
Defending Against Sybil Nodes in BitTorrent

Jung Ki So and Douglas S. Reeves

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA
{jkso,reeves}@ncsu.edu

Abstract. BitTorrent and its derivatives contribute a major portion of Internet
traffic due to their simple and scalable operation. However, the lack of secu-
rity mechanisms makes them vulnerable to attacks such as file piece pollution,
connection slot consumption, and bandwidth exhaustion. These effects are made
worse by the ability of attackers to manufacture new identities, or Sybil nodes, at
will. The net effect of Sybil nodes and weak security leads to inefficient BitTor-
rent operation, or collapse. In this paper, we present defenses against threats from
Sybil attackers in BitTorrent. A simple, direct reputation scheme called GOLF
fosters peer cooperation to exclude potential attackers. Locality filtering tenta-
tively identifies Sybil nodes based on patterns in IP addresses. Under the pro-
posed scheme, Sybil attackers may still continue malicious behaviors, but their
effect sharply decreases. Comparison to existing reputation models shows GOLF
effectively detects and blocks potential attackers, despite false accusation.

Keywords: BitTorrent; Sybil attacks; Reputation;

1 Introduction

Peer-to-Peer (P2P) systems account for a major portion of Internet traffic. The P2P
paradigm enables a wide range of applications to operate as scalable network services;
examples are file sharing, VoIP, and media streaming. The BitTorrent protocol [1], is one
of the most popular approaches to P2P file-sharing. This protocol encourages maximum
peer cooperation to distribute files. BitTorrent-like systems, such as Vuze (Azureus),
uTorrent, BitComet, Tribler, and PPLive, contributed more than 50% of all P2P traffic,
and roughly one third of all Internet traffic, in 2008/2009 [2].

P2P systems in general are quite robust to failures, and adapt readily to rapidly-
changing conditions. Unfortunately, systems based on BitTorrent may be vulnerable
to deliberate attacks by determined adversaries [3,4,5,6]. This is because BitTorrent
incorporates few security mechanisms, or mechanisms that are only partly effective.
For instance, although the BitTorrent protocol includes coarse-grained data integrity
checking (i.e., a SHA-1 hash image per piece), it is highly vulnerable to contamination
by fine-grained data pollution (uploading of fake blocks). Dhungel et al. [7] showed
that even one polluter in a channel can degrade a streaming service severely in PPLive
(i.e., a BitTorrent-like streaming application). As another example, attackers are able to
hinder a compliant peer from exchanging data with potential neighbors by fake control
messages [6]. In addition, attackers can exhaust legitimate peer’s upload bandwidth [8].

2 Jung Ki So and Douglas S. Reeves

Defending against attacks on P2P systems is made more difficult by the fact that
one attacker can generate a great number of false identities at little cost; this is known
as the Sybil attack [9]. The Sybil attack is a fundamental and pervasive problem in P2P
systems. Attackers can use these identities to avoid detection, and to avoid repercussions
for their malicious behavior. Since victims cannot differentiate Sybil attackers (Sybil
nodes) from legitimate peers, it is difficult for a peer to avoid the above-mentioned
attacks. Therefore, prevention or mitigation of Sybil attacks is key to making systems
such as BitTorrent more robust.

Sybil nodes can aggressively attempt to compromise the swarm, disseminate pol-
luted (corrupted) file pieces, and exhaust peer resources. To address these problems, we
propose a light-weight reputation scheme, called good leecher friends (GOLF), com-
bined with locality filtering. GOLF detects polluted file blocks through a light-weight,
fine-grained integrity check. Peers using GOLF share information with each other about
attackers. This information is weighted by their history of previous, mutually-successful
exchanges. By this means, peers can learn about and avoid attackers. Locality filtering
flags possible Sybil nodes, based on similarities in their IPv4 addresses. The BitTorrent
tracker maintains a locality filter that classifies participants. This filter is updated when
a peer joins or leaves the swarm, and is distributed to seeders by the tracker.

The primary aim of this paper is to mitigate the malicious impact from Sybil nodes
through peer cooperation, in a way that is lightweight, and easily integrated with Bit-
Torrent. As long as each peer cooperates with others, it can protect itself from attackers
by use of GOLF with locality filtering. The proposed scheme has been implemented,
and is shown to sharply reduce the impact of Sybil nodes. For example, the bandwidth
cost is reduced more than 10 times in the presence of Sybil nodes. Comparison to other
reputation schemes [10,11,12] shows GOLF effectively detects Sybil nodes, despite the
dissemination of false information from neighbors. GOLF is a decentralized approach,
and does not require a central authority for collection or dissemination of reputation
information. Finally, GOLF improves the detection of attackers in BitTorrent [11] by a
factor of 3 or greater.

2 Related Work

Douceur [9] introduced the Sybil attack in distributed systems. To exclude Sybil nodes,
a central authority can be a solution. A trusted third party (TTP) can issue certificates for
authorized participants, using public key or identity-based cryptography. This approach
has the standard drawbacks of a centralized infrastructure (overhead, lack of scalability
and reliability), as well as a requiring a sacrifice of anonymity. A system that charges
for IDs can mitigate (but not prevent) the Sybil attack. The drawback is that barriers to
entry discourage wide participation and cooperation.

