records by referring to a
method of temporal aggregation applied to Machine Learning techniques.
‘We present an approach that leverages support vector machines in order
to analyze large volumes of Netflow records. Our approach is using a
special kernel function, that takes into account both the contextual and
the quantitative information of Netflow records. We assess the viability
of our method by practical experimentation on data volumes provided
by a major internet service provider in Luxembourg.

Keywords: Netflow Monitoring, Kernel Functions, Machine Learning
Techniques, Intrusion Detection

1 Introduction

In today’s business areas, it is nearly impossible to imagine network architectures
without monitoring tools, and this for several reasons. Network monitoring has
become one of the most important tools in the detection of malicious or unusual
events of different genres, and gathering network traffic information is the main
requirement for taking appropriate countermeasures. A realistic assumption is
to say that nearly all commercially available routers can export monitored data,
called Netflow records. These IP flow records, chronologically ordered ranges of
packet sequences, are the most important source for the analysis of unidentifiable
events, even if a lot of storage capacity and processing time is needed for an
accurate analysis.

In this paper, we present a new method for processing Netflow records by
referring to Machine Learning techniques. In a first step, we have developed a
new kernel function that operates over Netflow records by analyzing its contex-
tual and quantitative information. For the detection of IP flow record anomalies,

2 Cynthia Wagner, Jérome Francois, Radu State, Thomas Engel

kernel functions have proven their usefulness, but to achieve good classification
results, we apply in a second step, our kernel function to Support Vector Ma-
chines.

The structure of the paper is as follows: In section 2, we present the archi-
tecture of the model. We briefly present fundamental background information
and present the anomaly detection part of the tool where we describe its main
components. The more we describe the kernel function that has been used for
the evaluation of Netflow records. In section 3 we describe the data set and the
different attacks, used for the experiments and in section 4 we present our eval-
uation methods and discusses experimental results. Section 5 discusses related
work and conclusions are given in section 6.

2 The Architecture of the Anomaly Detector

In the following section, we present the architecture of our model. The Netflow
records, which are exported by the routers from the network to the Netflow
collector module are used as input for our Anomaly Detector tool, represented in
Figure 1. A Netflow record is a series of packets sent between two entities (hosts)
in a chronological order. A Netflow record is composed of a source and destination
IP-address, source and destination port numbers, traffic volume, packets and
protocol for a session between the previous two endpoints. An argument for using
Netflow records is, that they include all relevant network traffic information in
a compressed version. It is composed of different modules, which are responsible
for the pre-processing, evaluation and interpretation of the results, which means
to answer the question, is there an attack or not.

Outliers

{"An'om'a|y"detect0r' s ’.......(.unsuper.vjsed.).» ¢
== & T Netflow > } @ = Q*.
Routers Exports (" Time window ocsvMm Detection| *
i% J (3 split Training Modul :
g - ¢ A Anomalies
('\._// : Decision]
i Function| :
Netflow
H Kernel T
Collector : | Kernel function yajues (supervised)

3 computation

Fig. 1. Anomaly detector architecture

Detecting anomalies is related to classifying data in two different classes:
benign and anomalies. Regarding the current context, the range of anomalies
is very huge including Spam, Denial of Service (DoS), Scanning, Botnets, etc.
Therefore, the anomaly class should regroup many different kinds of data points
and so usual classifiers are not well fitted. For this purpose, multi-class classifier
are potential solutions, but their main drawback is the necessity to have labeled

Machine Learning Approach for IP-Flow Record Anomaly Detection 3

samples for each class of anomaly you expect to detect. It also means that a
system based on such classifier is unable to detect new anomalies which is usually
the kind in the current networks and Internet. Therefore, we have decided to use
a very specific kind of algorithm which is called one-class classification. The aim
is to build a classifier that is able to detect new anomalies, i.e. data points which
do not follow a general traffic profile which is used for training the classifier.
More precisely, we consider Support Vector Machine (SVM) which provide
good accuracy with a low complexity in many domains [22]. Besides, there is
a specific one-class method which was initially proposed in [15]. This specific
method has also proven its accuracy for intrusion detection in different contexts
such as the system calls on a UNIX system. We propose to use OCSVM (One-
class SVM) [23] for analyzing Netflow records based on a new kernel function.

