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Abstract. Autonomous System alliances or federations are envisioned
to emerge in the near future as a means of selling end-to-end qual-
ity assured services through interdomain networks. This collaborative
paradigm mainly responds to the ever increasing Internet traffic volumes
that requires assured quality, and constitutes a new business opportunity
for Network Service Providers (NSPs). However, current Internet busi-
ness rules are not likely to satisfy all involved partners in this emerging
scenario. How the revenue is shared among NSPs must be agreed in ad-
vance, and should enforce economical incentives to join an alliance and
remain in it, so that the alliance remains stable. In this paper, we work
on the scenario of such federations, where service selling is formulated as
a Network Utility Maximization (NUM) problem. In this context, we for-
mally formulate the properties the revenue sharing (RS) method should
fulfill and argue why the existing methods are not suitable. Finally, we
propose a family of solutions to the RS problem such that the economical
stability and efficiency of the alliance in the long term is guaranteed. The
proposed method is based on solving a series of Optimization Problems
and considering statistics on the incomes.

Keywords: Revenue sharing, Optimization, Autonomous Systems Al-
liances.

1 Introduction

Internet traffic consumption tendencies are evolving along two main axis.
On the one hand, the continuous growth in terms of volume as well as
in terms of Quality of Service (QoS) demanding applications, such as
telepresence, video or gaming [3]. On the other hand, the need for QoS
connectivity from end-to-end across several domains or ASs, which posses
political, economical and technical issues [15]. In addition, there is a need
for NSPs to find new business cases and technology for fulfilling customer
needs and maximizing incomes.

⋆ This work was funded by the ETICS project (EC FP7 248567)[1] and the Uruguayan
Agency for Research and Innovation (PR-POS-2008-003 and FCE 2158).



Nowadays Internet business rules for domain interconnection (peering
agreements and customer-provider agreements) may not be able to pro-
vide a sustainable economy for all actors in the value chain (i.e. Appli-
cation Providers, NSPs, etc.). Indeed, non of such rules are aware of the
QoS capabilities of the different domains, and peering ones are based on
a traffic-symmetry premise that may no longer be valid in evolving ser-
vices (for instance, on-line video, which is foreseen as one of the services
that is going to grow the most [3]).
Further on, a common way of pricing for Internet connection is a monthly
flat rate, while other actors like Application Content Providers or the
so-called Over-The Top-Providers receive revenues on a per bandwidth-
consumed basis, relying their services on the existing network infrastruc-
ture but not remunerating network providers adequately [12].
Taking into account the previous considerations many companies and
academic groups are analyzing different future scenarios in order to meet
the end-to-end requirements by defining inter-domain architectures and
business models. As a possible architecture to provide these end-to-end
QoS enabled services, the concept of ASs alliances or federations has
emerged (see for instance [1]). In this kind of interconnection market
scenario there exists a cooperation among ASs in infrastructure, policies
and incentives for rational usage of resources and agreements for pro-
viding end-to-end QoS. While at the same time, challenging issues arise,
such as priorities and revenue sharing.
This work focuses on the previously described context: several ASs that
create a federation and offer for sell different services. In particular, we
shall work on the framework presented on [4]. In such framework, for each
service there is a group of users interested in buying it. The total income
is a function of the whole bandwidth demanded for all the instances of
all the services. The federation may not be able to sell all the demand of
bandwidth for each service, because of capacity constraints in their data
networks. The objective of the federation is thus, to allocate bandwidth
in such a way that the revenue of the federation is maximized.
Once the services are sold, the income has to be split among all the
providers involved in the federation. The problem of how to make this
sharing is not an easy one. There are some properties that must be
fulfilled by the solution in order to make the sharing fair, and interesting
for all the providers, such that the alliance remains stable.
This work aims at shading light into the RS problem. In this sense we
provide the following contributions: formal representation of the problem
and discussion of the desired properties, evaluation of existing methods
which concludes that none of them are suitable for our problem, guide-
lines for a new method, and a solution proposal. The method is validated
through simulation studies.
This paper is organized as follows. Section 2 introduces the notations
used throughout the paper and states the desired properties for the RS
mechanism. In Section 3 we review the most common sharing rules used
in the economics field, and argue on why they are not useful for our
problem. This yields to presenting in Section 4 a new method, which
provides with a solution that guarantees stability and efficiency in eco-
nomical terms. Simulations results that demonstrate the correct behavior
of the proposed method are shown in Section 5. Finally, concluding re-
marks and future work are addressed in Section 6.