Decentralized approaches, such as resource testing [13,14], trusted networks [15,16],
and reputation [17,18] are alternative defenses against the Sybil attack. Resource testing
based on the fact a Sybil node has a limited resource may bring about false positives in
a environment where nodes have heterogeneous capacities. Yu et al. [15] showed that
a trusted network (i.e., a social network) can mitigate the effects of Sybil nodes. Use
of a trusted network may however incur cold start problems (i.e. newcomer discrimina-

Defending Against Sybil Nodes in BitTorrent 3

tion), increase reliance on a separate infrastructure, and limit scalability. Sybilproof [17]
considers Sybil strategies, where a user is only concerned with increasing his own rep-
utation, and the impact of “badmouthing” (i.e., false accusations).

Piatek et al. [12] attempted to achieve persistent incentives across swarms in BitTor-
rent systems. Their one-hop reputation scheme uses public/private key pairs for identity,
which generates key management overhead and limits scalability and anonymity. Lian
et al. [19] evaluated private experience and shared history to achieve a balance of repu-
tation coverage and accuracy. Such schemes are vulnerable to whitewashing (a type of
Sybil attack) and collusion.

Rowaihy et al. [14] reduced Sybil attacks with an admission control scheme that
makes use of client puzzles and public key cryptography. Their scheme requires a
trusted third party, creates artificial barriers to entry, and has the overhead of construct-
ing a hierarchy. Sun et al. [20] investigated the effect of using Sybil nodes as a freeriding
strategy. MIS scheme [5] detects a fake block (pollution) attack in P2P streaming appli-
cations through the use of hash functions at the block level.

The blacklisting approach [21] excludes IP address ranges of the attackers. SafePeer
plugin, a blacklist approach, requires a delay of between 2 and 20 minutes to import
a database of blacklisted IP addresses [22]. This drawback has limited usage of the
SafePeer plugin. Also, it may mistakenly reject some benign peers in blacklisted IP
address ranges.

The rest of this paper describes a fully distributed scheme for dealing effectively
with content pollution and Sybil attacks. There is no penalty for newcomers (cold-
start problem), and no sacrifice of anonymity. There is no reliance on a public key
infrastructure, or on a trusted third party (other than the use of a tracker, which is a
standard part of the BitTorrent protocol). There is no startup delay. The scheme uses
direct reputation evidence based on bartering volume in a swarm, and the effects of bad-
mouthing and collusion are considered. Careful attention is given to the use of space-
and communication-efficient encoding of information.

3 Assumptions & Threat Models

3.1 Assumptions

We consider a basic BitTorrent system 1. We assume the tracker and the torrent website
provide correct information, and are available (methods of fail-over and redundancy
are known and used). There is no central authority or trusted third party for peer au-
thentication. Therefore, no peer can tell whether a peer identity has been faked, and all
participants are initially assumed to be legitimate (non-malicious). A seeder can adapt
different seeding algorithms to distribute file pieces to leechers. Each leecher follows
the rate-based tit-for-tat (TFT) unchoking and LRF piece selection schemes [11].

1 A BitTorrent system consists of a tracker, seeders, and leechers; this is collectively referred
to as a swarm. The tracker is both a bootstrap server, and a coordinator informing leechers of
potential neighbors. Each peer can be either a leecher or a seeder. A leecher has an incomplete
file and a seeder has the complete file. Leechers obtain file pieces from other peers. Upon
completion of file downloading, a leecher becomes a seeder. Readers are referred to [1] for
more details.

4 Jung Ki So and Douglas S. Reeves

We assume that malicious nodes can act individually, or together (in collusion with
one another). An individual node has limited resources but is able to generate fake iden-
tities. A determined adversary can create a large number of Sybil nodes and effectively
control them. We believe it is considerably easier to create effective Sybil nodes in lim-
ited address ranges. [21] showed that attackers are usually located in small network
ranges, and our measurement study supports this conclusion as well (in section 5.2).

Connection slot

Tracker

Swarm

Neighbor
dictionary
N

Seeder

Fig. 1. Overview of malicious behaviors from Sybil nodes.

3.2 Threat models

Leechers may experience the effects of malicious behavior by Sybil nodes during piece
exchange [4,7,6]. Malicious peers will cheat the seeder and the tracker [3]. Figure 1
shows Sybil nodes can annoy participants with the following attacks.

Connection slot attack (À): Sybil nodes can aggressively request TCP connec-
tions to consume limited connection slots. Once established, the Sybil node can send its
neighbors (seeders and leechers) fake control messages to maintain their interest. Al-
though the cost of the control messages sent to neighbors is trivial, the attack can make
it difficult for non-malicious peers to connect with other benign neighbors. The result
will be slow download times, and a decrease in cooperation.

Bandwidth attack (Á): Sybil nodes may attempt to greedily consume the upload
bandwidth of a seeder. In the event that Sybil nodes occupy most of the unchoke slots
of the seeder, benign leechers may be starved (unable to download file pieces from
the seeder). In addition, a Sybil node connecting with a benign peer may receive a
considerable portion of the upload bandwidth of that peer.

