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Abstract. Motivated by applications to wireless sensor networks, we
study the following problem. We are given a set S of wireless sensor
nodes, given as a multiset of points in a normed space. We must place a
minimum-size (multi)set Q of wireless relay nodes in the normed space
such that the unit-disk graph induced by Q ∪ S is two-connected. The
unit-disk graph of a set of points has an edge between two points if their
distance is at most 1.
Kashyap, Khuller, and Shayman (Infocom 2006) present algorithms for
the two variants of the problem: two-edge-connectivity and biconnectiv-
ity. For both they prove an approximation ratio of at most 2dMST , where
dMST is the maximum degree of a minimum-degree Minimum Spanning
Tree in the normed space. In the Euclidean two and three dimensional
spaces, dMST = 5, and dMST = 13 respectively. We give a tight analy-
sis of the same algorithms, obtaining approximation ratios of dMST for
biconnectivity and 2dMST − 1 for two-edge-connectivity respectively.

Keywords: wireless and sensor networks, approximation algorithms,
Steiner nodes

1 Introduction

A wireless sensor network is composed of a large number of sensors, which can
be densely deployed to monitor the targeted environment. Sensors may have a
short transmission range since long transmission consumes more energy, and the
sensors normally have limited power. Therefore, network partitions may occur
or more sensors must be placed to maintain connectivity. Higher connectivity
may be desired to ensure fault-tolerance.

Formally, in the Two-Connected Relay Placement problem, we are
given a set S of wireless sensor nodes, given as a multiset of points in a finite-
dimensional normed space. A normed space is a metric space (X, d), given by a
set X and a symmetric function d : X×X → R

+ that obeys the triangle inequal-
ity: ∀x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(z, y), and the property that d(x, y) = 0 if
and only if x = y. As defined in the literature [2], a normed space also has the
following property (and others that we don’t use): ∀x, y ∈ X and ∀α ∈ [0, 1],
there exists z ∈ X such that d(x, y) = d(x, z)+d(z, y) and d(x, z) = αd(x, y). In
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other words, the normed space contains all the Steiner points. Normed spaces of
interest to wireless networks are the two and three dimensional Euclidean space,
with d being the Euclidean distance (the l2 norm).

We must place a minimum-size (multi)set Q of wireless relay nodes in the
normed space such that the unit-disk graph induced by Q∪S is two-connected.
The unit-disk graph of a set of points has an edge between two points if their
distance is at most 1 (we normalize to 1 the transmission range of the sensors).
For a multiset of points P , let U(P ) be the unit-disk graph induced by P . Also,
we call two vertices U -adjacent, or U -neighbors, if their distance is at most 1.

Kashyap, Khuller, and Shayman [12] introduce the two variants of this prob-
lem: Two-Edge-Connected Relay Placement (U(S ∪ Q) must be two-
edge-connected, that is, have between any two vertices two edge-disjoint paths)
and Biconnected Relay Placement (U(S∪Q) must be biconnected, that is,
have between any two vertices two internally vertex-disjoint paths). Two paths
are internally vertex-disjoint if they only have the endpoints in common. Bicon-
nectivity also goes by the name of two-vertex-connectivity, or two-connectivity.

Let dMST be the maximum degree of a minimum-degree Minimum Spanning
Tree in the normed space.It is known [21, 18] that dMST is the Hadwiger number
of the normed space, defined as follows: the maximum size of an independent
set in U(Nx), taken over all points x of the space, with Nx being the points,
other than x, within distance 1 of x. Is is known that dMST = 5 in the Euclidean
two-dimensional space, and dMST = 13 in three dimensions.

[12] presents two algorithms, based on the Khuller and Vishkin (Algorithm

KV[14]) and the Khuller and Raghavachari [13] (Algorithm KR) algorithms
for Minimum-Weight Spanning Two-Edge-Connected Subgraph, and
Minimum-Weight Spanning Biconnected Subgraph, respectively. For these
problems, a weighted graph G = (V,E,w) is given as input, and one must select
a minimum weight set of edges F such that (V, F ) is two-edge-connected, or bi-
connected respectively. For Two-Connected Relay Placement, [12] proves
that each of the two algorithms has approximation ratio of at most 2dMST . [12]
also presents simulation results.

