
Cache “Less for More” in Information-centric
Networks

Wei Koong Chai, Diliang He, Ioannis Psaras and George Pavlou

Department of Electronic and Electrical Engineering,

University College London,
WC1E 6BT, Gower Street, London, UK

{w.chai, diliang.he.10, i.psaras, g.pavlou}@ee.ucl.ac.uk

Abstract. Ubiquitous in-network caching is one of the key aspects of
information-centric networking (ICN) which has recently received widespread
research interest. In one of the key relevant proposals known as Networking
Named Content (NNC), the premise is that leveraging in-network caching to
store content in every node it traverses along the delivery path can enhance
content delivery. We question such indiscriminate universal caching strategy
and investigate whether caching less can actually achieve more. Specifically,
we investigate if caching only in a subset of node(s) along the content delivery
path can achieve better performance in terms of cache and server hit rates. In
this paper, we first study the behavior of NNC’s ubiquitous caching and
observe that even naïve random caching at one intermediate node within the
delivery path can achieve similar and, under certain conditions, even better
caching gain. We propose a centrality-based caching algorithm by exploiting
the concept of (ego network) betweenness centrality to improve the caching
gain and eliminate the uncertainty in the performance of the simplistic random
caching strategy. Our results suggest that our solution can consistently achieve
better gain across both synthetic and real network topologies that have different
structural properties.

Keywords: Information-centric networking, caching, betweenness centrality.

1 Introduction

Information-centric networking (ICN) has recently attracted significant attention,
with various research initiatives (e.g., DONA [1], NNC [2], PSIRP/PURSUIT [3][4]
and COMET [5]) targetting this emerging research area. The main reasoning for
advocating the departure from the current host-to-host communications paradigm to
an information/content-centric one is that the Internet is currently mostly used for
content access and delivery, with a high volume of digital content (e.g., 3D/HD
movies, photos etc.) delivered to users who are only interested in the actual content
rather than the source location. As such, we no longer need a natively supported
content distribution framework. While the Internet was designed for and still focuses
on host-to-host communication, ICN shifts the emphasis to content objects that can be

cached and accessed from anywhere within the network rather than from the end hosts
only.

In ICN, content names are decoupled from host addresses, effectively separating
the role of identifier and locator in distinct contrast to current IP addresses which are
serving both purposes. Naming content directly enables the exploitation of in-network
caching in order to improve delivery of popular content. Each content object can now
be uniquely identified and authenticated without being associated to a specific host.
This enables application-independent caching of content pieces that can be re-used by
other end users requesting the same content. In fact, one of the salient ICN features is
in-network caching, with potentially every network element (i.e., router) caching all
content fragments1 that traverse it; in this context, if a matching request is received
while a fragment is still in its cache store, it will be forwarded to the requester from
that element, avoiding going all the way to the hosting server. Out of the current ICN
approaches, NNC [2] advocates such indiscriminate content caching.

We argue that such an indiscriminate universal caching strategy is unnecessarily
costly and sub-optimal and attempt to study alternative in-network caching strategies
for enhancing the overall content delivery performance. We address the central
question of whether caching only at a specific sub-set of nodes en route the delivery
path can achieve better gain. If yes, which are these nodes to cache and how can we
choose them?

Our contribution in this study is three-fold. First, we contribute to the
understanding of ubiquitous caching in networked systems by providing insights into
its behavior for specific topology types. Second, we demonstrate that selective instead
of ubiquitous caching can achieve higher gain even when using simplistic random
selection schemes. Third, we propose a centrality-driven caching scheme by
exploiting the concept of (ego network) betweenness derived from the area of
complex/social network analysis, where only selected nodes in the content delivery
path cache the content. The rationale behind such a selective caching strategy is that
some nodes have higher probability of getting a cache hit in comparison to others and
by strategically caching the content at “better” nodes, we can decrease the cache
eviction rate and, therefore, increase the overall cache hit rate.

In the next section, we define the system of interest and layout our arguments and
rationale with a motivating example illustrating that caching less can be more. We
then describe our centrality-based caching scheme that can consistently outperform
ubiquitous caching. We carry out a systematic simulation study that explores the
parameter space of the caching systems, diverging from existing work in networked
caches which mostly considers topologies with highly regular structure (e.g., string
and tree topologies [6][7][8]), with the content source(s) usually located at the root of
the topology forcing a sense of direction on content flows for tractable modeling and
approximation. We present results for both regular and non-regular topologies,
including scale-free topologies whose properties imitate closely the real Internet
topology.