2.1 OCSVM

In OCSVM, the main requirement is to have a dataset of samples assumed to
represent the single class of data points. This set is denoted X. The general way
to define the problem is the following one: assuming that the points from an
original space S follow an underlying probability P, the goal is to define a subset
space of this original space S such that the probability that a point from P lies
outside S is maximized by a given value between 0 and 1 [15]. This means that
during the learning phase, the goal is to determine a function which is positive
when applied to a point from S and negative otherwise. Therefore, during the
testing phase, the sign of this function indicates if the point is classified to the
single class or not.

Assume, a labeled sample X = {z1,...,2,}, the objective is to capture a
small region enclosing these points by projecting them into a higher dimensional
space, such that a better separation between a defined proportion of X and the
origin, is obtained. The goal is to find a hyperplane with maximum margin, i.e.,
by maximizing its distance from the origin. The projection is performed thanks
to the function ¢(z) and the proportion of points to separate is defined by 1 —v
with v € [0,1]. This problem is usually defined as follows:

n

. 1 1
Mt 6,5 012 + == S (6~) (1)
i=1
subject to:
<w.g(z:)) >= p—&,6 =0 (2)

The optimization problem has to be solved to identify two variables: w and p. §;
variables represent slack variables for allowing some points of S to not be located
on the right side of the hyperplane. This avoids to bias the problem with very
particular and maybe erroneous points. Since defining a projection function is
not obvious, support vector methods traditionally rely on kernel functions. From
a general point of view, they can be considered as similarity measure which have
to be finitely positive semi-definite functions. The kernel function K(x;,x;) is

4 Cynthia Wagner, Jérome Francois, Radu State, Thomas Engel

equal to < ¢(z;),d(x;) >. Based on this function and by transforming the
problem into its dual form, we obtain:

‘ 1
Mifa;..n 7 Z a0 K (x4, 25) (3)
1,j=1
subject to:
1 n
OﬁaiSE,;aizl (4)
i—

Once this optimization problem is resolved, the decision function is defined by:
f(z) = 89”(2 ;K (zi,z) — p) (5)
i=1

Therefore, this function is applied to each data point to test and if the sign is
positive, it means that the point belongs to the class otherwise it is an anomaly.
Obviously, many details were omitted due to space limits: the interested readers
should refer to [15,22]. In fact, the main parameter v represents the maximal
proportion of points of X lying on the wrong size of the hyperplane.

2.2 Unsupervised Classification

OCSVM is usually used in a supervised manner as described in the previous
section. However, the training can identify outliers thanks to the slack variables
&;. Therefore, only by applying this step to an entire dataset, detecting outliers
and anomalies is possible. In this case, the parameter v defines the maximum
number of potential anomalies. Thus, it can be regarded as a threshold in a
standard method for detecting a deviation from a profile. The main difference
is that OCSVM benefit from a better detection, based on a better separation of
data points in the high dimensional space.

Thus, we investigate both supervised and unsupervised method in this paper.
The main advantage of the supervised one is that it should be more accurate
due to the learning stage. Its main drawback is the need of sample data which
are free of anomalies while the normal traffic is well represented regarding the
different context that may happen. This completeness may be hard to obtain
and the unsupervised technique can counter this requirement.

