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Abstract. Ubiquitous in-network caching is one of the key aspects of 
information-centric networking (ICN) which has recently received widespread 
research interest. In one of the key relevant proposals known as Networking 
Named Content (NNC), the premise is that leveraging in-network caching to 
store content in every node it traverses along the delivery path can enhance 
content delivery. We question such indiscriminate universal caching strategy 
and investigate whether caching less can actually achieve more. Specifically, 
we investigate if caching only in a subset of node(s) along the content delivery 
path can achieve better performance in terms of cache and server hit rates. In 
this paper, we first study the behavior of NNC’s ubiquitous caching and 
observe that even naïve random caching at one intermediate node within the 
delivery path can achieve similar and, under certain conditions, even better 
caching gain. We propose a centrality-based caching algorithm by exploiting 
the concept of (ego network) betweenness centrality to improve the caching 
gain and eliminate the uncertainty in the performance of the simplistic random 
caching strategy. Our results suggest that our solution can consistently achieve 
better gain across both synthetic and real network topologies that have different 
structural properties. 
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1   Introduction 

Information-centric networking (ICN) has recently attracted significant attention, 
with various research initiatives (e.g., DONA [1], NNC [2], PSIRP/PURSUIT [3][4] 
and COMET [5]) targetting this emerging research area. The main reasoning for 
advocating the departure from the current host-to-host communications paradigm to 
an information/content-centric one is that the Internet is currently mostly used for 
content access and delivery, with a high volume of digital content (e.g., 3D/HD 
movies, photos etc.) delivered to users who are only interested in the actual content 
rather than the source location. As such, we no longer need a natively supported 
content distribution framework. While the Internet was designed for and still focuses 
on host-to-host communication, ICN shifts the emphasis to content objects that can be 



cached and accessed from anywhere within the network rather than from the end hosts 
only. 

In ICN, content names are decoupled from host addresses, effectively separating 
the role of identifier and locator in distinct contrast to current IP addresses which are 
serving both purposes. Naming content directly enables the exploitation of in-network 
caching in order to improve delivery of popular content. Each content object can now 
be uniquely identified and authenticated without being associated to a specific host. 
This enables application-independent caching of content pieces that can be re-used by 
other end users requesting the same content. In fact, one of the salient ICN features is 
in-network caching, with potentially every network element (i.e., router) caching all 
content fragments1 that traverse it; in this context, if a matching request is received 
while a fragment is still in its cache store, it will be forwarded to the requester from 
that element, avoiding going all the way to the hosting server. Out of the current ICN 
approaches, NNC [2] advocates such indiscriminate content caching.  

We argue that such an indiscriminate universal caching strategy is unnecessarily 
costly and sub-optimal and attempt to study alternative in-network caching strategies 
for enhancing the overall content delivery performance. We address the central 
question of whether caching only at a specific sub-set of nodes en route the delivery 
path can achieve better gain. If yes, which are these nodes to cache and how can we 
choose them?  

Our contribution in this study is three-fold. First, we contribute to the 
understanding of ubiquitous caching in networked systems by providing insights into 
its behavior for specific topology types. Second, we demonstrate that selective instead 
of ubiquitous caching can achieve higher gain even when using simplistic random 
selection schemes. Third, we propose a centrality-driven caching scheme by 
exploiting the concept of (ego network) betweenness derived from the area of 
complex/social network analysis, where only selected nodes in the content delivery 
path cache the content. The rationale behind such a selective caching strategy is that 
some nodes have higher probability of getting a cache hit in comparison to others and 
by strategically caching the content at “better” nodes, we can decrease the cache 
eviction rate and, therefore, increase the overall cache hit rate. 