1 In our study, the basic unit of a content can be a packet, a chunk or the entire object itself.

2 Caching in ICN

2.1 Model Description and Problem Statement

As a foundation, we first assume that the network has an ICN publish/subscribe
framework in place (e.g., [1][2][3][4][5]). Specifically, we assume that a content
request and resolution mechanism is already in place. As pointed out in [9], all the
different ICN proposals in the literature invariably have such common functions
(although with different primitives). Let ! = (!,!) be an undirected network with
! = !!,… , !! nodes and ! = !!,… , !! links. We denote ! = !!,… , !! the
content population in the system and ! = !!,… , !! the set of content servers, each
associated to a ! ∈ !. The content population is randomly hosted in ! and we assume
that each content object is hosted permanently in only one server.

Content requests are assumed to arrive in the network exogenously and the content
request arrival process for content unit !, 1 ≤ ! ≤ !, follows the Poisson process
with mean rate, ! = !!!

!!! , whereby !! is the rate of exogenous content request for
!!. A cache hit is recorded for a request finding a matching content along the content
delivery path. Otherwise, a cache miss is recorded. In the event of a cache miss, the
content request traverses the full content delivery path to the content server.
Following the convention in the literature, we assume that content units are of the
same size and each cache slot in a cache store can accommodate one content unit at
any given time. When a cache store is full, the least recently used content will be
discarded in the event of an arrival of a new uncached content.

The objectives of this study are: (1) to examine the caching performance of such a
system under different caching schemes, (2) to gain insights into the behavior of
ubiquitous caching and (3) to develop more sophisticated caching algorithms for
achieving better gain.

2.2 Related Work and Motivation

In the networking area, caching has been studied in standalone caches [10][11]
focusing on the performance of different cache replacement policies. This isolates the
effect of connected caching nodes (i.e., a network of caches). Caching has also been
studied in the context of content distribution networks (CDNs) and in the World-Wide
Web (web caching), in both cases in a network overlay fashion with some forms of
collaborative (e.g., cooperative / selfish caching through game theory [12][13]) or
structured (e.g., hierarchical caching [14][15]) caching approaches being considered.
In ICN, caching takes place within the network, requiring line-speed operation; in this
context, complex algorithms executed by multiple collaborating entities that require
information exchanges are simply not feasible. One of the key ICN proposals,
networking named content (NNC) [2], defines its ubiquitous caching as follows:

• A router caches every content chunk that traverses it with the assumption that
routers are equipped with (large) cache stores.

• A least recently used (LRU) cache eviction policy is used.

This ubiquitous caching strategy ensures a quick diffusion of content copies
throughout the network. Hereafter, we refer to this scheme as NNC+LRU and treat it
as the benchmark for performance comparison.

Such a ubiquitous caching scheme has already raised doubts (e.g., [9]). In the
general cache-related literature, some authors have already questioned this aggressive
“cache-everything-everywhere” strategy [14][15][16]. The basic reasoning is that
since the caching capacity is usually much smaller than the overall population of the
items to be cached, it has the property of high cache replacement error. We illustrate
this property of ubiquitous caching with a motivating example. We define a naïve
random caching strategy, Rdm+LRU, which simply caches randomly at only one
intermediate node along the delivery path per request, using LRU cache eviction
policy. We compare the two caching schemes in a 7-node string topology where
!!,! = 1, is located at !! (root) while content requests originate exogenously from
other nodes. We observe, in Fig. 1, that even random caching at just a single node
along the content delivery path can reduce both the number of hops required to hit the
content and the server hits in comparison to ubiquitous caching (NNC+LRU).

Fig. 1. Simple random caching outperforming ubiquitous caching in the number of hops to hit

the content (left) and reduced server hits (right).