Fake block attack (Â): Sybil nodes may send fake blocks to neighbors, to waste
their download bandwidth and verification (computation) time. A Sybil node may ini-
tially appear to be complying with the TFT protocol. Due to the coarse-grained file piece
integrity mechanism (i.e., using hash values of file pieces), verification of fake blocks
consumes a non-trivial amount of download bandwidth, reassembly effort, and buffer
space, and the victim has to re-download the genuine pieces from other neighbors.

Swarm poisoning (Ã): Malicious nodes create fake (Sybil) IDs and attempt to
join a swarm. While the tracker may be trustworthy, it cannot discriminate whether a
joining peer is malicious without attack evidence. The tracker may therefore suggest
Sybil nodes as potential neighbors whenever it is requested to provide neighbor lists.

Defending Against Sybil Nodes in BitTorrent 5

4 GOLF scheme & Locality filtering

In this section, we present a simple reputation scheme, GOod Leecher Friends (GOLF),
with locality filtering. The ultimate aim is to mitigate malicious attacks from Sybil
nodes. Leechers cooperate with direct neighbors to combat Sybil nodes by GOLF. The
tracker and seeders reduce the impact of Sybil nodes through locality filtering. The
GOLF scheme enables a leecher to detect potential attackers by sharing its experiences
with direct neighbors. Locality filtering helps the tracker and seeders to discriminate
against Sybil nodes, using an efficient data structure for the purpose.

4.1 GOLF scheme

The goal of GOLF is diminishing the effect of attackers. GOLF relies upon cooperation
among leechers. To identify the possible Sybil nodes, each leecher uses a filter-based
detection mechanism. GOLF expands the local view of attackers to immediate neigh-
bors by exchanging information about past behavior. The local trust value is based on
previous TFT volume, and the detection of corrupted blocks.

GOLF protocol : GOLF is based on good interactions, or exchanges of legiti-
mate (non-corrupted) blocks between neighbors. If a neighbor interacts successfully
and properly, the leecher regards the neighbor as a “friend”. Otherwise, the leecher
records the neighbor’s ID and misbehavior in its attack history. The leecher will refuse
connection requests from previously-misbehaving peers. The leecher propagates infor-
mation about attackers to its direct neighbors, who can use that information in making
their own decisions. Consequently, the gossip between friends can exclude potential
attackers from connecting.

Block filter against fake block attack : Sybil attackers can directly impact leech-
ers by uploading corrupted blocks2. Checking data integrity using the SHA-1 signature
of a piece prevents leechers from accepting corrupted pieces, but at significant cost. For
instance, Sybil attackers may upload corrupted blocks of a piece, in return for being
unchoked (TFT). Other blocks may be uploaded from other peers. When the piece sig-
nature fails verification, the leecher will not know which peer(s) provided false blocks.

To tackle this problem, a block filter (BFilter) based on Bloom filtering [23] is
used. The block filter is a summary of all blocks in the shared file. Figure 2(a) shows
the creation steps for BFilter. The original seeder hashes each block in the file with
k hash functions, and marks the corresponding k bits in the filter. After processing all
blocks, the seeder adds this BFilter to the torrent metadata3. After obtaining the torrent
file, leechers do not need to download it again when they rejoin the swarm. Although
the size of BFilter in the torrent metadata depends on the number of blocks and the
expected rate of false positives, it is very small relative to the size of most files being
shared; detailed overhead costs are analyzed in 5.4. Additionally, unlike MIS scheme
through HMAC and server’s intervention [5], filter-based detection enables each leecher
to directly identify a real attacker (polluter).

2 In the BitTorrent protocol, each file piece (e.g., 256KB) is further divided into blocks (e.g.,
16KB per block) for exchange purposes.

3 The metadata contains information about a file name, its length, SHA-1, and tracker location.

6 Jung Ki So and Douglas S. Reeves

kH

1 0 1 0 1…
FilterB

File

1b 2b jb1b 2b jb… ……

First piece Last piece

(a) Block filter creation

…

Swarm

1 3 2 0 1…
Filter
L

k
H

n
P

l
P

(b) Locality filter update

Fig. 2. The original seeder creates BFilter with all blocks and the tracker updates LFilter with
swarm participants. In (a), each piece is divided into even-size blocks (b1, b2, . . ., bj). In (b), peer
Pn indicates a newcomer and peer Pl indicates a leaver.

Attacker detection using Block filter : GOLF uses BFilter to counter the fake
block attack. Upon obtaining BFilter, leechers can check block integrity. Verification
of a block involves repeating the hash functions and checking that the expected k bits
in the filter are set. Integrity checking can then be done on individual blocks, rather
than solely at the file piece level. Failure to be verified by the block filter indicates the
block is corrupted, while successful verification means that the entire piece must still
be downloaded and verified (via the SHA-1 hash). A leecher receiving a fake block,
or a corrupted file piece, can set a flag indicating this neighbor is unreliable (assumed
malicious). Each leecher independently maintains a history of attacks or misbehavior,
based on its own direct interactions with other peers. Naturally, each leecher will prefer
to cooperate with good leecher friends.

Countering false accusations : Sybil nodes may provide false information to their
neighbors concerning their experiences. This has to be considered in the choice of in-
formation to use in assessing potential attackers. A Sybil node may falsely accuse a
benign peer of malicious behavior. In order to reduce the effect of false accusations,
trust is first based on individual (private) experience.