In the next section, we define the system of interest and layout our arguments and 
rationale with a motivating example illustrating that caching less can be more. We 
then describe our centrality-based caching scheme that can consistently outperform 
ubiquitous caching. We carry out a systematic simulation study that explores the 
parameter space of the caching systems, diverging from existing work in networked 
caches which mostly considers topologies with highly regular structure (e.g., string 
and tree topologies [6][7][8]), with the content source(s) usually located at the root of 
the topology forcing a sense of direction on content flows for tractable modeling and 
approximation. We present results for both regular and non-regular topologies, 
including scale-free topologies whose properties imitate closely the real Internet 
topology. 

                                                             
1 In our study, the basic unit of a content can be a packet, a chunk or the entire object itself.  



2   Caching in ICN 

2.1 Model Description and Problem Statement 

As a foundation, we first assume that the network has an ICN publish/subscribe 
framework in place (e.g., [1][2][3][4][5]). Specifically, we assume that a content 
request and resolution mechanism is already in place. As pointed out in [9], all the 
different ICN proposals in the literature invariably have such common functions 
(although with different primitives). Let ! = (!,!) be an undirected network with 
! = !!,… , !!  nodes and ! = !!,… , !!  links. We denote ! = !!,… , !!  the 
content population in the system and ! = !!,… , !!  the set of content servers, each 
associated to a ! ∈ !. The content population is randomly hosted in ! and we assume 
that each content object is hosted permanently in only one server.  

Content requests are assumed to arrive in the network exogenously and the content 
request arrival process for content unit !, 1 ≤ ! ≤ !, follows the Poisson process 
with mean rate, ! = !!!

!!! , whereby !! is the rate of exogenous content request for 
!!. A cache hit is recorded for a request finding a matching content along the content 
delivery path. Otherwise, a cache miss is recorded. In the event of a cache miss, the 
content request traverses the full content delivery path to the content server. 
Following the convention in the literature, we assume that content units are of the 
same size and each cache slot in a cache store can accommodate one content unit at 
any given time. When a cache store is full, the least recently used content will be 
discarded in the event of an arrival of a new uncached content.  

The objectives of this study are: (1) to examine the caching performance of such a 
system under different caching schemes, (2) to gain insights into the behavior of 
ubiquitous caching and (3) to develop more sophisticated caching algorithms for 
achieving better gain.  

2.2 Related Work and Motivation 

In the networking area, caching has been studied in standalone caches [10][11] 
focusing on the performance of different cache replacement policies. This isolates the 
effect of connected caching nodes (i.e., a network of caches). Caching has also been 
studied in the context of content distribution networks (CDNs) and in the World-Wide 
Web (web caching), in both cases in a network overlay fashion with some forms of 
collaborative (e.g., cooperative / selfish caching through game theory [12][13]) or 
structured (e.g., hierarchical caching [14][15]) caching approaches being considered. 
In ICN, caching takes place within the network, requiring line-speed operation; in this 
context, complex algorithms executed by multiple collaborating entities that require 
information exchanges are simply not feasible. One of the key ICN proposals, 
networking named content (NNC) [2], defines its ubiquitous caching as follows: 



• A router caches every content chunk that traverses it with the assumption that 
routers are equipped with (large) cache stores.  

• A least recently used (LRU) cache eviction policy is used.  

This ubiquitous caching strategy ensures a quick diffusion of content copies 
throughout the network. Hereafter, we refer to this scheme as NNC+LRU and treat it 
as the benchmark for performance comparison.  

Such a ubiquitous caching scheme has already raised doubts (e.g., [9]). In the 
general cache-related literature, some authors have already questioned this aggressive 
“cache-everything-everywhere” strategy [14][15][16]. The basic reasoning is that 
since the caching capacity is usually much smaller than the overall population of the 
items to be cached, it has the property of high cache replacement error. We illustrate 
this property of ubiquitous caching with a motivating example. We define a naïve 
random caching strategy, Rdm+LRU, which simply caches randomly at only one 
intermediate node along the delivery path per request, using LRU cache eviction 
policy. We compare the two caching schemes in a 7-node string topology where 
!!,! = 1, is located at !! (root) while content requests originate exogenously from 
other nodes. We observe, in Fig. 1, that even random caching at just a single node 
along the content delivery path can reduce both the number of hops required to hit the 
content and the server hits in comparison to ubiquitous caching (NNC+LRU).  