We give a tight analysis of the same algorithms, obtaining approximation
ratios of dMST for biconnectivity and 2dMST − 1 for two-edge-connectivity re-
spectively. Thus, in the two-dimensional Euclidean plane, we get a ratio of 9,
instead of 10, for two-edge-connectivity and 5, instead of 10 ([12]), for bicon-
nectivity. Assuming that no post-processing removes redundant relay nodes, the
ratios given in this paragraph are tight for these algorithms. We are not able
to analyze the effect of removing useless beads, a step applicable after both
Algorithm KR and Algorithm KV.

For the ratio of 2dMST − 1, we use a more careful accounting and look inside
Algorithm KV. Due to space limitations, we fully omit presenting this result,
as well as several other proofs. For the ratio of dMST for biconnectivity, we look
inside Algorithm KR, and prove a property of biconnected graphs that may
be of independent interest.
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Precisely, we claim the following “parsimony” result, new to the best of our
knowledge. Let H be a biconnected planar undirected graph, and replace every
edge by two anti-parallel directed arcs. Let S be a subset of V (H). Then there
exists a set of arc-disjoint paths Pi of H , all starting and ending at a vertex of S
and without interior vertices from S, such that, if we replace each Pi by an arc ei
joining the start and end vertex of Pi, we obtain a biconnected digraph on vertex
set S. This property allows one to “bypass” Steiner vertices (“parsimony”) and
in some sense eliminate them.

For graphs in general, we prove a “fractional outconnected” variant of the
property above, and use it together with Algorithm KR to obtain an approx-
imation ratio of dMST for biconnectivity in arbitrary normed spaces. Structural
properties of biconnected Steiner networks were also studied by [9, 8, 24, 17], and
we use some of their results and techniques for “outconnected parsimony”. Us-
ing these structural properties, we construct from the optimum solution of an
arbitrary Biconnected Relay Placement instance a fractional solution to
a certain polytope. This polytope was proposed by Frank and Tardos [5], who
proved that it is integral (see also [6]). Thus, there exists a integral solution
with cost at most this fractional solution, for any non-negative cost function.
We define costs that relate the objective function to an optimum relay solution,
and notice that the output of Algorithm KR in a weighted graph we describe
later is (almost) derived from an integral polytope optimum solution.

Also in previous work, Wang, Thai, and Du [22] and Bredin, Demaine, Ha-
jiaghayi, and Rus [1] also gave constant factor algorithms, those of [1] achiev-
ing a O(k4) approximation for k-connectivity. We remark that in a wireless
setting, one only needs k-connectivity between the vertices of S, i.e. k edge-
disjoint (or internally vertex-disjoint) paths between any two vertices of S. For
k = 1 or k = 2, by eliminating redundancy from any solution, one can see
that k-connectivity or k-edge-connectivity between the vertices of S implies k-
connectivity or k-edge-connectivity, respectively, of U(S ∪ Q). We only present
the argument for 2-connectivity: If U(S ∪Q) is not biconnected, it has a vertex
v such that U ((S ∪Q) \ {v}) has at least two connected components, and one
of these two components contains no vertex of S, since we have two-connectivity
between the vertices of S; the removal of this component does not decrease the
connectivity between the vertices of S. This argument fails for k > 2. When
requiring only k-connectivity between the vertices of S, [1] obtains a O(k3)-
approximation ratio, improved to O(k2) by Kamma and Nutov [10].

MSPT (Minimum Number of Steiner Points Tree with bounded edge length)
is the following related problem: Given S in the plane, find minimum Q such that
U(S ∪ Q) is connected. This problem was introduced by Lin and Xue [15] and
proven NP-Hard. They also prove that taking a Euclidean minimum spanning
tree, and placing a minimum number of relay nodes on each edge of the tree to
connect the endpoints of the edge, achieves an approximation ratio of 5. Man-
doiu and Zelikovsky [19] give a tight analysis of 4 for the MST-based algorithm
described above, and generalize to arbitrary normed spaces obtaining a ratio of
dMST − 1. Chen, Du, Hu, Lin, Wang, and Xue also prove in [3] the same ratio of
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Fig. 1. Left, an optimum solution for two-edge-connectivity. The nodes of S are black
disks, and the relay nodes are empty circles. Right, an optimum bead solution.

4 but with a different approach, and present a 3-approximation algorithm. Later,
Cheng, Du, Wang, and Xu [4] improve the running time of the algorithms found
in [3] while the approximation ratio is unchanged. They also present a random-
ized algorithm with approximation ratio 2.5 for the same problem. In arbitrary
normed spaces, Nutov and Yaroshevitch [20] obtain a ⌊(dMST + 1)/2⌋+ 1 + ǫ-
approximation.