3 A Centrality-based Caching Scheme

3.1 Basic Algorithm

Based on the above observations, we realize that caching indiscriminately does not
necessarily guarantee the highest cache hit rate. On the other hand, this result cannot
be used as conclusive evidence that caching less is better since the string topology
constrains to a large extent the diversity of the content delivery paths (i.e., all delivery
paths are fully or partially overlapping), a fact that indirectly increases the probability

0 50 100 150 200
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

Time, t(s)

In
st

an
ta

ne
ou

s
H

op
 R

ed
uc

tio
n

R
at

io
,

(t)

NNC+LRU
Rdm+LRU

0 50 100 150 200
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Time, t(s)

In
st

an
ta

ne
ou

s
Se

rv
er

 H
it

R
ed

uc
tio

n
R

at
io

,
(t)

NNC+LRU
Rdm+LRU

of a cache hit. Following this argument, we propose a novel caching scheme based on
the concept of betweenness centrality [17] which measures the number of times a
specific node lies on the content delivery path between all pairs of nodes in a network
topology. The basic idea is that if a node lies along a high number of content delivery
paths, then it is more likely to get a cache hit. By caching only at those more
“important” nodes, we reduce the cache replacement rate while still caching content
where a cache hit is most probable to happen.

Let’s consider the topology in Fig. 2. At time t=0, all cache stores are empty and
client A requests a content from !!. The content is being routed via !! → !! → !! →
!! from !! to client A. With NNC+LRU, all four nodes will retain a copy of the
content while under Rdm+LRU, only one of them will cache the content. Let’s
assume now that client B requests the same content. For NNC+LRU, the request is
satisfied by !! but the cached copies at !!, !! and !! are redundant. On the other
hand, under Rdm+LRU, there is ¼ chance to get a cache miss (i.e., content cached at
!!) and ½ chance that the hop count reduction is worse than NNC+LRU (i.e., the copy
is cached at either !! or !!). However, with a bird’s eye view, it is clear that caching
the content only at !! is sufficient to achieve the best gain without caching
redundancy at other nodes. This can be verified by using the betweenness centrality,
whereby !! has the highest centrality value with most content delivery paths passes
through it (i.e., 9 paths).

Fig. 2. An example topology with optimal caching location at !!.

We now present our algorithm which we call Betw+LRU hereafter. We assume
that the betweenness centrality for each node is pre-computed offline (e.g., by the
central network management system) as follows.

!"#$""%%"&& !"#!"#$%!&,!! ! =
!!,!(!)
!!,!!!!!!∈!

 (1)

where !!,! is the number of content delivery paths from ! to ! and !!,!(!) is the
number of content delivery paths from ! to ! that pass through node !. Computation of
the delivery paths can be done online or dynamically, as our scheme does not require
a priori path knowledge. Without loss of generality, we use the shortest path as the
content delivery path in this paper.

Betw+LRU operates at per request level whereby the selected caching node may
differ from one delivery path to another. Hence, there is no fixed pre-configured
caching node in the network (e.g., solutions to k-median problems). Specifically,
when a content client initiates a content delivery, the request message (e.g., Find in

!"#

!$#

!%#!&# !'#(&#

!"#$%&'!'

!"#$%&'('

!)# !"#$%&')'

[1], Interest in [2], Consume in [5]) records the highest centrality value among
all the intermediate nodes. It may be inserted into the request packet header. This
value is copied onto the content messages during the data transmission at the server.
On the way to the requesting user, each router matches its own !! against the attached
one and the content is cached only if the two values match. If more nodes have the
same highest centrality value, all of them will cache the content. Note that our
solution is highly lightweight as each node independently makes its caching decision
solely based on its own !!, neither requiring information exchange with other nodes
nor inference of server location or of traffic patterns as it is the case with collaborative
or cooperative caching schemes. In this case, the !! value is pre-computed offline and
configured to every router by the network management system. The pseudo-code for
forwarding both the request and the actual content is given below:

C
o
n
t
e
n
t

R
e
q
u
e
s
t
 1. Initialize (CB=0)

2. foreach (vn from i to j)
3. if data in cache
4. then send(data)
5. else
6. Get CB(vn)
7. if CB(vn) > CB
8. then CB = CB(vn)
9. forward request to the next hop towards j

C
o
n
t
e
n
t

D
a
t
a

1. Record CB from corresponding content request
2. foreach (vn from j to i)
3. Get CB(vn)
4. if CB(vn) == CB
5. then cache(data)
6. forward data packet to the next hop towards i