 

        
Fig. 1. Simple random caching outperforming ubiquitous caching in the number of hops to hit 

the content (left) and reduced server hits (right). 

3   A Centrality-based Caching Scheme 

3.1 Basic Algorithm 

Based on the above observations, we realize that caching indiscriminately does not 
necessarily guarantee the highest cache hit rate. On the other hand, this result cannot 
be used as conclusive evidence that caching less is better since the string topology 
constrains to a large extent the diversity of the content delivery paths (i.e., all delivery 
paths are fully or partially overlapping), a fact that indirectly increases the probability 

0 50 100 150 200
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

Time, t(s)

In
st

an
ta

ne
ou

s 
H

op
 R

ed
uc

tio
n 

R
at

io
,  

(t)

 

 

NNC+LRU
Rdm+LRU

0 50 100 150 200
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Time, t(s)

In
st

an
ta

ne
ou

s 
Se

rv
er

 H
it 

R
ed

uc
tio

n 
R

at
io

,  
(t)

 

 
NNC+LRU
Rdm+LRU



of a cache hit. Following this argument, we propose a novel caching scheme based on 
the concept of betweenness centrality [17] which measures the number of times a 
specific node lies on the content delivery path between all pairs of nodes in a network 
topology. The basic idea is that if a node lies along a high number of content delivery 
paths, then it is more likely to get a cache hit. By caching only at those more 
“important” nodes, we reduce the cache replacement rate while still caching content 
where a cache hit is most probable to happen.  

Let’s consider the topology in Fig. 2. At time t=0, all cache stores are empty and 
client A requests a content from !!. The content is being routed via !! → !! → !! →
!! from !! to client A. With NNC+LRU, all four nodes will retain a copy of the 
content while under Rdm+LRU, only one of them will cache the content. Let’s 
assume now that client B requests the same content. For NNC+LRU, the request is 
satisfied by !! but the cached copies at !!, !! and !! are redundant. On the other 
hand, under Rdm+LRU, there is ¼ chance to get a cache miss (i.e., content cached at 
!!) and ½ chance that the hop count reduction is worse than NNC+LRU (i.e., the copy 
is cached at either !! or !!). However, with a bird’s eye view, it is clear that caching 
the content only at !! is sufficient to achieve the best gain without caching 
redundancy at other nodes. This can be verified by using the betweenness centrality, 
whereby !! has the highest centrality value with most content delivery paths passes 
through it (i.e., 9 paths).  

 

  
Fig. 2. An example topology with optimal caching location at !!. 

We now present our algorithm which we call Betw+LRU hereafter. We assume 
that the betweenness centrality for each node is pre-computed offline (e.g., by the 
central network management system) as follows.  

!"#$""%%"&&  !"#!"#$%!&,!! ! =
!!,!(!)
!!,!!!!!!∈!

 (1) 

where !!,! is the number of content delivery paths from ! to ! and !!,!(!) is the 
number of content delivery paths from ! to ! that pass through node !. Computation of 
the delivery paths can be done online or dynamically, as our scheme does not require 
a priori path knowledge. Without loss of generality, we use the shortest path as the 
content delivery path in this paper.  

Betw+LRU operates at per request level whereby the selected caching node may 
differ from one delivery path to another. Hence, there is no fixed pre-configured 
caching node in the network (e.g., solutions to k-median problems). Specifically, 
when a content client initiates a content delivery, the request message (e.g., Find in 
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[1], Interest in [2], Consume in [5]) records the highest centrality value among 
all the intermediate nodes. It may be inserted into the request packet header. This 
value is copied onto the content messages during the data transmission at the server. 
On the way to the requesting user, each router matches its own !! against the attached 
one and the content is cached only if the two values match. If more nodes have the 
same highest centrality value, all of them will cache the content. Note that our 
solution is highly lightweight as each node independently makes its caching decision 
solely based on its own !!, neither requiring information exchange with other nodes 
nor inference of server location or of traffic patterns as it is the case with collaborative 
or cooperative caching schemes. In this case, the !! value is pre-computed offline and 
configured to every router by the network management system. The pseudo-code for 
forwarding both the request and the actual content is given below: 
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 1. Initialize (CB=0) 

