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Abstract. We study network loss tomography based on observing av-
erage loss rates over a set of paths forming a tree — a severely under-
determined linear problem for the unknown link loss probabilities. We
examine in detail the role of sparsity as a regularising principle, point-
ing out that the problem is technically distinct from others in the com-
pressed sensing literature. While sparsity has been applied in the context
of tomography, key questions regarding uniqueness and recovery remain
unanswered. Our work exploits the tree structure of path measurements
to derive sufficient conditions for sparse solutions to be unique and the
condition that ¢; minimization recovers the true underlying solution.
We present a fast single-pass linear algorithm for ¢; minimization and
prove that a minimum ¢; solution is both unique and sparsest for tree
topologies. By considering the placement of lossy links within trees, we
show that sparse solutions remain unique more often than is commonly
supposed. We prove similar results for a noisy version of the problem.

Keywords: network monitoring, network tomography, loss inference,
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1 Introduction

Network operators and end applications alike would like to localize abnormally
lossy links or loss hotspots, but how can this be achieved when internal access to
the network is limited? Consider a set of nodes instrumented as active probing
sources or receivers, generating flows of probes over a set of paths in the network
to measure loss. The intersections of these paths result in a set of relations for
mutual consistency of the measured path loss probabilities in terms of the con-
stituent link loss probabilities that one would like to recover. This is a network
tomography problem, defined over the measurement sub-network traversed by
the probes, which can be expressed as a linear system. This system is in general
severely under-determined: instead of a unique solution for the link loss rates,
an entire family of solutions is consistent with the observed path measurements.

One way to select a particular solution from the family, that is one regular-
ising principle, is sparsity: preferring the solution with the smallest number of
lossy links. Sparsity is in keeping with Occam’s razor which seeks the simplest
explanation to a given set of observations, and is a natural fit to the assumption



| Sparsity K “ Classical CS Results [ Tree Loss Tomography Results

Signal x R™ link loss vector RT"
m measurements | m < n, variable m=mn(l—-1/c)+0(1) , fixed
Matrix A m X n, ai; ~N(0,1/m) m X n binary matrix representing
the tree measurement topology
Uniqueness every 2K columns of A|Every branch node has at least 2
independent lossless incident links (K < m)
Efficient Recovery||m = O(Klog(n/k)), RIP|Every branch node has at least 1
conditions on A lossless child link (K < m)

Table 1. A comparison of problem statements and results for a typical CS problem
compared to loss tomography over a tree (with ¢ children under each node).

that hotspots are rare. It also sits well with an operational need to provide a
short list of potential hotspots worthy of closer attention. This paper examines
in detail the role of sparsity in network loss tomography in the important special
case of a tree-like measurement topology or measurement matriz A. Trees have
been considered in a few prior works treating sparsity in loss tomography (see
section 2), but mostly in an implicit sense, as a default special case of general
networks. In this paper we show that the structure of trees can be exploited
to allow an essentially complete picture to be obtained including conditions for
uniqueness of sparse solutions, the relationship of sparse to ¢; solutions, and the
condition that minimum ¢; recovers the true underlying solution.

Tree measurement topologies arise in several practical contexts — for instance
unicast path measurements between a web server and its clients form a tree. Thus
information on locations of hotspots could be used to direct clients to replica
servers or have the hotspots resolved in cooperation with the concerned ISP [1].
Moreover, since any general measurement infrastructure can be configured for
use as a tree, our results are relevant in practice. Furthermore, loss rates in-
ferred from multiple intersecting trees over the same infrastructure can also be
used to quickly obtain important partial information about general measurement
topologies/matrices. Exploiting tree solutions and insights to gain purchase on
the more general problem is a new direction and the subject of ongoing work.
An early result in this direction is Lemma 1 in section 4.3.