2 Problem Description

2.1 Definitions and Notations

We first introduce the notation needed to represent the interdomain net-
work of providers. Because of confidentiality and scalability issues we
need to abstract each provider’s topology to a simpler one. In particular
we shall consider each AS as a node, which is a very simple abstrac-
tion, though reasonable enough for our study. In addition, more complex
topology abstraction approaches could also be applied, without implying
any change in the mathematical formulation of the problem (see for in-
stance [2],[10]). The set of ASs or nodes is called N , there are |N | nodes
in the network, where the notation | · | refers to the cardinal of the set.
Each node n ∈ N has an equivalent capacity associated to it, which we
call cn, c = {cn}n∈N is the vector of nodes capacities. S is the set of
services offered by the network, there are |S| services. A service can be
abstracted to a tunnel that carries bandwidth from one ingress to one
egress node of the network. The routing matrix R indicates the routes
of all services in S, i.e. the nodes traversed by each service s ∈ S. More
formally, R is a |N | × |S| matrix whose entries {Rn,s}n∈N,s∈S are equal
to 1 if and only if route s traverses node n, and are zero otherwise.
The amount of bandwidth traversing each service route is indicated by
each component as, s ∈ S of column vector a ∈ R|S|. There is a utility
function associated to each service s ∈ S which is called Us and it is a
function of as. The utility Us is the willingness to pay of the group of
users interested in service s ∈ S. We assume that Us(as) is known and,
as usual in this context, it is a strictly non-decreasing concave function of
the bandwidth. For more details on the utility function and bandwidth
allocation the reader is referred to [4].
We now introduce extra notation in order to represent the RS problem.
The grand coalition is N , the set of all nodes in the network. The income
is assessed by the revenue function V : 2|N| → R which associates to
each subcoalition Q ⊆ N (i.e. subgroups of nodes) a real value V (Q, cQ),
where cQ is the capacities vector restricted to subcoalition Q, that is:

cQn = cn if n ∈ Q ; cQn = 0 otherwise. (1)

In our problem, the revenue function V is given by the solution of Prob-
lem 1. This problem states that services are sold (i.e. bandwidth is allo-
cated) such that the revenue of the coalition is maximized, while respect-
ing the capacity constraints. It is thus formulated as a NUM problem [11].

Problem 1.

max
a

∑
s∈S

Us(as)

s.t.Ra ≤ cQ, as/σs ∈ N ∀s ∈ S,

where σs is the amount of bandwidth provided by service s. We also
accept the notation V (Q) to indicate the total revenue of coalition Q ⊆
N , where the capacities are implicit. This optimal revenue problem is
not an easy integer program and its convex relaxation can be not exact.



However, since integer programming is NP hard, we accept sub-optimal
solutions by convex relaxation that in many cases leads to tight solutions.
We define the contribution vn of node n ∈ N to the coalition as vn =
V (N) − V (N \ {n}). The total revenue is shared among all the nodes
in N according to the sharing function Φ : R → R|N|, Φ = Φ(N, c) =
{φn(N, c)}n∈N , where φn is the share corresponding to node n ∈ N .
For convenience, we sometimes also use the shorter notation x to denote
the RS vector, where x ∈ R|N| is a column vector containing on each
component xn, n ∈ N , the revenue share of node n, when the values of
N and c are implicit by context.

2.2 Desired properties of the RS mechanism

We shall now state the properties that a revenue mechanism for ASs
alliances should fulfill. The idea that motivates all of them is that the
ASs should be encouraged to remain in the coalition, which will occur
if that makes sense from the economical point of view. The properties
discussed below, and more, are usually discussed in cost/revenue sharing
problems, with slightly different definitions (see for instance [9],[6]). We
select from them the ones that we believe are of more relevance to our
problem and formally define them.

Efficiency. The mechanism should distribute all the alliance’s revenue
among its members, that is

∑
n:n∈N

xn = V (N). (2)

Stability. In order to assure the sustainability of the federation, the
mechanism should not provide incentives to any subcoalition to break
the grand coalition. That is to say, no subcoalition should have economic
incentives to form a smaller coalition outside the grand coalition, since
this would lead to instabilities in the federation. This can be written as:

∑
n:n∈Q

xn ≥ V (Q), ∀Q ⊆ N. (3)

Please note that this definition also implies another interesting property
usually known as stand alone. This means that the revenue perceived
by every node i ∈ N in the coalition is not less than the revenue it
could achieve alone, i.e. xi ≥ V ({i}), ∀i ∈ N . The set of points that
verify (3) constitutes the so-called core set in the context of Coalitional
Game Theory. The reader is referred to [17] for more details on the core
concept and coalitional game theory.