2. foreach (vn from i to j) 
3. if data in cache 
4. then send(data) 
5. else 
6. Get CB(vn) 
7. if CB(vn) > CB 
8. then CB = CB(vn) 
9. forward request to the next hop towards j 
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1. Record CB from corresponding content request  
2. foreach (vn from j to i) 
3. Get CB(vn) 
4. if CB(vn) == CB 
5. then cache(data) 
6. forward data packet to the next hop towards i 

3.2 Approximation via Distributed Computation  

We now sketch a distributed implementation for Betw+LRU where the full 
network topology may not be readily available because of an infrastructure-less 
network with relatively dynamic topology (e.g., for self-organizing, ad hoc and 
mobile networks). Since in this case it is not practical for dynamic nodes to efficiently 
obtain the knowledge of delivery paths between all pairs of nodes in the network, we 
envision that the nodes themselves can compute an approximation of their !!. This 
approximation is based on the ego network betweenness concept [18]. The ego 
network consists of a node together with all of its immediate neighbours and all the 
links among those nodes. The idea is for each node, ! to compute its !!(!) based on 
its ego network rather than the entire network topology. From [18], if ! is the !×! 
symmetric adjacency matrix of !, with !!,! = 1 if there exists a link between ! and ! 
and 0 otherwise, then the ego network betweenness is !! ! − ! !,! where ! is a 
matrix of 1’s.  



From an implementation point of view, the construction of the ego network for 
each node can be done by simply requiring each node to broadcast the list of its one-
hop neighbours with message Time-To-Live=1 when it first joins the network and 
whenever there are changes to its one-hop neighbour set. The overhead is thus limited 
as the message propagation is limited to one hop only. The ego network can then be 
built by adding links that connect to itself or its own neighbors based on the received 
neighbor lists and ignoring the entries to nodes not directly connected to itself. The 
ego network betweenness is simply the !!,!(!) of !’s ego network. The rest of the 
caching operations remain unchanged (as described in the previous section).  

Although the ego network betweenness only reflects the importance of a node 
within its ego network, it has been found that it is highly correlated with its 
betweenness centrality counterpart in real-world Internet service provider (ISP) 
topologies [19]. Coupled with its low computation complexity (reduced from 
! !" 2 to ! !!"#!  where !!"#!  is the highest node degree in the network), it 
presents itself as a good alternative for large / dynamic networks. This caching 
algorithm using ego network betweenness centrality along with the LRU cache 
eviction policy is referred to as EgoBetw+LRU hereafter. Referring back to Fig. 2, the 
outcome of Betw+LRU and EgoBetw+LRU is the same since !! remains the node 
having the highest centrality value.  

4   Performance Evaluation  

4.1 Performance Metrics and Simulation Scenarios  

Caching in networks aims to: (1) lower the content delivery latency whereby a 
cached content near the client can be fetched faster than from the server, (2) reduce 
traffic and congestion since content traverses fewer links when there is a cache hit and 
(3) alleviate server load as every cache hit means serving one less request. We use the 
hop reduction ratio, ! as the metric to assess the effect of the different caching 
schemes on (1) and (2) above while we use the server hit reduction ratio, ! on (3).  

!"#  !"#$%&'()  !"#$%,! ! = !!(!)!
!!!

!!(!)!
!!!

  (2) 

where !!(!) is the path length (in hop count) from client(s) to server(s) requesting !! 
from time !-1 to ! and ℎ!(!) is the hop count from the content client to the first node 
where a cache hit occurs for !! from !-1 to !. If no matching cache is found along the 
path to the server, then ℎ! = !!. In other words, the hop reduction ratio counts the 
percentage of the path length to the server used to hit the content given caching in 
intermediate nodes. In a non-caching system, ! = 1.0. 