2 Biconnectivity

For any graph G, we use
−→
G to represent the bidirected version of G, that is the

weighted digraph obtained from G by replacing every edge uv of G with two
oppositely oriented arcs uv and vu with the same weight as the edge uv in G. As
usual, the weight of a subgraph H of G is defined as w (H) =

∑

e∈E(H) w (e) ,

and the weight of a subdigraph D of
−→
G is defined as w (D) =

∑

e∈E(D) w (e) .

A spanning subdigraph D of
−→
G is said to be an arborescence rooted at some

vertex s ∈ V if D contains exactly |V |−1 arcs and there is a path in D from s to
any other vertex. In other words, arborescences in directed graphs are directed
analogs of spanning trees in undirected graphs.

For any subdigraph D of
−→
G , we use D to represent the undirected graph

obtained from D by ignoring the orientations of the arcs and then removing
multiple edges between any pair of nodes. Call a feasible solution Q of a Two-

Connected Relay Placement instance a bead-solution if U(Q ∪ S) contains
a two-edge-connected graph (or biconnected, respectively) H where each node of
Q has degree exactly two. The Kashyap et. al. [12] algorithms produces a bead
solution - see for example Figure 1, borrowed from the thesis of Kashyap [11].
In a bead-solution, we may call the relay nodes beads.

As [12], we use the approximation algorithm of Khuller and Raghavachari
[13], which we refer to as Algorithm KR. We use a variant of Algorithm KR

and go deeper in the algorithm to obtain a better approximation ratio.
For x, y ∈ S, define w(x, y) = max(0, ⌈d(x, y)⌉−1), where d(u, v) denotes the

distance from u to v. One can easily verify that w(x, y) is the minimum number
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of relay nodes required to connect x and y, and that w(x, y) is an increasing
function of d(x, y). Note that w is not a metric.

A digraph is said to be k-outconnected (short for k-vertex-outconnected) from
a vertex s if it contains k internally vertex-disjoint paths from s to any other
vertex. The min-weight spanning subdigraph of a given weighted digraph which
is k-outconnected from a specified vertex, if such a digraph exists, can be found
in polynomial time by an algorithm of Frank and Tardos [5]. Gabow [7] has
given a faster implementation of the Frank-Tardos algorithm. Suppose that D
is a 2-outconnected digraph from a vertex s in which s has exactly two outgo-
ing neighbors x and y. Then the graph

(

V (D) \ {s}, E(D) ∪ {xy} \ {sx, sy}
)

is
biconnected [13]. Algorithm KR constructs a biconnected spanning subgraph
of a given weighted graph G as follows.

1. Let xy be an edge of G and s be a vertex not in V . Add to
−→
G two arcs sx

and sy of weight 0. The resulting digraph is denoted by G+.
2. Find the minimum-weighted spanning subdigraph D of G+ which is 2-

outconnected from s.
3. Output the edge set E(D) ∪ {xy} \ {sx, sy}.

Using as G the complete graph on vertex set S with w as the weight defined
above, both us and [12] use the slightly modified algorithm that tries as xy
above all the edges of G, and picks the minimum of all output solutions. Replace
each edge of positive weight by new beads (that is, every such edge has its own
distinct beads); this is the output. It is known that this modified version is a
2-approximation for Minimum-Weight Spanning Biconnected Subgraph.
The approximation ratio of 2dMST obtained by [12] is based on showing that
G has a biconnected subgraph of weight at most dMST · opt , where opt is the
value of an optimum relay solution. Our approximation ratio of dMST follows
from Theorem 2, proven after preliminary lemmas.

Given a cycle C in an undirected graph H and two distinct vertices u and
v on C, a chord-path between u and v is path P in H between u and v that,
except for u and v, shares neither vertices nor edges with C.

Lemma 1. Let J be a biconnected simple undirected graph and A be a subset of
V (J) with |A| > 1. Assume no proper biconnected subgraph J ′ of J exists such
that A ⊆ V (J ′). Then for every cycle in J , any chord-path has in its interior a
vertex of A. Every simple cycle of J contains two vertices of A.

Proof omitted. The property above is proved by Luebke and Pravan [17] (see
also [16]) with a slightly different hypothesis and their approach works here as
well. From here it is immediate to deduce the following:

Corollary 1. Let J be a biconnected simple undirected graph and A be a subset
of V (J) with |A| > 1. Assume no proper biconnected subgraph J ′ of J exists such
that A ⊆ V (J ′). Let Qi be a connected component of the subgraph of J induced
by V (J) \ A. Let Ai be the set of vertices of A adjacent to some vertex in Qi,
and let Ti be the the subgraph of J with vertex set Ai ∪Qi and containing all the
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edges of J with at least one endpoint in Qi. Then Ti is a tree (called full Steiner
component).