2.3 The Kernel Function for Netflow Processing

Kernel functions have proved their potential in the classification of high dimen-
sional data. A kernel function calculus is homologous to a similarity measure for
small data portions, where a mapping of an input space onto a higher dimensional
space is performed as already explained in the previous sections. This makes it
possible to separate dissimilar data and to calculate the distances, which are de-
rived from a dot product, in this new space. We refer to Vapnik [18], who defines

Machine Learning Approach for IP-Flow Record Anomaly Detection 5

a kernel function K as a mapping of K : X x X € [0, 00| from an original input
space X to a similarity score K (z,y) = >, ¢i(x)di(y) = ¢(x) - #(y), where ¢;(x)
describes a feature function over a data snippet . A general property of a kernel
function is symmetry, such that [K(z,y) = K(y,)] and positive-definitness.
For analyzing monitored windows of Netflow records, we have introduced a
new kernel function K (W7, W5), which enables to determine the similarity be-
tween two windows of IP flow records W7 and W5 of n seconds, in order to detect
anomalies. An illustrating example of input Netflow windows are shown in Fig-
ure 2. As input space we use the Netflow records log files and define two metrics
for our kernel function, provided by these flow log files. The first parameter in
our kernel function are the IP-addresses from the source (src) and destination
(dst) in CIDR! format, such that IP = (prefiz, suf fizlength). While com-
paring IP-addresses, we consider the prefiz as the longest common sequence
of two IP-addresses and the remaining bits as the suf fizlength. As second pa-
rameter we have the quantitative factor of the captured Netflow records, which
uses the traffic volume, called vol in Bytes. By this, we can model a Netflow
record window for our kernel function as a set of IP flows W = {f1,..., f,} and
a IP flow f defined as a f; =(prefiz(src);, suf fixlength(src);, prefiz(dst);,
suf fizlength(dst);,vol;). Our kernel function for Netflow windows K (W7, W3)

Window Wi:

2009-11-27 15:51:25.429 394 UDP 144.143.128.59:49696 -> 97.254.137.52:37 1251 6.2M 1
2009-11-27 15:51:25.429 382 TCP 138.146.45.74:80 -> 97.254.27.34:3269 1288 815286 1
2009-11-27 15:51:25.430 465 TCP 138.146.47.199:80 -> 97.254.55.41:1272 8484 7.8M 1
2009-11-27 15:51:25.493 3912 TCP 129.24.215.204:443 -> 97.254.152.136:137 5354 7.6 M 1
2009-11-27 15:51:25.756 591 UDP 228.204.72.205:3074 -> 97.254.39.234:30 5173 14M 1

. K(W,, W,) =A
Window W,:
2009-11-27 16:02:35.930 164 UDP 97.254.121.229:53519 ->49.99.64.201:53 151 86 1
2009-11-27 16:02:35.930 451 UDP 97.254.121.229:27287 -> 156.235.5.205:53 1254 97 1
2009-11-27 16:02:35.930 210 UDP 43.238.167.231:53 ->97.254.121.229:3648 112 149 1

2009-11-27 16:02:35.930 471 UDP 97.254.131.134:1025 -> 193.163.187.106:2502 166 58 1
2009-11-27 16:02:35.930 123 UDP 41.181.239.254:9124 ->43.165.96.1:53 111 76 1

Fig. 2. Principle of kernel function and example of Netflow windows

returns as output a similarity score given by the sum over four functions over
all flows in a window, considering source and destination information as well as
traffic volume and is composed of, a similarity function s(a;,b;) € [0, co[for the
source and destination information and a matching function v(a;,b;) € [0, 1] for

! CIDR — Classless InterDomain Routing: A standard system for the IP-address
allocation and IP packet routing, where IP addresses are described by a network
address part and a host identifier part within that network

6 Cynthia Wagner, Jérome Francois, Radu State, Thomas Engel

the traffic information. A higher similarity score means the more similar two
windows are. Our kernel function K for two windows Wy and W5 is defined as

K(Wl,W2> = Z ssrc(ai,bj) X vsm(ai,bj) X sdst(ai,bj) X vdst(ai,bj)
i€Nw, ,j€Nw,

(6)
where the windows of flows denoted by W; and Wj are represented by Ny,
and Nyw,. We define the similarity measure parts for source and destination,
Serc(@i, bj), Sast(ai, bj) between flows a; and b; by

gsuf fizlength;

osuffialength; if prefiz; prefix of prefixj

Ssrc,dst(@ia b]) = gsuffizlength; . .)
ST Fiatength; if prefiz; prefix of prefix;