There are three main differences between our problem setting and that of
compressed sensing (CS), which has in recent years exploited sparsity for signal
recovery (see Table 1). First, network tomography deals with positive quantities
such as link loss probabilities and delays, whereas CS generally treats real valued
signals. Second, in CS one inquires after the nature of the measurement matrix
A, and its size (number of observations m) needed to recover a solution of given
sparsity K uniquely. In network tomography both the nature and size of A are
highly constrained by the availability of measurement nodes, and the lack of
control over the packet routing between them. In the case of a tree, adding a
new ‘measurement’ is non-trivial as it implies installing an active probe receiver
in a new location. Finally, the measurement matrices studied in CS are designed



to satisfy strong technical conditions such as the restricted isometry property
(RIP [2,3]). In contrast, for a tree the measurement matrix A is given rather
than designed, and has a specific dependence structure. Studying sparse solutions
over trees is quite different from ‘traditional CS’ approaches, however, the key
questions of interest are the same: hardness, uniqueness, and recovery.

Compared to prior CS work, our task is nontrivial in that we do not benefit
from properties such as RIP and must develop fresh techniques, but easier in
that the structure of trees is simple and powerful. As we see below, the net
result is that the tree context is more tractable, enabling detailed and complete
solutions with desirable properties. Our main contributions include:

Hardness (Complexity of computing a sparse solution): Recovering the
sparsest or min ¢y (pseudo) norm solution of under-determined systems is in
general NP-hard [4]. For a tree we show that the sparsest solution(s) may be
characterised precisely and found with a fast linear time algorithm.
Uniqueness (Conditions for sparsest solution to be unique): Provided
the number of lossy links at every internal/branch node with node degree g is
at most g — 2, the sparsest solution is unique. This result takes into account
the locations of loss within the tree, and shows that uniqueness may hold for
much higher values of sparsity K than the worst case analysis typically used
in CS would suggest. When solutions of a given sparsity are not unique, the
alternative solutions can be precisely localised and characterised.

Recovery (Conditions that min ¢; solution is the true solution): For
the general problem, the min ¢; norm solution does not always have the min £,
norm and need not even be unique. For the tree problem, we show that min ¢; so-
lution always has the min £y norm and is unique. Provided every internal /branch
node has at least one lossless child link, the min ¢; recovers the true underlying
solution. We define the ‘UpSparse’ algorithm, a fast single-pass linear-time al-
gorithm which outputs the min ¢; solution. For the general problem, the min ¢,
solution is recovered through a linear program (cubic complexity).

Since in practice only a finite number of probes can be sent, the measured
path loss probabilities can only be known approximately. We formulate and
study a ‘noisy’ version of the problem that addresses this key practical concern.
As before, we exploit the nature of the tree, and characterise the minimal norm
solutions and present fast algorithms to recover them. The noisy problem is
briefly discussed in section 4.4 with results in the technical report [5].

We begin by discussing related work in section 2. Section 3 presents the gen-
eral solution for the hotspot localisation problem in trees. Section 4 characterises
the sparse and min ¢; solutions and shows how to find them. Section 5 compares
our algorithms with CS optimization techniques. Section 6 presents experimental
results where we explore the relationship between the sparse and true solutions.

2 Related Work

Several problems [1,6-11], all related to inferring link parameters using either
unicast or multicast path measurements, have been studied under the purview



of Network Tomography. Whereas multicast measurements utilise observations
at the per-probe level, the unicast tomography problem works with average
observations of paths and reduces to an under-determined linear system in terms
of unknown link parameters. However the most common approach to solve an
underdetermined system, namely choosing the min ¢ norm solution, may not
be suitable when the link quantity is concentrated at particular locations. For
example, for loss inference, it tends to spread the loss over all links in the network.

More recent work borrows techniques of recovering sparse solutions to under-
determined linear systems from compressed sensing (CS) [2,3,12]. In CS, a fixed
but randomly generated (generally Gaussian) matrix A is used to ‘measure’ an
unknown signal Z as Y;x1 = Amxn Tnx1; M <K n so that z is underdetermined.
CS results show that a minimally sparse £ can be recovered with high probabil-
ity (i.e. for most A) using ¢; minimization [13]. As outlined above, network loss
tomography is quite different: y represents the path observations, £ the unknown
link parameters, and A, which determines which paths traverse each link, cannot
be chosen freely and has unknown properties in general.