Monotonicity. The mechanism should provide the right incentives to
the nodes to increase their resources towards the coalition. In our model,
these resources are considered in the capacity. We formally define this
property as follows. Given c and ĉ two vectors of nodes capacities, such
that ĉn = cn ∀n ∈ N \ {i} and ĉi ≥ ci then φi(N, ĉ) ≥ φi(N, c).
Thus, the Monotonicity property means that if an AS increases its ca-
pacity then its revenue will as well increase or remain the same.



Fairness. We want the mechanism to be fair in the sharing. There is
not a general consensus in the literature regarding the notion of fairness.
However, we propose the following intuitive rules to be fulfilled. If vi ≥ vj
then xi ≥ xj , which is usually known as the order preserving property
and if vi = 0 then xi = 0. We may also accept a weaker notion of fairness,
which only asks for xi = xj if vi = vj .

3 Existing Techniques

In this section we present existing RS techniques, which are widely used
in the field of economics. A detailed review can be found in [9]. We also
comment on why these techniques are not suitable for our problem.

The Proportional Share: One of the simplest way to perform the RS is
the one that is proportional to the contribution of each node. Using the
definitions introduced in Section 2 we write the proportional share as:

xprop
i =

vi∑
n∈N

vn
V (N). (4)

The proportional share a priori seems to be a very attractive distribution
rule. It fulfills the properties of Efficiency and Fairness and it is very
simple to compute. However, it has the drawback that it does not always
guarantee neither Stability nor Monotonicity.

The Shapley Value. The Shapley value, proposed by Lloyd Shapley in
1952 [16], provides a means for performing the RS of an association or
coalition. It has been widely used in the literature for its good properties.
Given a coalitional game, i.e. a pair (N,V ) where N is a finite set of
players and V : 2|N| → R any worth or revenue function, the Shapley
value for player i ∈ N is defined as:

xsh
i =

1

|N |!

∑
Q⊆N\{i}

|Q|!(|N | − |Q| − 1)! [V (Q ∪ {i}) − V (Q)] . (5)

Among its properties, the Shapley vale has the Efficieny, Monotonicity
and a particular case of the Fairness as defined in Subsection 2.2. It also
fulfills its own definition of fairness in terms that for any players i, j ∈ N ,
i’s contribution to j is equal to j’s contribution to i.
However, the Shapley value does not always provide stable solutions.
That is the reason why it is not suitable for our problem. Nonetheless, its
great popularity in previous work is due to the fact that it is proven that
it provides with stable solutions when the revenue function is a convex
function. For instance, the Shapley value has been used in [12], where
the proposal is to change the Internet economics by business contracts
whose payment is determined by the Shapley value. And also in [14],
where the aim is to optimize the routing within an alliance of ASs and
the revenue is shared by means of Shapley value. Recently, it has also
been use in [18] for splitting cost savings among several domains.
In our problem, the revenue function V is not a convex one and solutions
through Shapley value can lie outside the core. A simple example can be
found using the topology on Fig. 1b and the example in Section 4. In
that case, the Shapley value renders x = (1/2, 3, 3/2) which is outside the
core while we shall show on that section that a non-empty core exists.



The Aumann-Shapley Rule. The Aumann-Shapley Rule for cost shar-
ing [5] was introduced by Shapley and Aumann in 1974, and can be
applied analogously for a RS problem. The idea of this rule is to com-
pute the revenue share of node i ∈ N as its average marginal revenue
along a certain path going from capacity equal to 0 to ci. More precisely,
the share for node i ∈ N according to this rule is defined as:

xas
i =

∫ ci

0

∂iV (N,
t

ci
c)dt = ci

∫
1

0

∂iV (N, tc)dt, (6)

where the notation ∂iV (N, c) means the first order derivative of V at c
with respect to ci. Please note that in Equation (6) we have used the
alternative notation for V where it is explicitly mentioned its dependency
on the subcoalition and the equivalent capacities.
In first place, it must be noticed that the derivative of V with respect to ci
is not defined for all values of ci. Indeed, consider a simple topology with
only one service crossing several nodes, which all have the same capacity.
Let ĉ be that capacity. If a given node i increases its capacity, the other
nodes will act as bottlenecks and the revenue will not change, while if
i reduces its capacity then it will itself become the bottleneck and the
revenue will decrease. Hence, the derivative of V takes different values
at both sides of ĉ and is not defined at ci = ĉ. In addition, this rule does
not fulfill the Monotonicity property, this is due to the characteristics
of our revenue function. Furthermore, this rule applied to our problem
could even provide incentives to reduce capacity.