0 otherwise

(7)

and the matching function for source and destination vgyc gst(ai, bj) by

2

| wol; Qvolj |) (8)
o is the width scaling factor for the Gaussian kernel [3] and can be estimated
on different ways, as for example by a grid search, where a range of values are
used to find the optimal values for the kernel. To identify anomalous events,
we use the different successive windows K (W, W, 1) which we compare to each
other. To illustrate the effectiveness of our kernel function without referring to

Usre,dst (aiv b]) = exp(p

9000
8000 UDP Flood attack B
7000 in W84 - W86

6000

5000

4000

» W;,4)/100

K(W
&

1SS
7
>

o MTnaad \
: E \

10 20 30 40 50 60 70 80 90 100 110

Netflow windows

Fig. 3. Visualizing an attack by using the kernel function

classification, we show on a real example in Figure 3 that the used kernel function
detects in this case a UDP flooding attack.

Machine Learning Approach for IP-Flow Record Anomaly Detection 7

3 Dataset

Anomaly detection is a quite challenging topic and evaluating new innovative
solutions is a hard task due to the lack of labeled datasets. There were some works
aiming at providing such datasets. A very well-known dataset is the Lincoln data
set? but it is quite out-dated now. A recent dataset is provided in [17] based on
Netflow records. However, this dataset is only limited in attacks since they use
a honeypot. Furthermore, this kind of architecture collects attack traces from
end-user point of view and not from the network point of view. The dataset

~Flame

—/Flow deleter
°FIovTv reader//g \%Flow merger—»./Flow writer
|

Flow generator—
A

|
| | "

(@
(e)

C)
4)L/S

Netflow records Attack model Netflow records

Fig. 4. Dataset generation

is generated by injecting synthetic attack traces into real traces using the tool
Flame [2]. This tool is based on Netflows and is well suited in our case. It takes
as input (flow reader) Netflow record files containing traces without malicious
activities and creates attacks by generating (flow generator) or deleting (flow
deleter) flow records based on attack models. The main idea is that attacks will
generate traffic but also affect normal traffic like DDoS. That is why there is
a need to merge these activities using the flow merger. Figure 4 highlights this
process. A key part of Flame are the attack models which have to be created for
the simulation of attacks.

We use as starting point a real dataset provided by a network operator from
Luxembourg and assume that it is free of malicious Netflow records. This as-
sumption is made based on a secondary semi-automated screening of the traffic,
where an ISP specific solution was used. The general characteristics of this data
set are provided in Table 1. Even if the duration of the data set is small, it is
sufficient for evaluating our scheme, since we have limited all attacks to last only
30 seconds. The Flame website also provides some attack models which were de-
rived from real observations. At first we used this described attack model and
later on, we extended it to create more stealthy attacks. Our data set contains
the following attacks:

— Nachi scan: the Nachi/Welchia worm was released in 2003. First, it tests
the reachability of hosts using ICMP scan which is considered in the attack

2 http://www.11l.mit.edu/mission/communications/ist/index.html

8

Cynthia Wagner, Jérome Francois, Radu State, Thomas Engel

Flow # 1,371,194
IP addresses # 128,781 (source), 125,723 (destination)
Duration 13min 31sec
Bytes # 7.5GB
Avg. bytes/flow 5492
Packets # 11.5M
Avg. packets/flow 8.36
UDP Flows # 983,511
TCP Flows # 375,132
ICMP Flows # 11,347
Other protocols Flows # 1204

Table 1. Data set statistics

model. One host of our original dataset sends single ICMP packets of 92 bytes
to destination IP addresses following several properties: a shift between 40
to 45 between two consecutive scans, a positive or negative shift of 400 every
200 scans and a shift between 45 to 110 every 800 flows. The inter-arrival
time of flows is generally around 2 milliseconds but there is a break of around
61 milliseconds after 5 scans.