Despite these differences, £; minimization has been used as a black box to
recover sparse solutions in tomography. In [9], Bayesian experimental design
is used to determine the set of paths to measure in a network and a variant
of ¢; minimization is used to infer link parameters. In [10], variance in path
measurements across multiple measurement intervals is used to identify a prior,
and an ¢; minimization formulation from [9] is used to find a sparse solution
close to it. In [1], path measurements between a server and its clients are used to
recover link loss rates by using sampling, Bayesian inference, and a variant of ¢;
minimization. None of these works provide insight into the nature of the sparse
or ¢1 solutions, how they interact, or their uniqueness, the central focii of our
work. In [6], locations of 'bad’ network links is inferred from path measurements
forming a tree. For this, each path is classified as ’good’ (0) or ’bad’ (1) and
the smallest set of bad tree links consistent with the binary path observations
is recovered. In section 6, we see that this two-step approach fails to recover the
true locations of hotspots more often than our approach that directly recovers
a minimally sparse link loss solution. In addition, we recover both the locations
and loss rates of lossy links. Given a measurement matrix, [14] uses expander
graphs [15] to determine conditions for recovering unique sparse solutions in
networks. However, for trees expander graphs do not bring any additional insight.

The work most closely related to our own is [16], which answers some of the
key questions for CS over graphs. The key difference is that we work with trees
instead of general networks. The simpler tree topology enables far greater insight
into the sparse and ¢, solutions, and allows explicit solutions and fast algorithms
to be defined. In [16] the authors determine the number of random measurements
over underlying network paths needed to uniquely recover sparse link solutions.
Random measurements however are difficult to justify in the tomography con-
text. Conversely, for a given measurement matrix they provide upper bounds
on the number of lossy links consistent with uniqueness of the sparsest solution.
These bounds are quite restrictive for trees. For example for any ternary tree,



irrespective of its size, the largest allowed number of lossy links is 2, and for a
binary tree the price of uniqueness guarantee is that only a single link may be
lossy. In section 6, we see that for a ternary tree with 25 links, even when 4 links
are lossy, the sparsest solution is still unique for 95% of feasible link loss vectors,
and the proportion grows with tree size. In section 4.3, we also show how the
recovery of a K-sparse vector relates to the degree of the measurement graph.

3 The Tree Hotspot Problem and Solution

In this section we describe how we model the loss process over a tree, and how
to formulate the resulting problem as a linear system. We then solve the system
formally, and make some preliminary observations.

Tree Model Let T = (V,L) denote the logical tree consisting of a set of
nodes V and links L. Let O € V denote the root node, R C V be the set of
leaf nodes, and I = V' \ {O U R} the set of internal nodes. A link is an ordered
pair (j,k) € {V x V} representing a logical link (one or more physical links)
from node j to node k. For each node except the root there is a unique node
j = f(k), the father of k, such that (j, k) € L. The set of children of a node k
is denoted by c(k), thus ¢(k) = {j € V : (j,k) € L}. All nodes have at least two
children, except the root (just one) and the leaves (none). The depth of a node
is the number of links in the (unique) path of ancestors leading to the root. By
level [ of a tree we mean the set of nodes of depth [, with the root being of depth
zero. We denote the height of the tree (the depth of the deepest leaves) by H.
The top link is the unique link adjacent to the root node.

For convenience, we refer to link (f(k), k) simply as link k, and similarly, we
also use I to refer to the set of internal links corresponding to the internal nodes,
R to refer to the leaf links as well as nodes, and so on. Let n denote the number
of links in the tree, m = |R| the number of leaves, and d = n — m the number
of internal links. From each leaf there is a unique path to the root, so m is also
the number of paths. Clearly n > m + 1. It is convenient to label nodes/links
as follows: First, the leaf nodes are labelled by k£ = 1,2...m from left to right.
Then beginning with the child of the root the counting continues in a preorder
traversal of the internal nodes of the tree (recursively: node, left subtree right
subtree). With this convention, the labels of leaf nodes can double as convenient
path labels. In other words, path j terminates at leaf node j, with paths labelled
as j =1,2...m from left to right. Examples are given in the figures.