                                                             
2 Based on the best known betweenness computation algorithm in U. Brandes, “A faster 

algorithm for betweenness centrality”, Journal of Mathematical Sociology 25(2):163-177. 
 



 !!"#!"  ℎ!"  !"#$%&'()  !"#$%, ! ! = !!(!)!
!!!

!!(!)!
!!!

   (3) 

where !!(!) is the number of request for !! from !-1 to ! and !!(!) is the number of 
server hits for !! from !-1 to !. Note that high hop reduction does not directly translate 
to high server hit reduction.  

We seek to draw insights from the inspection of network topologies with very 
different structural properties – (1) k-ary trees which have almost strict regular 
structure (i.e., all nodes besides the root and leaves have the same ! + 1 valence) and 
(2) scale-free topologies following the Barabasi-Albert (B-A) power law model [20] 
which accounts for the preferential attachment property of the Internet topology and 
results in graphs with highly skewed degree distribution. It is interesting to note that 
the betweenness distribution of B-A graphs also follows the power law model [21]. 

Content requests for different content are generated based on Zipf-distribution with 
! !! = 1!

!!!  where the probability for a request for the !!" popular content is 
! r! with α being the popularity factor. We use ! = 1.03 and requests originate 
randomly from all nodes. Each simulation run begins with all cache stores being 
empty (i.e., cold start). Unless otherwise specified, the simulations are run with the 
following parameters: total simulation time = 200 s, ! = 5,000 request/s, content 
population = 1,000 and uniform cache store size = 10% of total content population. 

4.2 Experiments with k-ary Trees 

(a) Instantaneous Behavior 

A k-ary tree is defined via two parameters, namely !, the spread factor, denoting 
the number of children each node has and ! is the depth of the tree from root. We 
first show in Fig. 3 the instantaneous behavior of the different caching schemes for 
both ! and ! in a 5-level binary tree (k=2, D=4). All caching schemes reach a 
stationary performance after a few seconds. We point out that since all simulations go 
through a warm-up phase, NNC+LRU always reaches the stable performance level 
first. This is due to its always cache policy. 

We observe that both Betw+LRU and Rdm+LRU perform better than NNC+LRU 
for both metrics. Tracking the evolution of the cache stores over time revealed that 
this is due to the high cache replacement rate in NNC+LRU. Replacing cached 
content rapidly causes content often being evicted before the next matching request is 
received. We have shown this in [6]. The effect is magnified considering that the 
whole chain of caches on the delivery path is affected. This is the fundamental basis 
on why the counter-intuitive caching “less for more” can be true. We further observe 
that the argument that caching selectively may increase cache miss is untrue in k-ary 
trees. We do find that there are more cache misses if the caching node is randomly 

                                                             
3 From our results, we note that the order of performance amongst the caching schemes remains 

unchanged for 0.6 ≤ ! ≤ 1.5. So, the results presented here are valid for these values of !.  



selected rather than caching at nodes with high betweenness. Finally, an interesting 
observation is that instead of approximating the performance of the Betw+LRU 
scheme as it was meant to be, EgoBetw+LRU actually performs at the same level as 
NNC+LRU. This is the due to the regularity of the topology whereby nodes between 
the root and the leaves have the same ego network and thus, have the same !!. Since 
the algorithm specifies that all nodes with equal highest !! along the delivery path 
should cache, in this case EgoBetw+LRU is simply reduced to a similar behavior with 
NNC+LRU.  

 

       
Fig. 3. Instantaneous behavior of the caching schemes for a binary tree; (left) β, (right) γ. 

 (b) Effect of Topology Features on Performance 

In k-ary trees, ! affects the expected path lengths and ! impacts the path diversity. 
We now study the validity of the previous observations in different configurations of 
k-ary trees by obtaining the ! at 95% confidence interval for a range of depths and 
spread factors. Our results in Fig. 4 suggest that the caching schemes exhibit 
consistent behavior for different k-ary trees.  