Netbios scan: it is a traditional scan for finding vulnerabilities. The cor-
responding UDP flows contain a single packet to port 137 where the inter-
arrival time is generally between 60 and 70 milliseconds. The destination
hosts are scanned sequentially while keeping one IP address sometimes. Be-
sides, between 100 and 200 scans there is a shift in the destination IP address
between 60 and 70.

DDoS UDP flood: one host of our dataset receives UDP packets on various
ports and also sends from multiple IP addresses with various ports. The
attack operates by a burst of 40 flows. Then, there is a break between 60
and 120 milliseconds.

DDoS TCP flood: this denial of service attack is against web servers run-
ning on TCP port 80 with 3 packets and 128 bytes. There are bursts of 10
packets before a break between 60 and 120 milliseconds.

stealthy DDoS UDP flood: different to a normal UDP flood, we apply
here more randomness on flows characteristics (number of packets, size, du-
ration). The inter-arrival time can reach 1 second which represents a very
stealthy characteristic for a flooding attack. This attack is more generic in
order to improve the completeness of our tests.

DDoS UDP flood + traffic deletion: this is equivalent to the DDoS UDP
flood, but each additional flow originated by the victim has a probability of
0.2 to be deleted due to the victim overload.

Popup spam: this kind of spam is similar of sending undesired Windows
Messenger popups by using UDP port 1026 and 1027. Only one packet of 925
bytes is needed. The victims IP addresses do not highlight a regular pattern
because two consecutive IP addresses have a gap of 200 addresses. The inter-

Machine Learning Approach for IP-Flow Record Anomaly Detection 9

arrivaltime is generally lower than 1 millisecond except every 200 flows where
it is around 64 milliseconds and every 550 where it is 250 milliseconds.

— SSH scan + TCP flood: the goal of TCP scan is to probe an SSH server
by trying to log in. This is by far the most popular attack occuring in the
wild.Each flow contains between 1 and 4 packets. The inter-arrival time
oscillates between 1 to 50 milliseconds. The destination IP addresses are
scanned in a sequential way until 400 scans are executed approximately.
After, there is a shift between 200 to 400 IP addresses. In order to test our
approach in a real scenario, 5% of the attacks are considered successful and
the corresponding victims trigger a TCP flood attack.

4 Evaluation

In the following section we describe the experimental part of this work. We have
generated the data sets following the data set generation procedure, as shown
in Figure 4. Generated Netflow windows have a duration of 5 seconds each.
Then, we have applied our kernel function for the contextual and quantitative
evaluation of Netflow record windows. On the similarity values obtained by the
kernel function, the OCSVM has been applied in order to see, if our method
can detect the different attacks or not. For each data set, we have used for the
training phase about 20% of our Netflow record windows and for the testing
phase the remaining 80%. The outcomes for our different simulations can be
seen in Table 2.

Type of Attack Results

Accuracy|False Positive rate| True Negative rate

Nachi scan 0.896 0.004 0.996

Netbios scan 0.938 0.000 1.000

Popup Spam 0.915 0.023 0.97

SSh scan + TCP flood 0.917 0.011 0.989

DDoS UDP flood 0.915 0.022 0.978

DDoS TCP flood 0.907 0.033 0.967

stealthy DDoS UDP flood 0.938 0.000 1.000

DDoS UDP flood + traffic deletion| 0.934 0.000 1.000

Table 2. Classification results by using OCSVM

The results by using the OCSVM are very promising, we can see that we
have only a very low false positive rate and that we have an average accuracy
over all attack classes of around 92% for the classification results. To compare
our work with others, refer to the work of Yuan et al. [24] which used SVM for
classification of network traffic of different types having attacks like worms, scans,
etc. Yuan et al. achieved a similar classification accuracy (92,8%) as we did,

10 Cynthia Wagner, Jérome Francois, Radu State, Thomas Engel

which validates our approach, but there are no indications about the complexity
of their algorithms.