The topology of tree is captured by the m X n measurement matrix A, where
the entry Aj;, = 1 if link & forms part of the path j, 0 otherwise. Row j of the
matrix gives the links in path j, and column k gives the paths that cross link k.
Modelling Link Loss The marginal probability of loss on link £ is given by
br € [0,1], and we denote the (n x 1) vector of loss probabilities over all links
by b. We assume stationarity so that b is constant. As in all prior work, spatial
independence is assumed, i.e., all link loss processes are mutually independent.
It follows that the path loss probability is easily expressed via the product of
the link passage probabilities: p; = 1 — Hk;Ajk:1(1 — by) where the product is



over the links on path j. We assume that we have access, through measurements
based on a large number of probes, to the exact path loss probability vector,
pP= [p17p27 s 7p7n]T~

3.1 System Solution

Define the addloss function as L(b) = —log(1 —b), b € [0,1). We write z, =
L(by) and y; = L(p;). Since L is a monotonically increasing function, mapping
[0,1) to [0,00), the link loss vector b is replaced by the equivalent link addloss
vector * = [x1,T,...,2,]7, and similarly p is replaced by ¥ = [y1,v2, ..., Ym]" -
The relation p; = 1 — Hk:Ajkzl(l — by) is now y; = Zk:Ajkzl xg, and the
relationship between path and link loss takes the linear form

The term ‘addloss’ is justified by the additive 100 11 ?
nature of link addloss, together with the fact A= [010] 11 4
that values of z;, and y; can still be interpreted 001} 10 /é

directly as loss for many purposes. In partic- 5 3

= [hlar]

ular 0 addloss implies zero loss. Since we use (@)

addloss exclusively in this paper, we will use 12

‘loss’ as a shorthand for addloss. o o
Consider the tree in figure 1 together with 1 2 3

its measurement matrix A, where the vertical

divider separates the m columns correspond- Fig- 1. A tree with 3 leaves (and

ing to receiver links £r = [21, 22, ..., Zm|" on paths) and 2 mtema_d links, Wlth its
. . measurement matrix A. Receiver
the left, from those of the internal links z; = . . .
T . links correspond to the identity
[®m+1s .- 2n]t on the right. The (m x m)

L ! - . matrix Ip,.
identity matrix I,,, in the left appears because

each leaf link belongs to just one path (and because of our link and path nam-
ing conventions). This is true in general for any tree, and we may partition any
measurement matrix into I,,, and the (m x d) matrix A; that shows how internal
links contribute to paths. We can now rewrite (1) as

y=Azr = [Im AI]{"’R} =xp+ A = z(xny) = [ZR] = {y — A :r]} (2)
T z z

It is clear that A has full rank m, as its column rank is clearly at least m
due to the embedded identity matrix, and row and column rank are equal. The
general solution will therefore have d = n — m free parameters. Since there are
also d internal links, it is convenient to select z; to span this space, in terms
of which a formal solution can be immediately written as above where the path
observation vector y appears as a parameter.

The choice of z; as the independent variables has the advantage of making
y appear in a simple way in the solution. For e.g., setting £ = 0, it is clear that
y = 0is the corresponding observation. Setting £; = 0, we see that y = x, which
also reveals that any set of (non-negative) observations is possible in general. We
call x; = 0,zr =y, the receiver solution.



Fig. 2. Example of ambiguity in the locations of lossy links (bold), each of loss z. In
each case, receiver vector y = [z, ..., x]T, but the no. of lossy links varies - 1, 3, and 8.

4 Regularizing the Solution using Sparsity

Equation (2) is a d-dimensional family of loss solutions all equally consistent
with a single observed y. From the point of view of an observer whose end
goal is to identify a unique set of candidate loss hotspots, this represents a
significant and problematic ambiguity. Our main regularising principle is that
of sparseness, i.e. minimizing the number K of lossy links which are consistent
with any observed y. A smaller number is preferred because it is more likely
under a priori assumption that loss is rare, and focusses attention on a smaller
number of candidate problem links, which has practical advantages. If in fact
solutions are sparse, i.e. given a bound on the sparsity K, we wish to determine
the conditions under which a sparsest solution is the unique solution consistent
with observed y.

Consider figure 2 which gives three (of several) possible solutions consistent
with the observations y = [z,...,2]T, z > 0. Figure 2(a) shows the solution
z; = [z,0,...,0],zzr = 0 where only the top link is lossy while figure 2(c) shows
the receiver solution &; = 0,xp = y. If sparsity K < 1, then 2(a) is the unique
sparsest solution consistent with y.