3.2 Approximation via Distributed Computation

We now sketch a distributed implementation for Betw+LRU where the full
network topology may not be readily available because of an infrastructure-less
network with relatively dynamic topology (e.g., for self-organizing, ad hoc and
mobile networks). Since in this case it is not practical for dynamic nodes to efficiently
obtain the knowledge of delivery paths between all pairs of nodes in the network, we
envision that the nodes themselves can compute an approximation of their !!. This
approximation is based on the ego network betweenness concept [18]. The ego
network consists of a node together with all of its immediate neighbours and all the
links among those nodes. The idea is for each node, ! to compute its !!(!) based on
its ego network rather than the entire network topology. From [18], if ! is the !×!
symmetric adjacency matrix of !, with !!,! = 1 if there exists a link between ! and !
and 0 otherwise, then the ego network betweenness is !! ! − ! !,! where ! is a
matrix of 1’s.

From an implementation point of view, the construction of the ego network for
each node can be done by simply requiring each node to broadcast the list of its one-
hop neighbours with message Time-To-Live=1 when it first joins the network and
whenever there are changes to its one-hop neighbour set. The overhead is thus limited
as the message propagation is limited to one hop only. The ego network can then be
built by adding links that connect to itself or its own neighbors based on the received
neighbor lists and ignoring the entries to nodes not directly connected to itself. The
ego network betweenness is simply the !!,!(!) of !’s ego network. The rest of the
caching operations remain unchanged (as described in the previous section).

Although the ego network betweenness only reflects the importance of a node
within its ego network, it has been found that it is highly correlated with its
betweenness centrality counterpart in real-world Internet service provider (ISP)
topologies [19]. Coupled with its low computation complexity (reduced from
! !" 2 to ! !!"#! where !!"#! is the highest node degree in the network), it
presents itself as a good alternative for large / dynamic networks. This caching
algorithm using ego network betweenness centrality along with the LRU cache
eviction policy is referred to as EgoBetw+LRU hereafter. Referring back to Fig. 2, the
outcome of Betw+LRU and EgoBetw+LRU is the same since !! remains the node
having the highest centrality value.

4 Performance Evaluation

4.1 Performance Metrics and Simulation Scenarios

Caching in networks aims to: (1) lower the content delivery latency whereby a
cached content near the client can be fetched faster than from the server, (2) reduce
traffic and congestion since content traverses fewer links when there is a cache hit and
(3) alleviate server load as every cache hit means serving one less request. We use the
hop reduction ratio, ! as the metric to assess the effect of the different caching
schemes on (1) and (2) above while we use the server hit reduction ratio, ! on (3).

!"# !"#$%&'() !"#$%,! ! = !!(!)!
!!!

!!(!)!
!!!

 (2)

where !!(!) is the path length (in hop count) from client(s) to server(s) requesting !!
from time !-1 to ! and ℎ!(!) is the hop count from the content client to the first node
where a cache hit occurs for !! from !-1 to !. If no matching cache is found along the
path to the server, then ℎ! = !!. In other words, the hop reduction ratio counts the
percentage of the path length to the server used to hit the content given caching in
intermediate nodes. In a non-caching system, ! = 1.0.

2 Based on the best known betweenness computation algorithm in U. Brandes, “A faster

algorithm for betweenness centrality”, Journal of Mathematical Sociology 25(2):163-177.

 !!"#!" ℎ!" !"#$%&'() !"#$%, ! ! = !!(!)!
!!!

!!(!)!
!!!

 (3)

where !!(!) is the number of request for !! from !-1 to ! and !!(!) is the number of
server hits for !! from !-1 to !. Note that high hop reduction does not directly translate
to high server hit reduction.

We seek to draw insights from the inspection of network topologies with very
different structural properties – (1) k-ary trees which have almost strict regular
structure (i.e., all nodes besides the root and leaves have the same ! + 1 valence) and
(2) scale-free topologies following the Barabasi-Albert (B-A) power law model [20]
which accounts for the preferential attachment property of the Internet topology and
results in graphs with highly skewed degree distribution. It is interesting to note that
the betweenness distribution of B-A graphs also follows the power law model [21].

Content requests for different content are generated based on Zipf-distribution with
! !! = 1!