 

        
Fig. 4. Betw+LRU consistently outperforms the rest over different ! (left) and ! (right). 

We find that while the performance distance between NNC+LRU and Betw+LRU 
remains approximately constant, Rdm+LRU does not exhibit such consistency. 
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Rdm+LRU performs increasingly better in terms of hops saved when ! is increased 
and ! is decreased. This is due to the fact that each node has equal probability to 
cache content and in effect, distributes cache replacement operation uniformly across 
different nodes. In turn, this results in content being cached longer when compared to 
NNC+LRU. It increases the cache hit probability especially in topologies with very 
low number of content delivery paths. This, however, is counter-balanced by the 
increased number of branches in the topology, whereby a greater number of cache 
misses will occur. Our Betw+LRU scheme does not suffer from such a drawback 
since the caching node always has the highest probability of getting a cache hit and 
thus maintains stable cache hit (reducing server hits) and gain (reducing the content 
delivery hop count).  

4.3 Experiments with Scale-free Topologies 

(a) Instantaneous Behavior 

Although regular graphs lend themselves to tractability in modeling, real-world 
Internet topologies are not regular but follow a power law degree distribution [20]. As 
such, we consider scale-free topologies following the construction method described 
in [20] (referred to as B-A graphs hereafter). We show in Fig. 5 the performance of 
the different caching schemes in a B-A graph with ! = 100 over time. First and 
foremost, we see that the performance of both our centrality-based caching schemes 
(Betw+LRU and EgoBetw+LRU) perform better than NNC+LRU for both metrics and 
EgoBetw+LRU now approximates closely Betw+LRU. This is because, without the 
regular structure, the ego networks of the nodes within the B-A graphs reflect 
correctly their actual betweenness. This result, thus, suggests that the more scalable 
and distributed EgoBetw+LRU algorithm can be used for irregular graphs.  

 

       
Fig. 5. Instantaneous behavior of the caching schemes in a B-A graph; (left) !, (right) γ. 

Secondly, we observe that Rdm+LRU no longer outperforms NNC+LRU. In fact, it 
performs at the same level as NNC+LRU with respect to hop reduction and due to the 
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highly skewed degree distribution in the topology, it fails to alleviate load from the 
server (i.e., it has the highest number of cache misses).  

(b) Effect of Topology Features on Performance 

Unlike k-ary trees which are fully described via the tuple !,! ,  each generation of 
a B-A graph with the same parameters results in a different topology since the links 
are created based on the probability proportional to the attractiveness of existing 
nodes (i.e., preferential attachment). We evaluate the caching schemes over ten B-A 
graphs with ! = 100 and mean valence = 2. From Fig. 6 (left), both centrality-based 
caching schemes perform better than the rest. However, Rdm+LRU is worse than 
NNC+LRU in most cases even with the topology having the same properties. This is 
due to the skewed node degree distribution of the graph that increases the probability 
of the scheme caching at nodes having low cache hit probability. Fig. 6 (right) shows 
how ego network betweenness approximates betweenness in a B-A graph.  

 

     
Fig. 6. Caching performance with different 100-node B-A graphs (left) and a sample ego 

network betweenness and betweenness values of the nodes in a B-A graph (right). 

From Fig. 7 (left), we observe again that centrality-based caching schemes provide 
the best hop reduction ratio while Rdm+LRU exhibits inconsistent gain across B-A 
graphs with different sizes. We observe that as the size of the topology increases, 
Rdm+LRU gradually performs worse than NNC+LRU. The power-law distribution of 
betweenness in B-A graphs plays a vital role in this phenomenon as it results in high 
number of nodes having low probability of getting a cache hit. Since Rdm+LRU does 
not differentiate the centrality of the nodes, there is higher probability of Rdm+LRU 
caching at these “unimportant” nodes. Note that this observation is untrue for k-ary 
trees (the case when ! is increased) due to the high number of overlapping shortest 
paths (an obvious example being the string topology).  