Finding the sparsest solution is equivalent to minimizing the ¢y (pseudo)
norm of z: K = [|zlo = Y1, |2:|° = ;..o 1. Results from CS have shown
that minimizing with respect to ¢; norm often identifies solutions with min £,
norm but at a lower computational cost. We therefore also explore ¢; below,
both in its own right, and as a secondary principle which can be used to further
reduce ambiguity. Whilst a priori information on the likely locations of lossy links
within the topology may be available in some contexts, this is not always so. In
this paper we treat the case where there is no such information, corresponding
informally to a uniform prior over all links.

4.1 Local Regularisation

It is useful to understand ambiguity in a local complex. This is a ‘building block’
consisting of an internal/branch node and its adjacent links. We will explore
it using the two level tree of figure 3(a), where link and path labels have been
dropped in favor of their loss values. The general solution corresponding to the



observed y is ¢’ = [y1 — 2, Y2 — @, ..., Ym — 7, 7|1, parameterised by x € [0, Ymin),
where ymin = min; y; is the smallest path loss. We examine sparsity in the local
complex as a function of the parameter = € [0, Ymin]-

Ymin = 0: the family collapses to a unique solution, z = 0.

Ymin > 0: 2 is not uniquely determined by y and we speak of an ambiguous
compler. At * = 0 the internal link is lossless and the child link losses are
maximized. We call this the downstate, and it has sparsity K = m. As x increases
over the range x € (0, ymin) loss is ‘pulled up’ equally and in parallel from each
child link to the internal link. In these mized states all links are lossy and sparsity
is K = m + 1, the largest possible. This upward transfer of loss ceases at the
upstate when r = ymin, where suddenly the loss on all mpy;, links sharing the
minimum value Y,y becomes zero, and K drops to K = m — mpyi, + 1.

To summarise, requiring sparsity excludes the mixed states, singling out the
downstate (x = 0) and upstate (£ = Ymin). If Ymin i nOt unique (Mpin > 1)
then the upstate solution is the unique sparsest solution. For example when
moving from figure 2(b) to figure 2(a), K drops locally around the top internal
node from 3 to 1 as the complex moves from the downstate to the upstate. If
instead mpyin, = 1, then both the upstate and downstate have sparsity K = m,
so ambiguity, though greatly reduced, remains.

If instead of sparsity we consider £; the conclusions are similar but ambiguity
vanishes. The ¢; norm of the local complex illustrated in figure 3(a) is given by
ll2'[lv = k=1 |7kl = 2075, yj —x(m—1). It is clearly minimized by setting z as
large as possible, namely ¥ = Yy, i.e. the upstate. Hence for the ¢; norm upstate
is always both optimal and unique, whereas for ¢ it is always optimal but not
always unique. A simple example with y = [2, 3, 4] is shown in Figure 3(b).

4.2 Global Regularisation

The local ambiguity above can occur centered on any internal node in the tree.
A natural question is whether global effects may resolve local ambiguities, or
alternatively result in new forms of global ambiguities. Consider the scenario of
figure 3(c) where the original sparsity is K. The lower complex is initially in a
downstate (left) with m,;, = 1 and the upper complex is in the upstate. After
the lower complex moves to the upstate, the sparsity remains at K (middle),
however the upper complex is no longer minimally sparse. Let x;, denote the
minimum loss of the child links in the upper complex after the move, and m/
its associated multiplicity. Since zp;, > 0 and m/ ;, = 2 > 1 sparsity can be
reduced to K +1—m/ ., = K — 1 by moving the upper complex to the upstate.
There are two important observations to make from the above example. First,
choosing the upstate always achieves minimal local sparsity. Second, choosing the
upstate locally may also enable sparser states to be found in complexes higher
in the tree. Together these motivate the following algorithm which defines a
global solution based on the systematic exploitation of local sparsity with a
preference for the upstate solution in case of local non-uniqueness. Recall that
local complexes are centered on internal nodes at levels [ =1,2... H — 1.
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Fig. 3. (a) Ambiguity at a local complex, which could be centered on any internal
node, illustrated by a simple tree. Links and paths are annotated with their loss values,
obeying the general solution parameterized by x. Loss can be moved up or down subject
to & € [0, Ymin]. (b) o and ¢1 norms of solutions shown for a 3-receiver complex with
observations y = [2, 3,4]. Loss can be moved up or down subject to z € [0, Ymin = 2].
Both downstate and upstate solutions at * = 0 and x = 2 have the equal sparsity
K = m = 3, but upstate achieves minimal ¢1. (¢) An example of the coupling of two
local complexes resulting in lower global ambiguity (link thickness proportion to loss,
dashed links lossless). Left: initial configuration: lower complex in downstate, upper in
upstate. Middle: system remains K-sparse when the lower complex changes state, but
upper complex is no longer minimally sparse. Right: moving the upper complex into
the upstate yields lower sparsity.