Let Dt
i denote the total downloaded volume of genuine blocks from peer i through

rechoke period t4 and U t
i denote the total uploaded volume to peer i. A peer computes

the contribution value Ct
i of each of its directly-connected neighbors i as Dt

i

Ut
i+Dt

i
, where

0 ≤ Ct
i ≤ 1, at every rechoke interval. Note that symmetric exchange between neigh-

boring peers will result in contribution values of .5.

The bartering fraction of a neighbor i of a peer having N neighbors is simply
Dt

i∑N
j=1 Dt

j

. A peer computes the interaction value Iti of each of its neighbors i as the

product of its bartering fraction and contribution value, i.e., Iti =
Dt

i∑N
j=1 Dt

j

∗ Ct
i . The

interaction value can range from 0 (minimum interaction) to 1 (maximum interaction),
and represents the importance of a neighbor. A neighbor uploading only a small amount
of the total of received blocks, or downloading much more than uploading will have a
small interaction value.

4 In a normal TFT unchoking scheme, every rechoke period is 10 seconds.

Defending Against Sybil Nodes in BitTorrent 7

The trust value of a neighbor i, denoted as T t
i , is computed as T t

i =
It
i∑N

j=1 It
j

.

The trust values represent the opinion of a peer about the neighbors with which it has
directly bartered file pieces.

A peer will compute a suspicion value St
k for other peers k based on the history of

its direct interactions, and information reported by other peers. This value ranges from
0 (not suspected of being malicious) to 1 (known to be malicious). If a peer has directly
experienced an attack by neighbor i at rechoke period t, St′

i will be set to 1 for all t′ ≥ t.
Peers exchange their suspicion values with each other, and use this reputation infor-

mation to update their own suspicion values. A suspicion value reported by peer i about
peer j at rechoke period t is denoted as ∆t

i→j . Upon receiving this reported suspicion
value, a peer updates its own suspicion value St

j as

St
j = [

St−1
j × (t− 1) + T t

i ×∆t
i→j

t
]− T t

j (1)

The term inside the square brackets in equation 1 represents the average degree of sus-
picion for peer j, while T t

j reduces this according to the trust directly earned by j.
The suspicion value is calculated for neighbors and for peers for which ∆ values are
received.

A peer makes an independent judgement about other peers, based on the received
suspicion values, and stored trust values earned by successful interactions with its
neighbors. Since the number of neighbors decides possible bartering ranges for the
swarm, the threshold for the suspicion value is set as a fraction of the number of con-
nection slots. A high trust value based on direct experience diminishes the effect of other
peers’ prejudices against a neighbor. Each peer suspends the decision about whether to
suspect a neighbor (to reduce a hasty judgement) until the provider of suspicion in-
formation has correctly bartered at least some minimum number of pieces. A malicious
attacker will attempt to influence the suspicion value of a benign peer. False accusations
correspond to inaccurate high suspicion values. In the following section, the impact of
strategic Sybil nodes that attempt to compromise reputation information is considered.

4.2 Locality filtering

Locality filtering reduces network resource exhaustion and swarm poisoning through IP
address binning. In this approach, a bin represents peers who share the same IPv4 /24
IP address prefix (e.g., 10.9.8.6 and 10.9.8.7 share the same /24 prefix, while 10.9.8.6
and 10.9.5.6 do not). The tracker groups participants with the same IP /24 prefix us-
ing a locality filter (LFilter). Locality filtering helps a peer avoid Sybil nodes, thereby
preserving network resources for benign leechers.

Locality tracking by the tracker : The tracker is charged with monitoring mem-
bership / participation in the swarm. The LFilter is an implementation of a counting
Bloom filter [24]. As shown in Figure 2(b), the tracker maintains a LFilter that reflects
a snapshot of current participants. The set of participants can be (and usually is) fre-
quently changing; the tracker updates the LFilter whenever a peer joins or leaves. Each
peer reports its state to the tracker at regular intervals in the normal BitTorrent proto-
col. For example, when a newcomer joins, the tracker hashes its IP /24 prefix using

8 Jung Ki So and Douglas S. Reeves

k hash functions, and adds 1 to each resulting index value (counter). Conversely, if a
known peer leaves the swarm, the tracker decreases the corresponding k index values.
The tracker shares LFilter with seeders at regular intervals.

Locality tracking uses LFilter to select neighbors in different IP /24 ranges. The
tracker provides the requestor with suggestions for neighbors until it has sent a suf-
ficient number. The tracker randomly selects candidate neighbors. The tracker checks
the /24 prefix of each candidate using the LFilter. If the number of peers in the swarm
having the same /24 address prefix exceeds a threshold parameter, and one peer in this
address range has already been suggested as a neighbor, the tracker will reject additional
neighbors in this same address range before sending suggestions to the requestor.

