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Abstract. We present Permutation Routing1 as a method for increased
robustness in IP networks with traditional hop-by-hop forwarding. Per-
mutation Routing treats routers involved in traffic forwarding as a se-
quence of resources, and creates permutations of these resources that give
several forwarding options. We introduce Permutation Routing as a con-
cept, and use it to create routings where we seek to maximize single link
fault coverage. Analogous to the IETF standardized Loop-Free Alter-
nate (LFA), Permutation Routing can easily be implemented for OSPF
or IS-IS networks to augment existing ECMP forwarding with additional
loop-free forwarding entries for improved load balancing or fault toler-
ance. Our evaluations show that Permutation Routing can increase single
link fault coverage by up to 28% compared to LFA in inferred network
topologies.
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1 Introduction

The last few years have witnessed the adoption of the Internet as the preferred
transport medium for services of critical importance for business and individuals.
In particular, an increasing number of time-critical services such as trading sys-
tems, remote monitoring and control systems, telephony and video conferencing
place strong demands on timely recovery from failures. For these applications,
even short outages in the order of a few seconds will cause severe problems or
impede the user experience. This has fostered the development of a number of
proposals for more robust routing protocols, which are able to continue packet
forwarding immediately after a component failure, without the need for a proto-
col re-convergence. Such solutions add robustness either by changing the routing
protocol so that it installs more than one next-hop towards a destination in the
forwarding table [1][2][3], or by adding backup next-hops a posteriori to the
forwarding entries found by a standard shortest path routing protocol [4][5][6].
Unfortunately, few of these solutions have seen widespread deployment, due to
added complexity or incompatibility with existing routing protocols.

1 Permutation Routing term is used in the literature with slightly different meanings,
all related to the act of rearranging network objects (e.g. network devices or network
devices and theirs associated radio channels) on which packets are routed from a
source to a destination [9] [10].
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Installing more than one route to a destination has obvious advantages with
respect to increased robustness. First, it provides alternative routes that are
readily available after a link failure. Second, it provides several paths for load-
balancing, which can be used to absorb short-lived spikes in traffic demand and
thus avoid congestion. Deployed intradomain routing protocols such as OSPF
and IS-IS have traditionally installed only a single shortest path to each desti-
nation, or multiple equal-cost shortest paths with the ECMP extension. ECMP
allows some degree of multipath routing, but can only give more than one for-
warding next-hop to a limited subset of all source-destination (S-D) pairs in a
network. Recently, a mechanism called Loop-Free Alternates (LFA) [4] has be-
come available in some routers. LFA allows routers to install alternate forwarding
entries that can be used as backup if the primary next-hop fails. LFA improves
robustness compared to ECMP, but there will still be many S-D pairs with only
a single path (next-hop) available [8].

This paper presents Permutation Routing as a novel and flexible approach
for calculating multiple loop-free next-hops in networks with traditional hop-by-
hop forwarding. Permutation Routing is based on the observation that routing
in any network consists of using a set of resources (links and nodes) in sequence.
A routing strategy can therefore be expressed as a permutation of the nodes
that are involved in traffic forwarding to a destination. Routing will be loop-
free as long as traffic can only be forwarded in one direction with respect to
the node ordering in this permutation. The main focus in this paper is to use
Permutation Routing to create a routing that maximizes the single link fault
coverage. Other routing strategies based on permutations of links in networks
with interface-specific forwarding [3] can also be developed.

In this paper, we provide a simple backtracking algorithm that constructs
a permutation of routers for each destination, and a simple forwarding rule
that allows us to generate forwarding tables based on the permutations. The
properties of the resulting routing are determined by the constraints used at each
step in the permutation construction. The input to the construction algorithm is
the topology information that is collected by a link state routing protocol, and
hence no new control plane signalling is needed with Permutation Routing.