From Fig. 7 (right), we see that different request intensities do not affect the order 
of performance amongst the caching schemes. This is due to the fact that all caching 
schemes converge to a stable performance level (cf., Fig. 1, 3 and 5).  
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Fig. 7. Hop reduction ratio for different B-A graph sizes (left) and request rates, ! (right) 

In Table 1, we provide representative results of the different caching schemes 
across the different topologies in terms of number of hops and server hits saved. It is 
clear that Betw+LRU reliably achieves better gains (both in terms of hop and server 
hit reduction) in comparison to NNC+LRU. For instance, it reduces server hits over 
30% and hop count over 17% in comparison to NNC+LRU in the string topology.  

Table 1. Sample performance achieved after 200s in different types of topology. 

Caching 
Scheme 

String  
(D = 10, k=1) 

k-ary Tree  
(D = 4; k = 2) 

B-A  
(N = 100) 

 ℎ      !  ℎ  !  ℎ   ! 
NNC+LRU 2,6839,45 498,603 2,684,325 299,657 2,137,015 211,852 
Betw+LRU 2,211,248 337,362 2,331,061 203,673 2,045,852 204,479 

EgoBetw+LRU 2,680,614 497,146 2,698,153 301,797 2,074,089 207,628 
Rdm+LRU 2,206,002 377,289 2,386,569 277,575 2,195,303 291,560 

4.4 Experiments with the Real Internet Topologies 

To further verify our findings, we proceed to assess the caching performance of the 
different caching schemes in a real-world Internet topology. We focus on a large 
domain-level topology, extracting a sub-topology from the CAIDA dataset [22]. The 
topology is rooted at a tier-1 ISP (AS7018) and contains 6804 domains and 10205 
links. We do not aggregate stub domains while sibling domains/links are not 
considered. In a similar manner to the previous simulation setup, all content servers 
and clients are randomly distributed across the topology. Fig 8 shows both the hop 
reduction and server hit reduction ratios achieved in this setup.  

The results show that the different caching schemes behave in a similar fashion to 
the B-A graphs but not to k-ary trees, reinforcing the notion that B-A graphs reflect 
better real network topologies. These results further confirm the validity of our 
centrality-based caching scheme even in large real network topologies.  
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Fig. 8. Instantaneous behavior of the caching schemes in a large-scale real Internet topology; 

(left) !, (right) γ. 

5   Summary and Conclusions 

We argue against the necessity of a ubiquitous caching strategy in ICN and 
investigate the possibility of caching less in order to achieve higher performance gain. 
We first demonstrated that a simple random caching strategy (Rdm+LRU) can 
outperform (though inconsistently) the current pervasive caching paradigm under the 
conditions that the network topology has low number of distinct content delivery 
paths and high average delivery path length. We, then, proposed a caching strategy 
based on the concept of betweenness centrality (Betw+LRU) such that content is only 
cached at the nodes having the highest probability of getting a cache hit along the 
content delivery path. We also proposed an approximation of it (EgoBetw+LRU) for 
scalable and distributed realization in dynamic network environments where the full 
topology cannot be known a priori. We compared the performance of our proposals 
against the ubiquitous caching of the NNC proposal [2] (NNC+LRU). Based on our 
extensive simulations, we observed that Betw+LRU consistently achieves the best hop 
and server reduction ratios across topologies having different structural properties 
without being restricted by the operating conditions required by Rdm+LRU. Our 
results further suggest that EgoBetw+LRU approximates closely Betw+LRU in non-
regular topologies (e.g., B-A graphs) and thus presents itself as a practical candidate 
for the deployment of this approach. Besides synthetic topologies (i.e., k-ary trees and 
B-A graphs), the observations are further verified with a large-scale real Internet 
topology. Thus, we conclude that indeed caching less can achieve more and our 
proposed (Ego)Betw+LRU is a candidate for realizing this promise.  
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