Locality seeding by a seeder : In order to alleviate network resource exhaustion
from Sybil nodes, a seeder uses LFilter for effective unchoke allocation. If Sybil nodes
take a majority of unchoke slots, benign leechers will potentially suffer data starvation.
Locality seeding is helpful in reducing the abnormal selection of Sybil nodes. Such
seeding operates similarly to locality tracking. Requesting peers are sorted by some
metric, such as download rate, random selection, or service priority. In this order, the
seeder checks the requesting peer’s IP /24 prefix against the LFilter. If the count for
this address prefix is less than a threshold value, the seeder will assign the next unchoke
slot to the requesting peer. Otherwise, the seeder will move on (in order) to the next
candidate.

5 Evaluation & Discussion

This section presents a trace measurement and the results of applying GOLF with local-
ity filtering. The goal is to understand the performance of the proposed scheme against
malicious behavior by Sybil nodes. The experimental setup is first described, followed
by the results, and discussion. In order not to impact a real BitTorrent swarm, we report
the the results of simulation, rather than mount attacks in actual networks.

5.1 Experimental setup

We developed a BitTorrent simulator that is a faithful implementation of the BitTorrent
protocol, with the ability to enable or disable GOLF and locality filtering. The sim-
ulator is event-driven, and includes events such as joins and leaves, bartering pieces,
unchoking (including optimistic unchoking), and exchange of piece messages. The nor-
mal BitTorrent TFT and LRF policies were implemented. Sybil actions such as sending
fake blocks, discarding received data from leechers, consuming seeders’ bandwidth,
and making false accusations were also implemented.

In the simulator, some fraction of the nodes were assumed to be Sybil nodes; the
exact fraction is described for each experiment. Peer addresses, except for Sybil nodes,
were for the most part located in different /24 address ranges. This assumption is con-
sistent with measurements described in 5.2. A random delay caused by the impact of
network topology was added when sending a piece to all peers [8]. According to [25],
the volume of the control messages in BitTorrent is negligible compared to piece mes-
sages. Thus, we do not reflect delays due to control messages. To reduce simulation

Defending Against Sybil Nodes in BitTorrent 9

complexity, the network was assumed to have no bottlenecks or transmission errors [8].
Each peer had an asymmetrical bandwidth capacity that reflects the ADSL standard
models [26]. Every peer had between 500Kbps and 1.3Mbps for an upload rate. The
original seeder had 5Mbps as its upload rate.

Locality tracking was implemented in the tracker module. The simulator included
three different seeding algorithms (i.e., bandwidth-first, random, and round-robin seed-
ing) for leecher selection. Results were similar for each, and only the evaluation results
for round-robin (RR) seeding are described in this section. The RR seeding algorithm
sorts leechers based on their service priority (i.e., leechers having received the least are
given the highest priority). This seeding algorithm combined with locality filtering is
denoted as CRR in the following.

The number of peers was limited to 1,000 nodes, based on a previous measurement
study [27]. Each simulation started with one seeder and one tracker. They served all
participants in the swarm throughout the simulation. Peers joined the swarm based on
an arrival process derived from a real BitTorrent trace log [28]. Once downloading
the entire file, a leecher became a seeder until it left the swarm. To explore malicious
attacks, the fraction of Sybil nodes was varied from 5% to 50%. File sizes were set
between 5 MB to 500 MB; results are shown only for smaller sizes (larger file sizes
yielded similar results). A simulation run finished when all benign peers completed the
file download. Each simulation was run 30 times to compute 95% confidence intervals.

5.2 Measurement study with RedHat9

We analyzed the distribution of IPv4 addresses of peers in a RedHat9 (1.77GB) trace [28].
The trace reflects downloads over a period of 5 months, and has all events from the
tracker of the torrent. The log contains report time, IP address, port number, peer ID,
upload and download size, and events. Results are presented for the distribution of IPv4
addresses during the first 5 days of flash crowd events, which are particularly challeng-
ing for file sharing systems.

Table 1. Number of peers per IP/24

of peers in IP/24 Day 1 Day 2 Day 3 Day 4 Day 5
1 13,306 96.2% 5,049 96.0% 3,451 97.0% 2,624 97.1% 2,230 97.4%
2 439 3.2% 184 3.4% 81 2.3% 60 2.2% 38 1.7%
3 46 0.3% 18 0.3% 11 0.3% 8 0.3% 1 0.0%
4 16 0.1% 3 0.1% 0 0.0% 3 0.1% 1 0.0%

≥ 5 31 0.2% 8 0.2% 13 0.4% 6 0.2% 19 0.8%

Table 1 shows the number of peers per /24 prefix. At least 96% of leechers were
in a /24 address range with no other leechers present. Address ranges with 4 or fewer
leechers present accounted for 99.2% of all leechers. Accordingly, in the following a
threshold parameter value of 5 was used to identify potential Sybil node address ranges.

10 Jung Ki So and Douglas S. Reeves

5.3 Experimental results

We present the results of simulating the proposed scheme against Sybil nodes, for both
peer and performance impacts.

Seeder impact : In the first experiment, the seeder was required to distribute 5MB
of content to all benign users. The total bandwidth required in order to achieve this
included bandwidth that was wasted on malicious (Sybil) nodes. Figure 3(a) shows the
total amount of data sent by the seeder for the Round Robin seeding policy. Performance
was measured with and without locality filtering. Locality filtering greatly reduces the
impact of Sybil nodes. The bandwidth consumed by Sybil nodes is decreased by a
factor of 10 or greater if the Sybil node percentage exceeds 10%. This is because the
filter helps the seeder allocate most unchoke slots to benign leechers, not Sybil nodes.