Importantly, Permutation Routing can easily be integrated with existing in-
tradomain routing protocols, and can be used to augment the shortest path
routing tables with additional forwarding entries. We show how the constraints
in the permutation construction can be designed so that the resulting routing
is compatible with normal shortest path routing, while still offering significantly
more forwarding options than the existing LFA. With multiple loop-free alter-
nates for a given primary next-hop, OSPF or IS-IS may employ some of them as
unequal-cost primary paths and the rest as back-up paths. In the case of multi-
ple primary paths, packets can be distributed evenly among paths or with more
intelligent load balancing methods [11][12]. In this paper we focus on finding a
set of loop-free paths, and leave the important topic of load-balancing across
these paths for future work.
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The rest of the paper is organized as follows. Section 2 introduces the notion
of Next-Hop Optimal Routing (NHOR), which we will use as our main design
objective. Section 3 introduces Permutation Routing and the relationship be-
tween a permutation of routers and the corresponding routing graph. Section 4
describes a generic algorithm to construct permutations. Section 5 describes a
specific construction algorithm that approximates NHOR, and a modified ver-
sion that is also compatible with standard shortest path routing. Section 6 shows
simulation results evaluating the path diversity and the computational complex-
ity of Permutation Routing. Section 7 reviews related work. Section 8 concludes
the paper.

2 Next-Hop Optimal Routing

Before introducing Next-Hop Optimal Routing as our objective function for
robust routing, let us introduce some vocabulary that we will use in the rest
of this paper. By a routing, we refer to the assignment of a set of next-hops for
each destination node in each source node. We do not distinguish traffic from
different sources, and hence traffic transiting a node is treated in the same way as
traffic originated at the node. We require that a routing must be loop-free, and
hence a given routing corresponds to a Directed Acyclic Graph (DAG) rooted
at each destination node consisting of the links and nodes involved in packet
forwarding. With multipath routing, each node may have several outgoing links
in the DAG for a destination. A routing where all links are included in each
DAG is referred to as a full connectivity routing. With a given network topology,
many different high or full connectivity routings can normally be constructed.
However, they will have different properties with respect to failure recovery and
load balancing.

(a) DAG-1 (b) DAG-2 (c) DAG-3 (d) DAG-4

Fig. 1: A network topology with different DAGs

Fig. 1 shows a simple network topology, with 4 different DAGs for the desti-
nation node d. In Fig. 1a, DAG-1 is given by shortest path routing with ECMP
using the link weights indicated in the figure. Node c can split its traffic over
two next-hops, while the other nodes have only a single next-hop towards d.
Links (a, b), (c, b) and (c, f) are left idle, and are neither used for backup or load
balancing. The DAGs in Fig. 1b, Fig. 1c and Fig. 1d are all full-connectivity
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routing graphs, where all links can be used for packet forwarding. They differ,
however, in their distributions of next-hops. In DAG-2, there are three nodes (a,
e and f) that have only a single next-hop towards d. DAG-3 on the other hand,
has only two such nodes (a and e). DAG-2 and DAG-3 are both compatible with
shortest path routing, because they contain all directed links of DAG-1. DAG-4
is not compatible with shortest path routing: by changing the direction of the
link (c, e), the number of nodes with a single next-hop has been reduced to one
(the minimum value).

To maximize the single link fault coverage and load-balancing capabilities of
a network, it is important that there is more than one next-hop available for as
many S-D pairs as possible. This leads us to the following optimization criterion
for Next-Hop Optimal Routing (NHOR):

Definition 1. An NHOR is a full-connectivity routing that maximizes number
of S-D pairs that have at least two next-hops towards a destination.

As illustrated by the example above, an NHOR will not always be compatible
with shortest path routing. For that reason, we also define the Shortest-Path
compatible NHOR (NHOR-SP):

Definition 2. An NHOR-SP is a full-connectivity routing that maximizes num-
ber of S-D pairs that have at least two next-hops while containing the DAG
calculated by a shortest path algorithm.

3 Permutation Routing

We consider a network modeled as a connected graph G = (V,E) where V is
a set of nodes and E ⊆ V × V is the set of links (edges) and its topology. A
connected link from node i to node j is denoted by (i, j).

Without loss of generality, we look at the assignment of next-hops for each
destination individually. For a destination d ∈ V , let Rd = (V,Ed) be a routing
function for packets destined to destination d, where Ed is a set of directed links
constructed on E. In Rd, node j is called a next-hop of node i if there exists a
directed link between node i and node j, denoted by (i → j). For a loop-free
routing, Rd must be a DAG rooted at destination d.

The routing function Rd contains all valid paths to d, and each path can
be considered as a sequence of nodes from a specific source to d. At each node,
packet forwarding is the process of sending packets to a next-hop in such a
sequence. In the rest of this section, we describe how Permutation Routing can
be used as a tool to find such sequences with the goal of realizing NHOR.

Definition 3. For a given network topology G = (V,E), a permutation P of
nodes is an arrangement of all nodes in V into a particular order.