The Friedman-Moulin Rule. This rule was proposed by Friedman and
Moulin in 1999 [8]. We introduce the operator ∧, which is defined for
two vectors a and b ∈ R|N| as a ∧ b = min(ai, bi) i ∈ N and column
vector e, which is of dimension |N | and has all its components equal
to one. This rule is similar to the Aumman-Shapley one, in terms that
it integrates marginal revenues, but in this case the integration is done
through a different path. According to the Friedman-Moulin rule, the
share for node i ∈ N is calculated as:

xfm
i =

∫ ci

0

∂iV (N, t · e ∧ c)dt. (7)

This rule can not be applied in our context since V is not derivable along
the whole path, for the same reasons explained above.

4 The Proposed Method

Having seen that existing techniques are not suitable for our problem,
we shall now propose a new method to perform the RS in our specific
scenario. We focus our attention on two properties: Stability and Effi-
ciency. Nevertheless, we shall present a flexible method which allows for
including further properties on future work. We first study the set of
possible solutions. For clarity sake, we consider this set of solutions in
a simple scenario, which we call the one-shot scenario. In this scenario
services are sold through what we call a service selling (SS) phase and RS
is performed right afterwards. We shall latter on move to a multi-period
scenario.



4.1 The Feasible Solutions Set

In order to have stability in the coalitions inequality (3) must hold. Let
us enumerate all the possible subcoalitions Q ∈ N and index them using
index j = 1 . . . 2|N|. We rewrite inequality (3) as a linear system as:

Qx ≥ v̂, (8)

where Q = {Qj,i} is a 2
|N|×|N |matrix that indicates which nodes belong

to each subcoalition (i.e. Qj,i = 1 if node i belongs to subcoalition j and
0 otherwise) and v̂ = {V (Qj)}j=1...2|N| is the vector that indicates in
the j-th component the revenue of subcoalition j.
We must consider at the same time the Efficiency property, which we
write as the vector representation of Equation (2):

eTx = V (N). (9)

But do these constraints determine a unique point? Or rather they deter-
mine a set of points? Is this set empty? We show through the following
examples that actually different cases can occur.

An empty feasible set. Consider the network on Fig. 1a. The capac-
ities of all nodes are equal to 1 unit. The three services illustrated on
the mentioned figure are sold, each one of them is defined for 1 unit of
bandwidth. The utility functions are such that V (N) = V ({1, 2}) = 5,
V ({2, 3}) = 4 and V ({1, 3}) = 2.

(a) (b)

Fig. 1: The feasible set in different situations.

For achieving stability the total revenue (5 units) must be split in such
a way that every route receives at least what they would receive alone.
It is not difficult to see that this is not possible at the same time for all
routes, since the following inequalities must hold: x1+x2 ≥ 5, x1+x3 ≥ 2,
x2 + x3 ≥ 4 and x1 + x2 + x3 = 5. Hence, the feasible set is empty.

It is interesting to remark that for different values of the revenues, and
same topology, the feasible set could be non-empty.

A feasible region. Consider now the network on Fig. 1b. The capacities
are again equal to 1 unit for all nodes and we sell services of 1 unit
of bandwidth. Utility functions are such that V (N) = V ({2, 3}) = 5
V ({1, 3}) = 2. A feasible solution must fulfill x1 + x3 ≥ 2, x2 + x3 ≥ 5
and x1 + x2 + x3 = 5. The vectors x that satisfy all equations are {x =
(0, 2+ ǫ, 3− ǫ) : ǫ ∈ R, 0 ≤ ǫ ≤ 3}, which corresponds to a segment in R2.