Benign user impact : The second experiment evaluated the average number of
downloaded fake blocks per leecher, in a swarm sharing a file of size 100MB. Fig-
ure 3(b) shows the results. In RR seeding (without locality filtering), each leecher
experienced an exponential increase for the average download rate of fake blocks, as
the Sybil node fraction increased. However, the proposed scheme (locality filtering +
GOLF) decreased the downloading of fake blocks to almost zero. This is because each
leecher discriminates against direct and reported attackers using GOLF.

Completion time : The next experiment investigated the average completion time
for benign leechers to download the entire file, for a file of size 100 MB. The results
are shown in Figure 3(c). BitTorrent without locality filtering showed exponential in-
creases as the percent of Sybil nodes increased. This is because Sybil nodes occupy
unchoke slots of benign peers, reducing the opportunities for benign peers to exchange
file pieces with one another. In contrast, the use of locality filtering resulted in near
constant download completion times, regardless of the fraction of Sybil nodes.

Collusion effect : Another experiment investigated the impact of collusion among
attackers. In this scenario, Sybil nodes were distributed among multiple IP /24 prefixes.
The number of distinct prefixes is referred to here as the number of colluders, and was
varied. The percentage of Sybil nodes was also varied.

The occurrence of collusion had little impact on the download completion time
of benign users, and as such, is not shown. The seeder, however, was affected by the
number of colluders. Figure 3(d) shows these results. The upload bandwidth (“total size
of data” in the figure) of the seeder increased exponentially as a function of the percent
of Sybil nodes without the use of locality filtering. Collusion also affected BitTorrent
with locality filtering, until the number of Sybil nodes per /24 address range exceeded
the threshold parameter. Thereafter, locality filtering greatly reduced the waste of seeder
bandwidth (by a factor of 30 or greater for 50% Sybil nodes). An attacker who is able
to spread their Sybil nodes throughout the network will obviously have more impact,
but at a significantly higher cost of implementation and deployment.

Attacker detection coverage of GOLF scheme : BitTorrent with TFT is limited in
its view. GOLF is intended to disseminate knowledge of attackers slightly more widely,
but with limited overhead (no non-neighbor communication or global coordination re-
quired). In the next experiment, the effectiveness of GOLF in identifying Sybil nodes
was measured. The results are shown in Figure 3(e) as the probability of (correctly)
detecting attackers. Three cases are considered: (1) attackers are detected only by direct

Defending Against Sybil Nodes in BitTorrent 11

0 5 10 20 30 40 50
0

500

1000

1500

2000

2500

Percentage of Sybil nodes(%)

To
ta

l s
iz

e
of

 d
at

a
(M

B
) Leechers on RR

Sybils on RR
Leechers on CRR
Sybils on CRR

(a) Seeder impact

5 10 20 30 40 50
0

500

1000

1500

2000

2500

Percentage of Sybil nodes(%)

A
ve

ra
ge

 #
 o

f f
ak

e
bl

oc
ks

naive RR
GOLF on RR
GOLF on CRR

5 10 20 30 40 50
10

−1

10
0

10
1

10
2

(b) Leecher impact

0 5 10 20 30 40 50

1000

2000

3000

4000

5000

6000

7000

8000

9000

Percentage of Sybil nodes(%)

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

(s
ec

)

naive RR
GOLF on CRR

(c) Completion time

0 5 10 20 30 40 50
0

1

2

3

4
x 10

4

Percentage of Sybil nodes(%)

To
ta

l s
iz

e
of

 d
at

a
(M

B
) Leechers on naive RR

Sybil nodes on naive RR
10 Colluders on CRR
50 Colluders on CRR

(d) Collusion impact

5 10 20 30 40 50
10

20

30

40

50

60

70

80

90

Percentage of Sybil nodes(%)

A
ve

ra
ge

 d
et

ec
tio

n
co

ve
ra

ge
 (%

)

Direct interaction (TFT)
GOLF without liars
GOLF with 20% liars
One−hop GOLF without liars
One−hop GOLF with 20% liars

(e) Attacker coverage

5 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

Percentage of Sybil nodes(%)

Pe
rc

en
ta

ge
 (%

)

False positive on EigenTrust
False positives on GOLF
Attack detection on EigenTrust
Attacker detection on GOLF

(f) GOLF vs. EigenTrust

0 10 20 30 40 50
1300

1400

1500

1600

1700

1800

1900

2000

Percentage of liars (%)

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

(s
ec

)

No attack
GOLF on RR
GOLF on CRR

(g) Impact of false accusation

1 (99) 5 (95) 10 (90)
0

0.5

1

1.5

2

2.5
x 10

4

Percentage (%)

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

(s
ec

)

True negatives
False positives
False negatives

1 (99) 5 (95) 10 (90)
1300

1400

1500

(h) Effect of false positives

Fig. 3. Evaluation results. I-shaped lines indicate 95% confidence. From (a) to (f), x-axis indicates
Sybil nodes’ percentage. In (g), x-axis indicates liars’ percentage, where 20% Sybil nodes. In (h),
the fraction of nodes who were benign, and not suspected of being Sybil nodes (true negatives),
is varied from 99% to 95% to 90%. The fraction of nodes who were benign, but (incorrectly)
suspected of being Sybil nodes (false positives) and the fraction of nodes who were Sybil nodes,
but not suspected (false negatives) are varied from 1% to 5% to 10%. In (b) and (h), the inner
graph magnifies the result.