We write j < i to denote that j occurs before i in P . Our goal is to construct
permutations that realize a certain routing strategy.

Definition 4. A permutation P is a routing permutation for Rd if and only if
all next-hops of each node occur before it in P : ∀(i→ j) ∈ Ed : j < i.
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According to this definition, the destination node d will always be the first
node in a routing permutation for Rd. Nodes further out in the routing permu-
tation will be topologically farther from the destination.

Lemma 1. Any loop-free routing function Rd can always be represented by a
routing permutation in which d is at the left-most position.

Proof. A loop-free routing function Rd = (V,Ed) is a DAG, rooted at d. Let
arrange i ∈ V into a sequence such that if Ed contains a directed link (i → j),
then j appears before i in that sequence. Such an arrangement can be calculated
by a topological sort algorithm [13]. Destination d ∈ V is the only node that
does not have any outgoing link. Following the above ordering, node d, hence,
has been placed at the left-most position of the sequence.

In general, there can be more than one routing permutation for one routing
function Rd. Starting with a routing permutation P , another routing permu-
tation P ′ can be generated by swapping two consecutive nodes that are not
connected by a directed link to each other. For instance, both permutations
{d a b e c f} and {d b a e c f} are routing permutations for DAG-1 according
to Def. 4.

In the reverse process, routing tables can be generated from a routing permu-
tation, given a forwarding rule that defines the relationship between neighboring
nodes. For now, we consider a greedy forwarding rule for constructing the rout-
ing table, in which all topological neighbors of a node that occur before it in
the routing permutation are installed as next-hops. Note that this forwarding
rule will result in a full connectivity routing, where all links in the topology
are potentially used for traffic forwarding to all destinations. This will maximize
the potential for load balancing and failure recovery. More restrictive forwarding
rules could also be considered, which would result in a sparser DAG. This can
sometimes be beneficial in order to avoid excessively long paths, or to limit the
number of next-hops for a particular destination.

With the given forwarding rule, different routing permutations will result in
routing functions with different robustness characteristics. Our goal is to find
a routing permutation that can realize NHOR. This problem is believed to be
NP-hard. In the next section, we present an algorithm that produces routing
permutations that approximate NHOR.

4 Generating Routing Permutations

This section introduces a generic method for constructing routing permutations.
The construction method is based on a backtracking algorithm, and can be used
to construct routing permutations with different optimization objectives. In the
next section, we specify the constraints that are used to approximate NHOR.

We reconsider a topology G = (V,E) of N nodes (|V | = N), all of which
are uniquely identified by a number from 1 to N . Let P = {p1, p2, . . . , pN} be
a set of N variables in a fixed order from p1 to pN , with respective domains
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D = {D1, D2, . . . , DN}. We refer to Di as the candidate set for each variable pi.
A candidate set consists of the nodes that can be assigned to variable pi.

Fig. 2: Basic assignment procedure
for variable pi+1

Fig. 3: Search space for routing
permutation problem

A routing permutation P is constructed by successively assigning a node
u ∈ Di to each variable pi ∈ P . Such assignment is said to be valid if it satisfies
a specific constraint function C(u) which is defined to realize the selected routing
objective. Fig. 2 illustrates the basic assignment procedure for variable pi+1 in
which two key functions Update and Select work as filters to control the assign-
ment. In the figure, each pair 〈pi, ui〉 represents an assignment of the node ui to
variable pi. The assignment of nodes to a subset of variables {p1, p2, . . . , pi} ⊆ P
given by {〈p1, u1〉, . . . , 〈pi, ui〉} is called partial routing permutation with i nodes.
For simplicity, we abbreviate it to ~pi.

This basic assignment procedure has been embedded into the well-known
backtracking algorithm to obtain the routing permutation P . The algorithm calls
function Select (with built-in constraint function C(u)) which goes through Di

to find a valid node for the current variable pi. If Select succeeds in finding a
valid assignment, the algorithm calls function Update to generate domain Di+1

and proceeds to next variable pi+1. Otherwise, a backtrack step will be executed
to revisit the variable pi−1. The algorithm terminates if a routing permutation
P of N nodes, also denoted by ~pN , is found or a failure notification returns if all
backtracks are examined but no solution is found under C(u).