4.2 One-Shot Scenario

We have seen in the previous subsection that configurations with no so-
lution can exist, in this case we claim that the coalition should not exist
as such, since there is no RS method that can make it stable. Therefore,
we focus our attention on the case where constraints (8) and (9) deter-
mine a region. In order to choose a point from such region we formulate
the following Optimization Problem:

Problem 2.

min
x

f(x)

s.t. Qx ≥ v̂, eTx = V (N),

where f(x) is a convex function. Please note that we can dispense with
the restriction of non negative revenue shares, since it is already con-
sidered on the Stability property. Problem (2) constitutes a family of
methods which can be tuned to cover additional properties by consid-
ering different objective functions. Examples of objective functions are
to project the Proportional share or the Shapley value into the feasible
set, which means the method inherits their properties when the share is
already in the feasible set, and otherwise returns the closest value. Yet
another example is the square of the Euclidean norm of the share vector,
which would intuitively provide with more even shares among the nodes.
Regarding implementation aspects, the proposal is to have a central
trusted entity computing the RS. This entity must know the utility func-
tions for each service and the topology of the coalition, at the AS level.

4.3 Multi-period Scenario

We shall now focus our attention on the multi-period scenario, that is
to say, when several phases of SS occur. A new period implies a new
utility function, thus different values for Us, s ∈ S. This necessarily leads
to a different feasible set. Finding on each period a valid RS vector
would involve performing a great number of computations, besides to
a great exchange of information among the domains and the central
entity solving the RS. In other words, the multi-period case may pose the
problem of scalability thus, we face the challenge of providing a scalable
approach. One could naively propose as a solution to compute the RS
once, and then simply keep the sharing proportion for the subsequent
RS phases. However, if we were to use the same RS proportion for a new
SS instance, then the new RS vector can lie within the new feasible set
or outside of it, which leads us to discard that option.
Altogether, we are motivated to perform the RS on a longer timescale
than the SS phase, and work with statistics of the utilities received during
the several SS phases considered for a given RS phase. In the following
we shall discuss two different approaches for working with such statistics.

Approach 1. In order to model the multi-period situation, let us intro-
duce the assumption that the utility functions depend on a value drawn
independently from a continuous probability distribution for each service.



Provided this, we can safely represent the utility functions of several SS
phases occurred during a certain period of time by their mean over that
period of time. As usually, notation E represents the expectation of a
random variable. We define the mean utility function as:

Us(as) = E[Us(as)], (10)

which is still a non-decreasing concave function of as,∀s ∈ S. Finally, we
redefine the revenue function V by Problem 3, and call it V.

Problem 3.

max
a

∑
s∈S

Us(as)

s.t.Ra ≤ cQ.

The procedure then continues solving Problem 2, but considering now V
instead of V for the definition of v̂.
The explained mechanism allows us to perform the computation only
once in a while (e.g. monthly). In addition, the amount of information
exchanged is also kept small, since the only information that has to be
transmitted to the central entity on each RS phase is the mean of the
utilities over that period. However, can we be sure that the solution
provided by this approach is always stable in the long term? The answer
to this question is addressed in the following.

Approach 2. Usually, providers’ decisions are based on long term
behaviors, mainly for keeping network stability. Likewise, the interest of
the providers to remain in the alliance would be based on its economical
stability in the long term. That is, they would likely need to know if their
revenue share is economically attractive in the long term. For considering
such situation we compute the long term feasible set, which is obtained
after the expectation of the revenues of each subcoaliton, and obtain the
RS from such set. This is summarized on Problem 4.

Problem 4.

min
x

f(x)

s.t. Qx ≥ E{v̂}, eTx = E{V (N)}.

Please note that E{v̂} is obtained by computing the expectation of the
output of Problem (1) for each subcoalition Q ⊆ N .
The raised question reduces then to answering if the point chosen by
Problem (3) lies within the feasible set of Problem (4) or not. Unfortu-
nately this is not necessary true. Indeed, as shown in [13], where relation-
ships between stochastic non-liner programming problems are demon-
strated, the following inequality applies:

E{V (Q)} ≥ V(Q),∀Q ⊆ N, (11)

which means that the feasible set of Approach 2 is contained in the one
of Approach 1. However, we have no indication about the tightness of
the bound, thus we shall evaluate the impact of using either of both
approaches by simulation, in the following section.



5 Simulations

The simulations presented in this section were performed on a regular
computer with a i5 processor of 2.67GHz and 3.6 GB of RAM memory.
The optimization problems were solved using CPLEX through AMPL.

5.1 One-shot scenario

We shall consider the topologies on Fig. 2, where the arrows indicate the
services’ paths, cn = 10 for all nodes n and σs = 5 for all services s, all
values expressed in some coherent unit. Tabel 1a shows the utility in $
for carrying 5 and 10 units of bandwidth, where the underlined values
correspond to the solution of Problem 1 (i.e. the revenue).