12 Jung Ki So and Douglas S. Reeves

experience (i.e. TFT) [11], (2) attackers are detected based by direct experience or by
information provided by immediate neighbors, or (3) attackers are detected based on
direct experience, information from immediate neighbors, and information from their
neighbors (i.e., one-hop neighbors) [12].

The use of information from immediate neighbors, weighted by their suspicious-
ness, results in a three-fold increase in the likelihood of detecting Sybil nodes, from
about 25% to over 75%. The use of information from one-hop neighbors provided ad-
ditional benefits in this experiment. On the contrary, one-hop GOLF incurs uncertainty
and complexity about one-hop neighbors’ trust. Liars (i.e., Sybil nodes falsely accuse
leechers) compromised peers’ attacker history. Some peers mistakenly rejected connec-
tion requests from benign peers. In this experiment, a maximum of 6.76% peers never
completed downloading the file because of false information.

Comparison to EigenTrust with false accusations : Generally, reputation sys-
tems are vulnerable to false information. Trust in EigenTrust [10] reflects global and
local updates. The global vector is liable to be compromised by badmouthing from ma-
licious attackers. Although a local trust value is high, a peer might mistakenly block
a connection request from a benign peer. Similarly, liars (Sybil nodes) can make false
accusations about other peers in the GOLF scheme.

The last experiment compared GOLF to EigenTrust with respect to detection rates
and false positive rates when there are false accusations. Figure 3(f) shows the prob-
ability of detecting Sybil nodes and falsely accusing benign peers, for a file of size
100MB. With false accusations, the false positive rate of GOLF is lower than Eigen-
Trust. The percentage of falsely rejected peers out of the total peers ranged from 1.5%
(for 5% Sybil nodes) to 16% (for 50% Sybil nodes). For attacker detection rate, Eigen-
Trust is better. To accomplish this, however, EigenTrust requires pre-trusted peers and
incurs much higher communication as well as computation overhead. By comparison,
GOLF uses a simple computation based on empirical piece interactions, in a distributed
manner.

5.4 Discussion

We discuss adversary reactions to GOLF, and the issue of false positives. After that, we
analyze the overhead for deploying GOLF with locality filtering.

Adversary Strategies against GOLF : Generally, reputation systems are vulnera-
ble to counter strategies. For example, Sybil nodes may be liars (make false accusations
about other peers), may be traitors (engage in productive exchanges before providing
false information about other peers), or may be whitewashers (in case of accusation,
leave and rejoin with a new identity). The effect of false accusations is mitigated by the
weighting by trust (inversely, suspiciousness).

Figure 3(g) shows the average completion time of benign users as a function of the
number of neighbors that lie, for a 100MB file. In this experiment, 20% of the nodes
are Sybil nodes. The completion time increases about 500 seconds compared to the no
attack case. This is because the reports of liars are reflected to benign neighbors and
are propagated to their friends. Adjusting the computation of trust to further reduce the
effects of liars and traitors remains as future work.

Defending Against Sybil Nodes in BitTorrent 13

False positives by locality seeding : False positives may occur because of the
innocent existence of benign peers in the same /24 address range as Sybil nodes. For
instance, a number of benign peers behind NATs may be falsely identified as a Sybil
node. They may experience very slow download speeds because of the discrimination
of locality seeding. In spite of the delay of getting initial currency (i.e., uploading 4 file
pieces), locality tracking can help the peers overcome seeder’s discrimination.

Figure 3(h) shows the effect of false positives by locality filtering. It compares to
the average completion times with the CRR model for a 100MB file, based on setting
detection categories of each peer by locality seeding. A benign node’s completion time
is not affected much, regardless of whether or not it is suspected. The false positives
(i.e., benign peers behind NATs) are delayed around two minutes on average.

Deployment overhead : To deploy the proposed scheme, additional costs are in-
curred. The size of BFilter depends on the file size, and the size of LFilter depends on
the number of participants. We propose the use of Bloom filters, which are well-known
space-efficient data structures that are easily updated. The computation overhead re-
quires multiple hash operations to compare the values. BFilter for a 2GB file requires
1MB of storage, and LFilter for 1,000 peers in the swarm requires 8KB of storage. Note
that the information sent to the seeder does not have to be the entire counting filter. To
reduce size overhead, the tracker can inform the seeder of locality violations using a
much smaller Bloom filter.

Communication overhead is due to the need to share BFilter, LFilter, and attacker
information. BFilter shared among peers can be included in the torrent file that is al-
ready downloaded at the first join time. LFilter can be updated, whenever each seeder
queries the tracker to harvest new neighbors. Attacker reports can also be combined
with existing control messages.