If the constraint function C allows it, the backtracking algorithm will find
one routing permutation P among all possible solutions by searching through the
search space shaped by the number of variables in P and their domains of values.
In a näıve implementation, the domain for variable pi+1 consists of (N−i) nodes
that have not been placed in ~pi. Based on that observation, the search space S
of the permutation assignment problem has a form of a tree of depth N rooted
at the initial state 〈p1, d〉 as illustrated in Fig. 3. Solutions ~pN are located at its
leaves. Two connected states in the search space refer to two instances of pi and
pi+1. Assume that t operations are needed on average to move from state pi to
state pi+1. The complexity in the best case when we do not need any backtrack
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step (backtrack-free) is O(t×N). In other extreme, if there is only one solution
and we always make the “wrong” choice, the complexity would be O(t×N !).

The näıve implementation described above results in high computational
complexity, and is only feasible for small topologies. Hence, it is important to
guide the search to avoid exploring the entire search space. In the next section,
we use two main mechanisms to reduce the search space:

1. C(u) should be simple to reduce the computational complexity.
2. Domain Di can be limited by taking C(u) into account.

5 Next-hop Optimal Routings

Next, we apply the framework described above to construct two high robustness
routings that approximate NHOR and NHOR-SP as defined in Section 2. We
call them Approximate NHOR and Approximate NHOR-SP.

5.1 Approximate NHOR (ANHOR)

With Permutation Routing using greedy forwarding, a node in pi (i > 2) has at
least two next-hops if it has at least two topological neighbors that occur before
it in the routing permutation. The aim of the ANHOR algorithm is to maximize
the number of nodes where this is the case.

The partial routing permutation ~pi represents a loop-free routing sub-graph
towards destination d, denoted by Ri

d = (V (~pi), Ed(~pi)) where V (~pi) is the set
of i nodes in ~pi and Ed(~pi) is the set of directed edges formed by applying the
greedy forwarding rule defined in section 3 on ~pi. To achieve a high robustness
routing, the node selected for variable pi+1 to form the partial routing permuta-
tion ~pi+1 should be the node with the maximum number of topological neighbors
already placed in ~pi. Correspondingly, the number of directed edges of the rout-
ing sub-graph formed by the partial routing permutation ~pi+1, resulted from the
assignment 〈pi+1, u〉, must be maximized:

|Ed(~pi+1)| = max
∀u∈Di+1

|Ed(~pi, 〈pi+1, u〉)| (1)

For a more efficient implementation, we maintain a counter c[u] for each
node u. This counter denotes the number of outgoing links from u to ~pi. In
other words, c[u] corresponds to the number of next-hops node u will have if
it is selected as the next assignment in the routing permutation. We derive the
constraint function CANHOR(u) to realize the expression (1) as follow:

CANHOR(u) =

{
True if c[u] = max∀v∈Di+1

c[v]
False otherwise

The constraint function CANHOR(u) implies that the domain Di+1 includes
all nodes that have at least one topological neighbor in ~pi. The domain is, there-
fore, updated following the recursive relation:
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Di+1 = Di ∪ { v ∈ V | (u, v) ∈ E} \ {u} (2)

where u is the node that has been assigned to variable pi in the i-th assignment.
The computational complexity of ANHOR is the product of the average

number of operations to make a move between two successive states and the
total number of states visited in the search space.

Proposition 1. Constraint function CANHOR(u) gives a backtrack-free algo-
rithm for all connected input topologies.

Proof. The proof is by contradiction. Assume that the algorithm with the con-
straint function CANHOR(u) is not backtrack-free. This means that constraint
function returns False for all u ∈ Di+1 at some iteration. That can not happen
because Di+1 can never be empty in a connected topology before all nodes have
been placed in the permutation and all nodes in domain Di+1 always have at
least one next-hop in ~pi.

Given the backtrack-free property of our algorithm, the complexity of calcu-
lating a permutation for each destination is O(|E|+N×|D|), where |D| denotes
the average size of the domain. Typically, |D| depends solely on the average
node degree of the network topology. In dense topologies, the total complexity
of calculating routing permutations for all destinations can approach O(N3).
The backtrack-free property also gives a low memory consumption because it
does not need to store temporary partial routing permutations.

5.2 Approximate NHOR-SP (ANHOR-SP)

Let RSP
d = (V,ESP

d ) denote the shortest path tree towards destination d. A
routing permutation P whose routing function Rd = (V,Ed) is an ANHOR-SP
if Rd satisfies two constraints in following order:

1. Rd contains RSP
d , meaning all routing choices for any node in RSP

d are also
valid routing choices for the same node in Rd.