UpSparse Algorithm
Begin with an arbitrary feasible solution x. For all ambiguous local complexes at

the deepest level select the up sparse state. Move up to the next level and repeat.
Terminate at level 1.

Function UpSparse(z) Function PutInUpState(i,x)
% arbitrary initial solution x % Put node 7 in upstate

1: for { = H — 1 downto 1 do L« minjeqy{z;}

2 for all nodes i at level  do  2: x; < x; +6

3 x « PutInUpState(i,x) 3: for all nodes j € c(i) do

4:  end for 4 zj—z;—0

5: end for 5: end for

6: return x % UpSparse Solution 6: return x % Link 7 & children updated

We call the state of the loss vector tree after the application of the algorithm
the UpSparse solution. An example of initial solution is the receiver solution
z; = 0,zr = y. Reading figure 2 from right to left provides an example of the
algorithm in action. We now give its main properties. These are proved in [5].

UpSparse Properties

Let £* be the output of UpSparse with input z, then
Property 1. Each local complex in £* is in upstate (by construction).



Property 2. UpSparse uniqueness: For fixed y and any feasible input x, Up-
Sparse outputs the same *(y), defined Vi € V\{O} by:

x; = if f(i) = O, else x] =7 —v5), wherey; =min { yru) }  (3)

YR(;) denotes the observations in subtree rooted at node i.

Property 3. UpSparse solution has minimal £y and £1 norms: For any solution
z, [lz*[lo < [lz]lo and [lz*[[y < [|z[;.

Property 4. ||z*]|op < m = |R].

Property 5. min ¢; uniqueness: UpSparse solution * is the unique solution with
min #; norm.

Property 6. min /4y uniqueness: If each local complex in £* is uniquely sparse,
then £* is the unique sparsest solution, otherwise not.

Corollary: When the number of lossy links at internal node ¢ with degree g; is
at most g; — 2 Vi, then the sparsest solution is unique. This degree condition
ensures that no internal node can be moved from upstate without increasing
sparsity, and hence £* = UpSparse(z) = .

Property 7. min ¢, /UpSparse solution = true solution?: If there exists at least
one lossless child link at every internal node, UpSparse solution = true solution.

4.3 A sufficiency condition for non-uniqueness in graphs

Consider a measurement matrix A that defines a graph (instead of a tree) using
paths from an underlying general network. Each column vector in A corresponds
to a link in the graph. For any branch or internal node, let g™ (resp. g°“!)
denote its in-degree (resp. out-degree), that is the number of links covered by
its incoming (resp. outgoing) paths. Then:

Lemma 1 Let K > max{g", g°*'} for some branch node. Then there exists
a K-sparse non-negative vector x that is not the unique sparsest solution to
y(z) = Az. (The proof is given in [5])

Lemma 1 gives a worst case bound relating the degree of networks and their
amenability to sparse recovery. If networks have small degree, then sparsity min-
imization can fail even for small K if lossy links are concentrated at a branch
point. For a binary tree, the bound for non-uniqueness given by lemma 1 is
K > 2 since all branch nodes have ¢ = 1 and ¢°** = 2. However property 6
above shows that sparsity minimization will still succeed for a binary tree for
higher K provided the number of lossy links at each branch point is < 2.