!!! where the probability for a request for the !!" popular content is
! r! with α being the popularity factor. We use ! = 1.03 and requests originate
randomly from all nodes. Each simulation run begins with all cache stores being
empty (i.e., cold start). Unless otherwise specified, the simulations are run with the
following parameters: total simulation time = 200 s, ! = 5,000 request/s, content
population = 1,000 and uniform cache store size = 10% of total content population.

4.2 Experiments with k-ary Trees

(a) Instantaneous Behavior

A k-ary tree is defined via two parameters, namely !, the spread factor, denoting
the number of children each node has and ! is the depth of the tree from root. We
first show in Fig. 3 the instantaneous behavior of the different caching schemes for
both ! and ! in a 5-level binary tree (k=2, D=4). All caching schemes reach a
stationary performance after a few seconds. We point out that since all simulations go
through a warm-up phase, NNC+LRU always reaches the stable performance level
first. This is due to its always cache policy.

We observe that both Betw+LRU and Rdm+LRU perform better than NNC+LRU
for both metrics. Tracking the evolution of the cache stores over time revealed that
this is due to the high cache replacement rate in NNC+LRU. Replacing cached
content rapidly causes content often being evicted before the next matching request is
received. We have shown this in [6]. The effect is magnified considering that the
whole chain of caches on the delivery path is affected. This is the fundamental basis
on why the counter-intuitive caching “less for more” can be true. We further observe
that the argument that caching selectively may increase cache miss is untrue in k-ary
trees. We do find that there are more cache misses if the caching node is randomly

3 From our results, we note that the order of performance amongst the caching schemes remains

unchanged for 0.6 ≤ ! ≤ 1.5. So, the results presented here are valid for these values of !.

selected rather than caching at nodes with high betweenness. Finally, an interesting
observation is that instead of approximating the performance of the Betw+LRU
scheme as it was meant to be, EgoBetw+LRU actually performs at the same level as
NNC+LRU. This is the due to the regularity of the topology whereby nodes between
the root and the leaves have the same ego network and thus, have the same !!. Since
the algorithm specifies that all nodes with equal highest !! along the delivery path
should cache, in this case EgoBetw+LRU is simply reduced to a similar behavior with
NNC+LRU.

Fig. 3. Instantaneous behavior of the caching schemes for a binary tree; (left) β, (right) γ.

 (b) Effect of Topology Features on Performance

In k-ary trees, ! affects the expected path lengths and ! impacts the path diversity.
We now study the validity of the previous observations in different configurations of
k-ary trees by obtaining the ! at 95% confidence interval for a range of depths and
spread factors. Our results in Fig. 4 suggest that the caching schemes exhibit
consistent behavior for different k-ary trees.

Fig. 4. Betw+LRU consistently outperforms the rest over different ! (left) and ! (right).

We find that while the performance distance between NNC+LRU and Betw+LRU
remains approximately constant, Rdm+LRU does not exhibit such consistency.

0 50 100 150 200
0.38

0.4

0.42

0.44

0.46

0.48

0.5

Time, t(s)

In
st

an
ta

ne
ou

s
H

op
 R

ed
uc

tio
n

R
at

io
,

(t)

NNC+LRU Betw+LRU EgoBetw+LRU Rdm+LRU

0 20 40 60 80 100 120 140 160 180 200
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Time, t(s)

In
st

an
ta

ne
ou

s
Se

rv
er

 H
it

R
ed

uc
tio

n
R

at
io

,
(t)

NNC+LRU Betw+LRU EgoBetw+LRU Rdm+LRU

4 5 6
0.35

0.4

0.45

0.5

0.55

Binary tree depth, D

H
op

 R
ed

uc
tio

n
R

at
io

,

NNC+LRU
Betw+LRU
EgoBetw+LRU
Rdm+LRU

2 3 4 5
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Spread factor, k

H
op

 R
ed

uc
tio

n
R

at
io

,

NNC+LRU
Betw+LRU
EgoBetw+LRU
Rdm+LRU

Rdm+LRU performs increasingly better in terms of hops saved when ! is increased
and ! is decreased. This is due to the fact that each node has equal probability to
cache content and in effect, distributes cache replacement operation uniformly across
different nodes. In turn, this results in content being cached longer when compared to
NNC+LRU. It increases the cache hit probability especially in topologies with very
low number of content delivery paths. This, however, is counter-balanced by the
increased number of branches in the topology, whereby a greater number of cache
misses will occur. Our Betw+LRU scheme does not suffer from such a drawback
since the caching node always has the highest probability of getting a cache hit and
thus maintains stable cache hit (reducing server hits) and gain (reducing the content
delivery hop count).