2. ANHOR-SP uses the same selection criterion as ANHOR in order to maxi-
mize the number of S-D pairs with at least two next-hops.

The construction of such a routing permutation P is based on the assign-
ment procedure described in Fig. 2. To this end, the shortest path compatibility
constraint is implemented in function Update to limit the size of domain Di+1

for variable pi+1 and the connectivity constraint will be formalized by a con-
straint function CANHOR−SP (u) and realized in function Select. Clearly, the
constraint function CANHOR−SP (u) is identical to CANHOR(u).

The next node in routing permutation P is selected among nodes that have
all their shortest path next hops towards d already placed in ~pi. Formally, let
RSP,i

d = (V (~pi), E
SP
d (~pi)) be the shortest path tree of V (~pi) nodes and RSP,i

d ⊆
RSP

d . The domain Di+1 for variable pi+1 includes all nodes u such that the
assignment 〈pi+1, u〉, resulting in ~pi+1, fulfills:



Permutation Routing for Increased Robustness in IP Networks 9

RSP,i+1
d ⊆ RSP

d

Let csp[v] be the number of shortest path next-hops placed in ~pi and nsp[v]
be the total number of shortest path next-hop that can be calculated from RSP

d

of node v. The domain Di+1 for variable pi+1 follows the recursive relation:

Di+1 = Di ∪ { v ∈ V | csp[v] = nsp[v] } \ {u} (3)

where u is the node that has been assigned to variable pi.

Proposition 2. Constraint function CANHOR−SP (u) gives backtrack-free algo-
rithm for all connected input topologies.

Proof. According to Proposition 1, constraint function CANHOR−SP (u) always
returns True unless Di is empty. We show here that Di can never be empty
before all nodes have been placed in the permutation. If Di is empty, there is
no node that have all its shortest path descendants in ~pi. In other words, we
can follow the shortest path DAG RSP

d from any node that has not been placed
and always find a next-hop node that is not placed in ~pi. But this is impossible:
since RSP

d is connected and loop-free, any path along the shortest path DAG
will eventually reach the destination, which is the first node that was placed in
the permutation.

The computational complexity of ANHOR-SP towards one destination in-
cludes two parts: the shortest path calculation using Dijkstra’s algorithm and
routing permutation construction. Due to the property of backtrack-freedom,
with sparse topologies the complexity of second part towards one destination
would be O(|E| + |ESP

d | + N × |D|) where |D| denotes the average size of the
domain. In dense topologies, the total complexity of calculating routing permu-
tations for all destinations can approach O(N3).

With a low computational complexity, ANHOR-SP can be implemented on a
per-router basis in OSPF or IS-IS networks. To ensure a consistent permutation
routing in the entire network, constraint function CANHOR−SP (u) must return
the same node in each assignment among possible selections. We can break that
tie by letting the highest router ID 2 be picked.

6 Performance Evaluation

We evaluate the performance of the proposed algorithms by measuring how well
they realize NHOR as defined in Def. 1. Since multipath routing leads to path
inflation, we also measure the path length distribution. ANHOR and ANHOR-
SP are compared to standard shortest path routing with ECMP, and to LFA.
Comparisons to other robust routing methods [3][6] are less relevant, because of
their different objectives and implementation costs.

2 The highest router ID means the biggest number numerically. For instance,
192.168.1.2 would be higher than 172.16.3.2, and 172.16.3.2 would also be higher
than 172.16.2.1



10 Hung Quoc Vo, Olav Lysne, and Amund Kvalbein

6.1 Evaluation Setup

We select six representative network topologies from the Rocketfuel project [19]
for our evaluations. The topologies are listed in Table 1 in increasing order of
their average node degrees.

Table 1: Network topologies
AS Name Nodes Links Avg. Degree

1221 Telstra(au) 104 151 2.90
1755 Ebone(eu) 87 161 3.70
3967 Exodus(us) 79 147 3.72
3257 Tiscali(eu) 161 328 4.07
6461 Abovenet(us) 138 372 5.40
1239 Sprint(us) 315 972 6.17

The results for ECMP and LFA depend heavily on the link weight settings
used in the topologies. To obtain realistic link weight settings, we run local
search heuristic with link load objective function proposed in [15], using a traffic
matrix generated by the gravity model [18]. For AS1239, we use unit link weights,
because the local search heuristic described in [15] does not scale to a topology of
this size. Note that Permutation Routing will work with any link weight settings.
We use this approach to show the performance with ”typical” link weights.