5 Related work

Network monitoring techniques as, for example the work by Bahl et al. [1], are
based on Netflow records or related data. One of the main interests of Netflow
records is not only their compactness, but they can be used without respecting
a complete TCP state machine and are available in most commercial available
routers. For example, Karpilovsky et al. [8] analyzed the IPv6 deployment by
referring to a Netflow analysis. A major drawback of using Netflow records is
storage capacity. Large amounts of Netflow records (30 000 flows/second) are
normal for ISP networks or networks with high link loads. In [16], the authors
have described the effect of Netflow capture on the accuracy analysis. To reduce
the aspect of storage or to perform near real time analysis, it is often referred
to Netflow sampling as described for example by C. Estan [5] or Paredes-Oliva
[13], but the challenge remains to identify good sampling rates. In the domain of
information security and intrusion detection, a lot of relevant work has already
been performed for evaluating and processing Netflow related data [10] [7], as
for example statistics on packet information.

A new observed trend is to refer to Machine Learning Techniques for evalu-
ating Netflows or IP flow related data, like Flow Mining [11], where main issue
relies on the selection of good parameters for achieving high quality. Another
aspect of using Machine Learning are the kernel methods, strong mathematical
tools, which have found their utility in the evaluation of large and complex data
sets. Kernel methods have already been introduced as a mathematical tool in
early 1900’s by Hilbert and were first introduced as part of Machine Learning
Techniques in the late 1990’s by Vapnik [18] and further developed in the early
2000’s by Scholkopf et al. [14]. In recent past, kernel functions found their ap-
plicability in most different various domains, i.e. Genetics [12], Bioinformatics
[19], Natural Language Processing [4], and can be applied to most different in-
put formats, as structured format, i.e. graphs, trees, or unstructured format, i.e.
texts.

A work that is similar to our work is the evaluation of temporal and spatial
IP-flow records by kernel methods presented by Wagner et al. in [20] and [21].
The main difference is that the authors in [20] [21] refer to spatial and temporal
aggregated IP-flows, using the Aguri [6] tool and apply a kernel function to
detect anomalies. By referring to the aggregation tool, it is only possible to get
a view from the source or destination side, but no global view of both sides.
Using Netflow record windows without aggregation, we can keep a global view
of the whole traffic information. Then, we go further and apply Support Vector
Machines in order to detect and classify benign traffic from attacks. Supervised
learning has become a common tool for evaluating large data sets on common
patterns, as for example by using Support Vector Machines (SVM) [14] [18].
SVMs have proven their utility in most different domains as in natural language

Machine Learning Approach for IP-Flow Record Anomaly Detection 11

processing [4] or bioinformatics [19]. Since a few years, SVMs are also used in
computer security, where they are used for intrusion detection [9] [25].

6 Conclusion

In this paper, we have presented a new approach for the evaluation of Netflow
records on most various attacks on a real data set obtained from a large ISP
in Luxembourg. For validating our approach, we have generated different types
of attacks by referring to the trace modification tool called Flame. Our contri-
bution first consists in the evaluation of Netflow records in their quantitative
and contextual context, where we have developed a new kernel function for cal-
culating the similarities between Netflow windows. Second, we have applied a
new SVM algorithm to our developed kernel function in order to detect different
attacks in data sets. We have implemented our tool in a distributed way by using
Hadoop?. The classification results are very promising, such that most attacks
can be identified.

Acknowledgments. This project has been supported by the SnT - Interdis-
ciplinary Centre for Security, Reliability and Trust. Furthermore, we want to
address our special thanks to RESTENA Luxembourg for their support.