4.3 Experiments with Scale-free Topologies

(a) Instantaneous Behavior

Although regular graphs lend themselves to tractability in modeling, real-world
Internet topologies are not regular but follow a power law degree distribution [20]. As
such, we consider scale-free topologies following the construction method described
in [20] (referred to as B-A graphs hereafter). We show in Fig. 5 the performance of
the different caching schemes in a B-A graph with ! = 100 over time. First and
foremost, we see that the performance of both our centrality-based caching schemes
(Betw+LRU and EgoBetw+LRU) perform better than NNC+LRU for both metrics and
EgoBetw+LRU now approximates closely Betw+LRU. This is because, without the
regular structure, the ego networks of the nodes within the B-A graphs reflect
correctly their actual betweenness. This result, thus, suggests that the more scalable
and distributed EgoBetw+LRU algorithm can be used for irregular graphs.

Fig. 5. Instantaneous behavior of the caching schemes in a B-A graph; (left) !, (right) γ.

Secondly, we observe that Rdm+LRU no longer outperforms NNC+LRU. In fact, it
performs at the same level as NNC+LRU with respect to hop reduction and due to the

0 50 100 150 200
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Time, t(s)

In
st

an
ta

ne
ou

s
H

op
 R

ed
uc

tio
n

R
at

io
,

(t)

NNC+LRU
Betw+LRU
EgoBetw+LRU
Rdm+LRU

0 50 100 150 200
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Time, t(s)

In
st

an
ta

ne
ou

s
Se

rv
er

 H
it

R
ed

uc
tio

n
R

at
io

,
(t)

NNC+LRU
Betw+LRU
EgoBetw+LRU
Rdm+LRU

highly skewed degree distribution in the topology, it fails to alleviate load from the
server (i.e., it has the highest number of cache misses).

(b) Effect of Topology Features on Performance

Unlike k-ary trees which are fully described via the tuple !,! , each generation of
a B-A graph with the same parameters results in a different topology since the links
are created based on the probability proportional to the attractiveness of existing
nodes (i.e., preferential attachment). We evaluate the caching schemes over ten B-A
graphs with ! = 100 and mean valence = 2. From Fig. 6 (left), both centrality-based
caching schemes perform better than the rest. However, Rdm+LRU is worse than
NNC+LRU in most cases even with the topology having the same properties. This is
due to the skewed node degree distribution of the graph that increases the probability
of the scheme caching at nodes having low cache hit probability. Fig. 6 (right) shows
how ego network betweenness approximates betweenness in a B-A graph.

Fig. 6. Caching performance with different 100-node B-A graphs (left) and a sample ego

network betweenness and betweenness values of the nodes in a B-A graph (right).

From Fig. 7 (left), we observe again that centrality-based caching schemes provide
the best hop reduction ratio while Rdm+LRU exhibits inconsistent gain across B-A
graphs with different sizes. We observe that as the size of the topology increases,
Rdm+LRU gradually performs worse than NNC+LRU. The power-law distribution of
betweenness in B-A graphs plays a vital role in this phenomenon as it results in high
number of nodes having low probability of getting a cache hit. Since Rdm+LRU does
not differentiate the centrality of the nodes, there is higher probability of Rdm+LRU
caching at these “unimportant” nodes. Note that this observation is untrue for k-ary
trees (the case when ! is increased) due to the high number of overlapping shortest
paths (an obvious example being the string topology).

From Fig. 7 (right), we see that different request intensities do not affect the order
of performance amongst the caching schemes. This is due to the fact that all caching
schemes converge to a stable performance level (cf., Fig. 1, 3 and 5).

1 2 3 4 5 6 7 8 9 10
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Graph ID

H
op

 R
ed

uc
tio

n
R

at
io

,

NNC+LRU
Betw+LRU
EgoBetw+LRU
Rdm+LRU

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Be
tw

ee
nn

es
s

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Eg
o

N
et

w
or

k
Be

tw
ee

nn
es

s
Node ID

Betweenness
Ego Network Betweenness

Fig. 7. Hop reduction ratio for different B-A graph sizes (left) and request rates, ! (right)

In Table 1, we provide representative results of the different caching schemes
across the different topologies in terms of number of hops and server hits saved. It is
clear that Betw+LRU reliably achieves better gains (both in terms of hop and server
hit reduction) in comparison to NNC+LRU. For instance, it reduces server hits over
30% and hop count over 17% in comparison to NNC+LRU in the string topology.