(a) 1. (b) 2. (c) 3.

Fig. 2: Topologies used throughout the simulation studies.

Utility ($)

Service Us(5) Us(10) Us(5) Us(10) Us(5) Us(10)

s1 1 2 5 9 7 8
s2 6 9 7 11 2 3
s3 - - 11 16 5 8
s4 - - 12 18 5 8
s5 - - - - 6 11

Topology 1 Topology 2 Topology 3

(a) Utility values

Revenue Share (%)

Topology xnorm xsv
⊥ xsv x

prop
⊥

xprop vi

1

0.333 0.284 0.278 0.280 0.280 7
0 0 0.019 0 0 0

0.333 0.358 0.352 0.360 0.360 9
0.333 0.358 0.352 0.360 0.360 9

2

0.200 0.175 0.175 0.200 0.211 12
0.300 0.353 0.353 0.344 0.333 19
0.300 0.297 0.297 0.256 0.246 14
0.200 0.175 0.175 0.200 0.211 12

3

0.077 0.130 0.183 0.077 0.105 2
0.077 0.023 0.076 0.077 0.105 2
0.039 0.039 0.106 0.039 0.053 1
0.039 0.039 0.106 0.039 0.053 1

0 0 0.014 0 0 0
0 0 0.014 0 0 0
0 0 0.036 0 0 0

0.769 0.769 0.465 0.769 0.684 13

(b) Results using different criteria.

Table 1: Revenue sharing, one-shot scenario.

Revenue shares were computed using the different rules introduced in
Section 3 and the criteria introduced in Section 4. Results are shown
on Table 1b (where notation x∗

⊥ stands for the projection of * into the
feasible set and xnorm is the solution when f(x) = ‖x‖2), along with the
value of vi for each node. Topologies 2 and 3 constitute examples where
the Proportional share does not lie into the feasible region, so do topolo-
gies 1 and 3 for the case of the Shapley value. Regarding the different
criteria, xnorm shows the most even shares. Some fairness notions are
also observed for most criteria but the Shapley value; the smaller the vi,
the smaller the xi, nodes whose contribution is null (i.e. vi = 0) obtain
no revenue, while those with same vi obtain the same RS.



5.2 Multi-period scenario

We now compute the solution according to Approach 1 and 2. In both
cases, a number of 50 SS phases were performed before a RS phase and
the projection of xprop was used as criteria. Results for topology on Fig.
2b are shown on Fig. 3a. For this topology, on every RS phase the results
obtained using both approaches are almost the same. Same thing occurs
for all the simulations performed, in particular for the topology on Fig.
2c, whose results for selected nodes are shown on Fig. 3b.
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(a) Topology on Fig. 2b.
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(b) Topology on Fig. 2c.

Fig. 3: RS using Approach 1 (-) and 2 (+).

We now evaluate the time consumed by each approach. We shall consider
a simple topology with only one service defined and linearly increase the
number of nodes in the service’s path. Results show that for both ap-
proaches the time consumed by the method increases exponentially with
the number of nodes in the network. This is related to the Stability prop-
erty, since for taking it into account we consider all subcoalitions of nodes
(i.e. 2|N| cases). For a topology of 8 nodes, Approach 1 consumed on the
average 2 ms while Approach 2 consumed 135 ms. However, Approach
2 is still feasible, moreover considering it is proposed to be performed
off-line and in a long timescale. In addition, ASs alliances are likely to
have no more than 10 nodes, considering for instance, that the average
AS path in the Internet is of 4 ASs [7].
All in all, we can claim that Approach 2 provides with a solution that
fulfills the sought properties with affordable computation time.

6 Conclusion and Future Work

The present work has addressed the problem of RS in the context of ASs
alliances. We have focused on the case where the income of the alliance
is determined by the output of a NUM problem. This particular scenario
poses new challenges. Previous results for performing RS, which have
been reviewed in this work, were found to be inappropriate applied to
this case. The desired properties for the RS were formally stated and a
new method has been proposed. This method is conceived for providing
economical stability and efficiency to the alliance and it is flexible enough
to be adapted to fulfill additional properties. The method is based on
solving optimization problems and considers statistics on the income. Its
proper behavior has been evaluated through simulation studies.
As future work, we shall study the inclusion of further properties into the
method, as well as research on the relation between the two approaches



provided for the multi-period scenario. In particular, we are interested in
including the consideration of QoS parameters associated to the services
and providing incentives through the RS mechanism to guarantee them.
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