6 Conclusion

This paper proposes the GOLF scheme with locality filtering to mitigate Sybil at-
tacks in a BitTorrent system. GOLF uses cooperation between directly-connected peers
to spread information about suspected attackers. Each leecher learns of such suspi-
cions from neighbors with whom it exchanges file pieces. The input from neighbors
is weighted by their past beneficial behavior. Locality filtering helps a seeder evade
traffic exhaustion by Sybil nodes, and helps the tracker guide leechers to good neigh-
bors in the swarm. The overhead of locality filtering is mitigated by the use of Bloom
filters. Whereas Sybil nodes devastate the performance of the standard BitTorrent, the
proposed scheme effectively defends against the malicious behavior of Sybil nodes.
By virtue of GOLF with locality filtering, the expected download completion time for
non-malicious nodes is affected very little by the Sybil attack. The data that must be
uploaded by a seeder when Sybil nodes are present is reduced by a factor of 10 or
greater.

Acknowledgments. We thank the anonymous reviewers for their fruitful feedbacks.
This work was partly supported by the Secure Open Systems Initiative (SOSI) at North
Carolina State University.

14 Jung Ki So and Douglas S. Reeves

References

1. “The bittorrent protocol specification.” http://wiki.theory.org/BitTorrentSpecification
2. H. Schulze and K. Mochalski, “Ipoque. internet study 2008/2009.” http://www.ipoque.com/

study/ipoque-Internet-Study-08-09.pdf
3. M. A. Konrath, M. P. Barcellos, and R. B. Mansilha, “Attacking a swarm with a band of liars:

evaluating the impact of attacks on bittorrent,” in P2P Computing, 2007, pp. 37–44.
4. P. Dhungel, D. Wu, and K. W. Ross, “Measurement and mitigation of bittorrent leecher

attacks,” Computer Communication, vol. 32, no. 17, pp. 1852–1861, 2009.
5. Q. Wang, L. Vu, K. Nahrstedt, and H. Khurana, “Mis: malicious nodes identification scheme

in network-coding-based peer-to-peer streaming,” in INFOCOM’10, 2010, pp.296–300.
6. D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent is an auction: analyzing

and improving bittorrent’s incentives,” in SIGCOMM ’08, vol. 38, no. 4, pp. 243–254, 2008.
7. P. Dhungel, X. Hei, K. W. Ross, and N. Saxena, “The pollution attack in p2p live video

streaming: measurement results and defenses,” in P2P-TV ’07. NY, USA: ACM, 2007.
8. K. Shin, D. S. Reeves, and I. Rhee, “Treat-before-trick: Free-riding prevention for bittorrent-

like peer-to-peer networks,” in IPDPS ’09. pp.1–12, 2009.
9. J. R. Douceur, “The sybil attack,” in IPTPS ’01, 2002, pp.251–260.

10. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for reputa-
tion management in p2p networks,” in WWW ’03. 2003, pp. 640–651.

11. B. Cohen, “Incentives build robustness in bittorrent,” in P2PECON ’03, Berkeley, May 2003.
12. M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop reputations for peer to

peer file sharing workloads,” in NSDI’08. 2008, pp. 1–14.
13. J. Newsome, E. Shi, D. X. Song, and A. Perrig, “The sybil attack in sensor networks: analysis

& defenses,” in IPSN, 2004, pp. 259–268.
14. H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta, “Limiting sybil attacks in structured

p2p networks,” in INFOCOM ’07, 2007, pp. 2596–2600.
15. H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard: defending against sybil

attacks via social networks,” in SIGCOMM, 2006, pp. 267–278.
16. N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-resilient online content voting,” in

NSDI’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 15–28.
17. A. Cheng and E. Friedman, “Sybilproof reputation mechanisms,” in P2PECON ’05.
18. H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao, “Dsybil: Optimal sybil-resistance

for recommendation systems,” in IEEE Symposium on Security and Privacy, 2009, 283–298.
19. Q. Lian, Y. Peng, M. Yang, Z. Zhang, Y. Dai, and X. Li, “Robust incentives via multi-level

tit-for-tat: Research articles,” Concurr. Comput. : Pract. Exper., pp. 167–178, 2008.
20. J. Sun, A. Banerjee, and M. Faloutsos, “Multiple identities in bittorrent networks,” in NET-

WORKING’07, 2007, pp. 582–593.
21. J. Liang, N. Naoumov, and K. W. Ross, “Efficient blacklisting and pollution-level estimation

in p2p file-sharing systems,” in AINTEC, 2005, pp. 1–21.
22. “Safepeer.” http://wiki.vuze.com/w/SafePeer
23. A. Z. Broder and M. Mitzenmacher, “Survey: Network applications of bloom filters: A sur-

vey,” Internet Mathematics, vol. 1, no. 4, 2003.
24. F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An improved con-

struction for counting bloom filters,” in ESA’06. 2006, pp. 684–695.
25. A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke algorithms are

enough,” in IMC ’06. New York, NY, USA: ACM, 2006, pp. 203–216.
26. “Adsl.” http://en.wikipedia.org/wiki/Asymmetric digital subscriber line
27. A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing incentives in bit-

torrent systems,” in SIGMETRICS ’07. New York, NY, USA: ACM, 2007, pp. 301–312.
28. “Redhat 9 torrent tracker trace.” http://mikel.tlm.unavarra.es/∼mikel/bt pam2004/