4.4 The Noisy Problem

We briefly describe the noisy problem for completeness with details in [5]. The
model defined in section 3 is based on knowing the mean loss observed at each
receiver exactly. This assumption may fail in a number of ways, the most impor-
tant of which is that, in practice, loss is estimated based on a finite number of
observations, resulting in receivers seeing only an estimate ¥ of the true path loss
observation vector y. We model this by associating a confidence interval [yf, y]“]



for each receiver j with any y € [y*,y"] (i.e. Vj,y; € [yf, y¥]) an equally possible
observation vector. As before, we characterise the min ¢y, and min¢; solutions
locally and globally within the tree. We observe that, unlike the noiseless case,
the min¢; solution is no longer unique and need not always have the min £,
norm. We define UpSparse™, a fast single-pass algorithm, which retrieves the
min ¢, solution out of all solutions with min £,.

5 Comparisons with CS Algorithms

Noiseless Noisy

1 2
min —||y — Az||5 + Az 6
: . min [ly — Az||; + Mzl  (7)
min |[z|[, : Az =y,z; >0Vi (5) ¥
p min [ly — Azlly + Az — s (8)

‘We now compare UpSparse to other optimisation methods from CS, of higher
computational complexity, which can also find min £y/¢; solutions in trees.

In the noiseless case, the optimal sparsity optimisation problem is (4) which
is non-convex. In general such problems are NP-hard. In contrast, UpSparse pro-
vides a low cost single pass algorithm, which achieves global optimality through
only O(n) local operations, the number of links in the tree. In the ¢; case, the op-
timisation problem is (5) which is not only convex but a linear program. Known
as the basis pursuit formulation [13], it is used as a substitute for (4). Although
its solution is straightforward using linear programming, UpSparse offers a low
cost direct alternative which fully exploits the underlying tree topology.

The noisy problem has been tackled using the approaches (6-8). Eq.(6) is the
basis pursuit denoising formulation and the unconstrained Lasso [17] formula-
tion. Eq. (7) is used as an alternative to (6) as it is a linear program. It is used
in [9]. Eq. (8) is proposed in [9] and used in [10] to choose a solution close to
a prior p. Compared to these approaches which require the introduction of a
penalty term which is traded off with the ¢; norm (used to approach ;) as well
as a tradeoff parameter, UpSparse™ uses ¢y directly, supplemented by ¢; when
needed. A relevant special feature here of the tree problem is that any noisy
observation ¥y has a feasible solution (for e.g. the receiver solution). There is no
need for regularisation in the sense of finding the closest feasible solution to .

6 Experiments

Uniqueness of minfy and effectiveness of €1 recovery in trees: Figure 4(a) plots
different probabilities of interest as a function of sparsity K by exhaustively
looking at all (;) links in trees. These are shown using two ternary trees with
n = 13 (m = 9 leaves) and n = 25 (m = 17 leaves) links for 1 < K < m. The red
curves show the probability that the sparsest solution is unique. The blue curves
show the probability that the min¢; solution is the true underlying solution.
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Fig.4. Top to bottom: (a) Prob-
abilities of uniqueness and recov-
ery of true solutions. (b-d): Effect
of measurement noise for trees as
a function of K /n(sparsity /number
of links). Top curves show the suc-
cess rate ep and bottom curves show
relative error ez (b, ¢): Results for
UpSparse and UpSparse™’ solutions
respectively for a ternary tree with
n = 13 links, and (d): Results for
realistic trees from AT&T network.

Property 6 of section 4.2 gives the condition
for uniqueness of sparsest solution and 7 gives
the condition that min ¢; solution = true so-
lution. For K < 2, min/{, is guaranteed to
be unique since for all internal nodes, the
node degree g = 4 (3 children, 1 parent) and
K < g — 2 holds. For K > 2, the probabili-
ties gradually decay with increasing number
of lossy links. For K > 2, a vector of sparsity
K need not be unique in general (lemma 1).
It is unique however if corollary of property 6
is satisfied. We see that ¢ minimization can
recover the true solution even when the spars-
est solution is not unique. Since ¢; picks one
of the sparsest solutions that is in upstate,
when the true solution is the upstate solution,
/1 minimization recovers it. It is clear that
UpSparse or any ¢; minimization algorithm
effectively recovers the true loss hotspots in
a tree, provided that only few of them exist.
Next, we compare UpSparse to SCFS (small-
est consistent failure set) algorithm [6], which
recovers the sparsest link binary vector (each
link either good/lossless or bad/lossy) given
the path binary vector (each path either good
or bad). The black curves show the probabil-
ity that SCFS recovers the true link binary
vector i.e. the locations of all bad/lossy links.
We see that SCFS has a lower success rate
than UpSparse (blue curves) even though Up-
Sparse recovers both the locations as well as
loss rates of all lossy links. The binary ap-
proach yields higher ambiguity than the loss
approach. For example, at a branch node, if
one of the child links and the parent link are
both bad/lossy, SCFS will report only the
parent as bad. However UpSparse will report
both links as lossy.