6.2 Robustness Evaluation

Maximizing multipath capability Fig. 4 shows the fraction of nodes with
at least two next-hops with the different routing methods. For reference, Fig. 4
also shows the fraction of nodes in each topology with a node degree larger
than 1. Obviously, nodes with a degree of 1 can not have more than 1 next-hop
to any destination. We observe that the multipath capability varies strongly be-
tween topologies; it is generally higher in more well-connected networks. ANHOR
achieves a significant improvement over ECMP and LFA in all networks.

Note that the number of next-hops achieved with ANHOR is independent of
link weight settings, while ANHOR-SP is constrained to including the shortest
paths in the routing. ANHOR-SP performance is close to ANHOR, and gives
a clear improvement over LFA (by up to 28% in AS1239). This shows that
Permutation Routing can give a significant gain compared to existing solutions,
while being compatible with shortest path routing with realistic link weight
settings.

Next-hop distribution Fig. 5 shows the mean and variance for the number
of next-hops at each router in our 6 topologies. For increased robustness and
load-balancing, it is generally good to have a high mean and a low variance in
the number of next-hops. If this variance is high, it means that a few nodes have
a high number of next-hops, while others might be left with only one.

Both ANHOR and ANHOR-SP produce full connectivity routings, which
means that the mean number of next-hops across all S-D pairs will be equal to
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half the average node degree in the topology. The mean is somewhat lower for
LFA and ECMP, meaning that some links are not used for packet forwarding.
The variance, however, is lower with ANHOR than with ANHOR-SP and LFA.
This shows how ANHOR achieved a better (more uniform) next-hop distribution
than the other routings.

Fig. 4: Fraction of S-D pairs with
at least two next-hops.

Fig. 5: Means and variances of
next-hop distributions

In practice, there are good reasons to limit the number of next-hops that
are installed in the forwarding table for a particular destination. Installing more
than a few next-hops will not give much benefit with respect to robustness or
load-balancing. It will, however, require more fast memory in the forwarding
table, and may lead to the unnecessary inclusion of paths that are much longer
than the shortest path.

Hence, we look at an approach where the number of next-hops for a particular
destination is limited to at most K. We define a Routing Efficiency coefficient,
which denotes the fraction of bidirectional links that are used for traffic forward-
ing with a given K.

RE = 2× |Ed(K)| / |E| (4)

where |Ed(K)| is the number of directed links in the routing DAG when each
node can have at most K next-hops and |E| is the number of bidirectional links
in the network topology. According to this definition, 0 ≤ RE ≤ 1. Note that
a high RE is desirable, and corresponds to a low variance in the number of
next-hops achieved.

Table 2 shows the RE values for three values of K in the selected topologies.
The given value is the average over all S-D pairs. We see that for all routing
methods, a higher K gives a higher RE value. ANHOR and ANHOR-SP give
the highest RE values, sometimes with a significant improvement over ECMP
and LFA even for K = 2. The RE values in more well-connected topologies
(AS1239) are lower than in sparse topologies. Such topologies contain a high
number of nodes with a very high degree (39% nodes has their degrees greater
than 15 in AS1239), and a low K will hence exclude many valid (but often
unnecessary) paths.
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Table 2: Routing Efficiency coefficient
AS1221 AS1755 AS3967 AS3257 AS6461 AS1239

K = 2

ECMP 0.74 0.61 0.61 0.54 0.43 0.49
LFA 0.80 0.79 0.77 0.77 0.62 0.49

ANHOR-SP 0.86 0.84 0.85 0.76 0.67 0.58
ANHOR 0.94 0.90 0.95 0.81 0.81 0.60

K = 3

ECMP 0.76 0.62 0.62 0.54 0.46 0.56
LFA 0.86 0.90 0.87 0.82 0.77 0.57

ANHOR-SP 0.92 0.95 0.94 0.88 0.85 0.75
ANHOR 0.98 0.99 1.00 0.95 0.95 0.80

K = 4

ECMP 0.77 0.62 0.63 0.54 0.47 0.60
LFA 0.90 0.94 0.91 0.88 0.85 0.61

ANHOR-SP 0.96 0.99 0.97 0.93 0.93 0.85
ANHOR 1.00 1.00 1.00 0.99 0.99 0.92

Path Stretch High path diversity increases robustness and allows for more
load balancing. However, it has a cost in terms of path inflation. Next, we look
at the distribution of path lengths. We focus on path lengths in terms of hop
counts, since this metric is independent of the link weight settings. Fig. 6 shows
the average path stretch for K = 3 with different routings, where the length of
each valid path has been normalized with the shortest path length for that S-D
pair. We observe that the superior path diversity in ANHOR and ANHOR-SP
comes at the cost of some path inflation, but that the average path lengths are
still comparable to those of shortest path routing. The path inflation introduced
with multipath routing can be ameliorated with more intelligent load balancing
methods [11][12].