Table 1. Sample performance achieved after 200s in different types of topology.

Caching
Scheme

String
(D = 10, k=1)

k-ary Tree
(D = 4; k = 2)

B-A
(N = 100)

 ℎ ! ℎ ! ℎ !
NNC+LRU 2,6839,45 498,603 2,684,325 299,657 2,137,015 211,852
Betw+LRU 2,211,248 337,362 2,331,061 203,673 2,045,852 204,479

EgoBetw+LRU 2,680,614 497,146 2,698,153 301,797 2,074,089 207,628
Rdm+LRU 2,206,002 377,289 2,386,569 277,575 2,195,303 291,560

4.4 Experiments with the Real Internet Topologies

To further verify our findings, we proceed to assess the caching performance of the
different caching schemes in a real-world Internet topology. We focus on a large
domain-level topology, extracting a sub-topology from the CAIDA dataset [22]. The
topology is rooted at a tier-1 ISP (AS7018) and contains 6804 domains and 10205
links. We do not aggregate stub domains while sibling domains/links are not
considered. In a similar manner to the previous simulation setup, all content servers
and clients are randomly distributed across the topology. Fig 8 shows both the hop
reduction and server hit reduction ratios achieved in this setup.

The results show that the different caching schemes behave in a similar fashion to
the B-A graphs but not to k-ary trees, reinforcing the notion that B-A graphs reflect
better real network topologies. These results further confirm the validity of our
centrality-based caching scheme even in large real network topologies.

0 50 100 150 200 250 300 350 400 450
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

B A topology size, n

H
op

 R
ed

uc
tio

n
R

at
io

,

NNC+LRU
Betw+LRU
EgoBetw+LRU
Rdm+LRU

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.38

0.4

0.42

0.44

0.46

0.48

Request arrival rate, (request/s)

H
op

 R
ed

uc
tio

n
R

at
io

,

NNC+LRU
Betw+LRU
EgoBetw+LRU
Rdm+LRU

Fig. 8. Instantaneous behavior of the caching schemes in a large-scale real Internet topology;

(left) !, (right) γ.

5 Summary and Conclusions

We argue against the necessity of a ubiquitous caching strategy in ICN and
investigate the possibility of caching less in order to achieve higher performance gain.
We first demonstrated that a simple random caching strategy (Rdm+LRU) can
outperform (though inconsistently) the current pervasive caching paradigm under the
conditions that the network topology has low number of distinct content delivery
paths and high average delivery path length. We, then, proposed a caching strategy
based on the concept of betweenness centrality (Betw+LRU) such that content is only
cached at the nodes having the highest probability of getting a cache hit along the
content delivery path. We also proposed an approximation of it (EgoBetw+LRU) for
scalable and distributed realization in dynamic network environments where the full
topology cannot be known a priori. We compared the performance of our proposals
against the ubiquitous caching of the NNC proposal [2] (NNC+LRU). Based on our
extensive simulations, we observed that Betw+LRU consistently achieves the best hop
and server reduction ratios across topologies having different structural properties
without being restricted by the operating conditions required by Rdm+LRU. Our
results further suggest that EgoBetw+LRU approximates closely Betw+LRU in non-
regular topologies (e.g., B-A graphs) and thus presents itself as a practical candidate
for the deployment of this approach. Besides synthetic topologies (i.e., k-ary trees and
B-A graphs), the observations are further verified with a large-scale real Internet
topology. Thus, we conclude that indeed caching less can achieve more and our
proposed (Ego)Betw+LRU is a candidate for realizing this promise.

Acknowledgements. This work was undertaken under the Information Society
Technologies (IST) COMET project, which is partially funded by the Commission of
the European Union. We would also like to thank our project partners who have
implicitly contributed to the ideas presented here.