Effect of measurement noise: Next we con-
duct probing experiments where instead of
the true path probabilities only an estimate is
available, based on a fixed number of probes.
We compute the minimal norm solutions and
plot errors as a function of both sparsity and
increasing number of probes. We assume a



scenario where we have no prior knowledge of where the lossy links may lie.
Thus we pick K links uniformly at random. For each of these, loss is set uni-
formly at random from 1 — 10%. For the remaining links, loss is set to 0. Using
x, we simulate the passage of probes on each path and derive the noisy observa-
tion g and its confidence intervals g, and g". These are used by UpSparse and
UpSparse™ to yield Z. Finally we recover the true loss estimates b = £7(Z).
We compute two quantities: (i) relative ¢y error es = ||b — B||2/||b||2 and
(#) Success rate eg which is the number of common lossy links between b and
b normalised by IIbllo- eo attempts to measure the effectiveness of UpSparse in
identifying the correct locations of lossy links.
1) UpSparse Solutions: Figure 4(b) shows benchmark results using a ternary
tree with n = 13 links and height 3. The top curves show the success rate eg
and bottom ones show the error e; averaged over 100 repetitions for 1k and 10k
probes when UpSparse is given the noisy g in each repetition. We see that even
with 1k probes (blue curve), UpSparse identifies the correct locations of majority
of the lossy links. As probes increase, ¥ approaches y and e, decreases.
2) UpSparse™ Solutions: Figure 4(c) shows results for UpSparse® using 1k
probes for intervals of small and large sizes. In each repetition, UpSparse® is
given intervals @J, and " that contain the true y. When interval sizes are large,
UpSparse™ can find solutions which are even sparser than z resulting in higher
error. As intervals get narrower, UpSparse™ gives better results. The curve in
the centre shows results when the actual noisy observation is used by UpSparse.
3) Large Realistic trees: Finally 4(d) shows results for real tree topologies cut
out from the publicly available router level map of the AT&T network obtained
by Rocketfuel [18], with about 48 links on average per tree. The figure shows
results for solutions computed using UpSparse™ for 1k and 10k probes when @é,
and g“ are t-distributed intervals for 90% confidence, centered around y. We see
that eg increases as expected as large trees will need more probes to get accurate
path probabilities. However success rate eg remains high implying that minimal
norm solutions identify the correct locations of majority of the lossy links.

7 Conclusion

The sparsity principle has been mostly used as a black box in loss tomography
without detailed characterization of conditions under which minimal norm so-
lutions are unique or recover the true underlying solution. These conditions are
important in practice as network operators wish to know when sparsity could be
used to accurately localise hotspots using few monitoring points.

In this work, we study the problem of loss hotspot localization in tree topolo-
gies (e.g. server-based measurements) using the principle of sparsity. We derive
explicit solutions and fast algorithms for both min¢y and min#; norms that
give deep insight into the nature of sparsity in trees. We provide conditions un-
der which minimal norm solutions are unique and when they recover the true
underlying solution. We show that when lossy links are well separated, sparse
solutions remain unique in many cases. We conduct experiments to measure the



ability of the minimally sparse solution to approach the actual sparse solutions
in practice. We see that minimal norm solutions can identify the locations of
most lossy links, however as their number increases it becomes much harder to
identify true loss rates. We also observe that minimally sparse link loss solutions
can localize hotspots better than minimally sparse link binary solutions used in
prior work.

Future work will extend our work to graphs, study recovery conditions for

the binary performance problem, and test our results with real measurements.
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