Fig. 6: Average hop-count path
stretch with K = 3

Fig. 7: Relative running time to-
wards all destinations

Running time and memory consumption The complexity of our proposed
algorithms depends on the number of nodes, links and on how efficiently the size
of the candidate set can be reduced. The average size of candidate set turns out
to be approximately 5 times (AS1755) to 12 times (AS1239) higher than their
corresponding average node degrees in our tested topologies.
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Fig. 7 shows the relative running time of each routing method to ECMP
across six topologies. The AS topologies are listed in an increasing order of
number of nodes. The results are achieved with an Intel Core 2 CPU 6300 @ 1.86
GHz machine. ANHOR has a low running time that is comparable to a normal
ECMP routing computation. For all destinations, the total time difference is less
than 10% for all topologies. As for ANHOR-SP, calculating routing permutations
for all destinations take less than four times of ECMP. Across all topologies, the
memory consumption never exceeds 6 MB.

7 Related Work

This paper presents Permutation Routing as a method for increased robustness
in IP networks with traditional hop-by-hop forwarding. The proposed method
can be used to generate routings that give a significant boost in number of nodes
that have at at least two forwarding options to a destination. Our proposal shares
the same principle with many existing solutions that aim at adding robustness
either by changing routing protocols to adopt more than one next-hop towards
a destination in the routing table such as DUAL[1], MDVA[2], FIR[3] or adding
backup next-hops a posteriori to the forwarding entries found by a standard
shortest path routing protocol such as LFA[4], Not-via[5], MRC[6], SPT-DAG[7].
Unlike DUAL and MDVA, Permutation Routing bases its construction solely on
readily available topology information and hence no new control plane signalling
is required. In addition, Permutation Routing outperforms LFA and does not
introduce overhead bits as MRC and SPT-DAG.

Recent solutions focus on centralized routing that can provide added flexibil-
ity by improving path diversity that meets different requirements. Examples are
O2 [16] and Protection Routing [14]. O2 routing has a similar routing objective
to Permutation Routing, but limits itself to finding only two next-hops for each
node. Permutation Routing, on the other hand, allows a tunable K ≥ 1 while
still being compatible with traditional link-state routing protocols. In the same
category, Protection Routing presents a two-phase heuristic to produce a routing
for a given traffic demand in a centralized routing system. In phase 1, the heuris-
tic seeks to minimize number of unprotected nodes towards a destination while
minimizing the cost function given in [15]. Although Routing Permutations share
the goal of minimizing the number of nodes with only one forwarding option,
we prefer to evenly distribute next-hops among nodes rather than performing
traffic optimization for a specific traffic demand. We believe that finding a rout-
ing that optimizes for a given load function is less important in current Internet
where traffic matrix elements vary significantly with time. Instead, we aim at
maximizing the available forwarding options for more intelligent load balancing
methods such as [11] [12] that are more responsive to traffic variation.

Similar to our method, MARA [17] employed the concept of permutations to
generate routings that can maximize alternates. MARA, however, uses a differ-
ent objective function seeking to maximize the minimum number of next-hops
towards a destination. It can easily be shown that in networks without parallel
links between nodes, this minimum must always be 1.
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8 Conclusion

We have presented Permutation Routing as an approach for calculating more
robust routing while being compatible with existing links state routing proto-
cols. The paper proposed a generic algorithm to construct routing permutations.
Routings that optimize different objectives can be implemented by modifying the
selection criteria that are used in the construction algorithm. The goal of Per-
mutation Routing is to maximize the survivability in a network with traditional
hop-by-hop forwarding.

We have evaluated Permutation Routing with simulations on six ISP topolo-
gies. The results show that permutation routings outperform existing multipath
approaches such as ECMP and LFA in terms of robustness and path diversity.
We also showed that the complexity of calculating routing permutations is com-
parable to that of standard link state routing.
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