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

Time, t (s)

In
st

an
ta

ne
ou

s
H

op
 R

ed
uc

tio
n

R
at

io
,

(t)

NNC+LRU
EgoBetw+LRU
Rdm+LRU

0 20 40 60 80 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time, t (s)

In
st

an
ta

ne
ou

s
Se

rv
er

 H
it

R
ed

uc
tio

n
R

at
io

,
(t)

NNC+LRU
EgoBetw+LRU
Rdm+LRU

References

1. T. Koponen, et. al., “A Data-oriented (and Beyond) Network Architecture,” in Proc. ACM
SIGCOMM ’07, Kyoto, Japan, Aug. 2007.

2. V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, R. L. Braynard,
“Networking Named Content,” Proc. ACM CoNEXT, 2009, pp.1-12.

3. D. Trossen et al., “Conceptual Architecture: Principles, Patterns and Sub-components
Descriptions”, May 2011. http://www.fp7-pursuit.eu/PursuitWeb/

4. P. Jokela, A. Zahemszky, C. Rothenberg, S. Arianfar and P. Nikander, “LIPSIN: Line Speed
Publish/Subscribe Inter-networking”, Proc. ACM SIGCOMM, Barcelona, Spain, 2009.

5. W. K. Chai, et. al., “CURLING: Content-ubiquitous resolution and delivery infrastructure
for next-generation services,” IEEE Commun. Mag., vol. 49, no. 3, pp. 112-120, 2011

6. I. Psaras, R. Clegg, R. Landa, W. K. Chai and G. Pavlou, “Modelling and evaluation of
CCN-caching trees,” Proc. of IFIP NETWORKING, Valencia, Spain, May 2011.

7. G. Carofiglio, M. Gallo, L. Muscariello and D. Perrino, “Modelling data transfer in content
centric networking,” Proc. International Teletraffic Congress (ITC), 2011.

8. S. Arianfar, P. Nikander, and J. Ott, “Packet-level caching for information-centric
networking,” Finnish ICT-SHOK Future Internet Project, Tech. Rep., 2010.

9. A. Ghodsi, et. al., “Information-centric Networking: Seeing the forest for the trees”, ACM
Workshop on Hot Topics in Networks (HotNets-X), Cambridge, MA, Nov. 2011.

10. A. Dan and D. Towsley, “An approximate analysis of the lru and fifo buffer replacement
schemes,” ACM SIGMETRICS, 1990, pp. 143-152.

11. P. Jelenkovic, A. Radovanovic and M. S. Squillante, “Critical sizing of lru caches with
dependent requests,” Journal of Applied Probability, vol. 43, no. 4, pp. 1013-1027, 2006.

12. N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Matta, and I. Stavrakakis, “Distributed
selfish caching,” IEEE Trans. on Parallel and Distributed Systems, vol. 18, no. 10, 2007.

13. G. Dán, “Cache-to-Cache: Could ISPs cooperate to decrease peer-to-peer content
distribution costs?,'' IEEE Trans. on Parallel and Distributed Systems, vol. 22, no. 9, 2011.

14. H. Che, Y. Tung, Z. Wang, “Hierarchical web caching systems: modelling, design and
experimental results,” IEEE Journ. on Selected Areas of Communications, 20(7), 2002.

15. N. Laoutaris, H. Che and I. Stavrakakis, “The LCD interconnection of LRU caches and its
analysis”, Performance Evaluation, vol. 63, no. 7, pp. 609-634, July 2006.

16. T. M. Wong, J. Wilkes, “My cache or yours? Making storage more exclusive,” Proc.
USENIX Annual Technical Conference, Monterey, CA, 2002, pp. 161-175.

17. L. R. Izquierdo, R. A. Hanneman, “Introduction to the Formal Analysis of Social Networks
Using Mathematica”, University of California, Riverside.

18. M. Everett, S. Borgatti, “Ego network betweenness”, Social Networks, 27(2005) pp. 31-38.
19.P. Pantazopoulos, M. Karaliopoulos, I. Stavrakakis, “Centrality-driven scalable service

migration,” Proc. International Teletraffic Congress (ITC), 2011.
20. A. L. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science, vol.

286, no. 5439, pp. 509-512, Oct. 1999.
21. H. Wang, J. M. Hernandez and P. Van Mieghem, “Betweenness centrality in a weighted

network,” Physical Review E 77, 046105, 2008.
22.CAIDA dataset; http://www.caida.org/research/topology/#Datasets