References

1. Bahl, V., Chandra, R., Greenberg, A., Kandula, S., Maltz, D., Zhang, M.: Towards
highly reliable enterprise network services via inference of multi-level dependencies.
In: In SIGCOMM. pp. 13-24 (2007)

2. Brauckhoff, D., Wagner, A., May, M.: Flame: a flow-level anomaly modeling engine.
In: Proceedings of the conference on Cyber security experimentation and test.
USENIX Association (2008)

3. Burges, C.: A tutorial on support vector machines for pattern recognition. In: Data
Mining and Knowledge Discovery 2(2). pp. 121 — 167 (1998)

4. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in
Neural Information Processing Systems 14. pp. 625-632. MIT Press (2001)

5. Estan, C.: Building better netflow. In: In Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions (2004)

6. Kaizaki, R., Nakamura, O., Murai, J.: Characteristics of denial of service attacks
on internet using aguri. In: Information Networking, Lecture Notes in Computer
Science, vol. 2662, pp. 849-857. Springer Berlin / Heidelberg (2003)

7. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classi-
fication in the dark. In: ACM Conference on Applications, technologies, architec-
tures, and protocols for computer communications (SIGCOMM) (2005)

8. Karpilovsky, E.: Quantifying the extent of ipv6 deployment. In: Lecture Notes in
Computer Science, vol. 5448 (2009)

3 http://hadoop.apache.org/

12

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.

21.

22.

23.

24.

25.

Cynthia Wagner, Jérome Francois, Radu State, Thomas Engel

Khan, L., Awad, M., Thuraisingham, B.: A new intrusion detection system using
support vector machines and hierarchical clustering. The VLDB Journal 16(4),
507-521 (2007)

Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-
butions. In: ACM SIGCOMM’05 (2005)

Lee, W., Stolfo, S., Mok, K.: Mining in a data-flow environment: experience in net-
work intrusion detection. In: 5th International Conference on Knowledge Discovery
and Data Mining (1999)

Nguyen, H., Ohn, S., Chae, S., Song, D., Lee, I.: Optimizing weighted kernel func-
tion for support vector machine by genetic algorithm. In: Gelbukh, A., Reyes-
Garcia, C. (eds.) MICAI 2006: Advances in Artificial Intelligence, Lecture Notes
in Computer Science, vol. 4293, pp. 583-592. Springer Berlin / Heidelberg (2006)
Paredes-Oliva, I.: Portscan detection with sampled netflow. In: Lecture Notes in
Computer Science, vol. 5537 (2009)

Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2001)
Scholkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Es-
timating the support of a high-dimensional distribution. Neural Comput. 13, 1443—
1471 (July 2001)

Sommer, R.: Netflow: Information loss or win? In: In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurement (2002)

Sperotto, A., Sadre, R., van Vliet, D.F., Pras, A.: A labeled data set for flow-based
intrusion detection. In: IP Operations and Management (IPOM 2009). Springer
(October 2009)

Vapnik, V.: In: Statistical Learning Theory. Wiley (1998)

Vert, J.: A tree kernel to analyze phylogenetic profiles (2002)

Wagner, C., Wagener, G., State, R., Dulaunoy, A., Engel, T.: Game theory driven
monitoring of spatial-aggregated ip-flow records. 6th International Conference on
Network and services Management (2010)

Wagner, C., Wagener, G., State, R., Dulaunoy, A., Engel, T.: Peekkernelflows:
Peeking into ip flows. Tth International Workshop on Visualization for Cyber Se-
curity pp. 52-57 (2010)

Wang, L. (ed.): Support Vector Machines: Theory and Applications, Studies in
Fuzziness and Soft Computing, vol. 177. Springer (2005)

Wang, Y., Wong, J., Miner, A.: Anomaly intrusion detection using one class svm.
In: Information Assurance Workshop, 2004. Proceedings from the Fifth Annual
IEEE SMC. pp. 358 — 364 (june 2004)

Y., R., Li, Z., Guan, X., Xu, L.: An svm-based machine learning method for accu-
rate internet traffic classification. Information Systems Frontiers 12, 149-156 (April
2010)

Zhang, B.Y., Yin, J.P., Hao, J.B., Zhang, D.X., Wang, S.: Using support vector
machine to detect unknown computer viruses. International Journal of Computa-
tional Intelligence Research 2(1) (2006)