We also need a maximum degree condition that is claimed and used in [12].
The condition is stated in the lemma below whose proof we omit.

Lemma 2. Assume Q is minimal such that U(S ∪Q) is biconnected. U(S ∪Q)
contains a biconnected subgraph such that every vertex of Q has degree at most
dMST .

Now, it will be nice if we could use the “parsimony” propery for planar graphs
mentioned in the introduction, and whose proof we omit due to space limitations.
However we are unable to prove or disprove this property for non-planar graphs,
and in three dimensions we cannot count on planarity. We do have Lemma 3
below, weaker in two respects: the solution is “fractional”, and 2-outconnectivity
replaces biconnectivity. It will be enough for our purpose.

Given digraph L and X,Y disjoint sets of V (L), define Λ(X,Y ) to be the set
of arcs with tail in X and head in Y . Given digraph L and s ∈ V (L), consider
the polytope P(L, s) in R

|E(L)| (with vectors β having entries βe indexed by arcs
of L) defined by the constraints:

0 ≤ βe ≤ 1 ∀e ∈ E(L) (1)
∑

e∈Λ(V \X,X)

βe ≥ 2 ∀∅ 6= X ⊆ (V (L) \ {s}) (2)

∑

e∈Λ(V \({z}∪X),X)

βe ≥ 1 ∀ z 6= s ∀ ∅ 6= X ⊆ (V (L) \ {s, z}) (3)

Using Menger’s theorem, one can check that, for an integral vector β valid
for P(L, s), the set A of arcs e of E(L) with βe = 1 is such that the digraph
(V (L), A) is 2-outconnected from s. Thus one can think of a valid vector β
as being “fractional-2-outconnected”. Theorem 17.1.14 of [6], (given there with
more complicated notation as it solves k-outconnectivity), is given below:

Theorem 1. (originally [5]) The system giving P is Total Dual Integral, which
implies that for any c : E(L) → N, if the linear program [Minimize

∑

e∈E(L) ceβe

subject to β ∈ P(L, s)] has a valid optimum, it has an integer-valued optimum.

To use this deep theorem, which is also at the basis of Algorithm KR, we
prove our main structural property (the “fractional outconnected parsimony”):

Lemma 3. Let J be a biconnected undirected graph, and replace every edge by
two anti-parallel directed arcs. Let A be a subset of V (J). Then there exist ver-
tices x, y ∈ A, and there exist positive reals αi and a set of paths Pi of J , all
starting and ending at a vertex of A and without interior vertices from A, with
the following properties. P0 starts at x and ends at y and α0 = 1/2. P1 starts at
y and ends at x and α1 = 1/2. For every arc of e ∈ E(J),

∑

i≥0 | e∈E(Pi)

αi ≤ 1
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For i ≥ 2, replace each Pi by an arc ei joining the start and end vertex of Pi,
obtaining a directed graph H with vertex set A. Add new vertex s and two arcs
sx and sy to H, resulting in digraph H+. Let αsx = αsy = 1, and for i ≥ 2, let
α(ei) = αi. Then the vector α is feasible for P(H+, s).

Proof. Remove edges and vertices not in A from J until it satisfies the conditions
of Lemma 1 and Corollary 1. Let Tj (j ≥ 0) be the full Steiner components (all
our full Steiner components have at least one vertex not in A, and no edge with
both endpoints in A) given by this corollary. Do an Eulerian traversal of each
bidirected Tj (as in Christofides’ algorithm). Recall that the vertices of A∩V (Tj)
are leafs, and thus each is visited exactly once. If vertices u, v of A appear in
this traversal such that, after u, v is the next vertex of A (thus skipping the
vertices not in A), have two paths Pj and Pk one from u to v and one from v
to u, both with αi = 1/2. Pj follows the traversal, while Pk is the reverse of Pj .
Arbitrarily pick a T0 and x and y consecutive in the Eulerian traversal of T0,
and renumber the paths such that P0 starts at x and ends at y and P1 starts
at y and ends at x. All α values are still 1/2. For two vertices u and v of A
adjacent in J , make (one-arc) paths Pj and Pk, one from u to v and one from v
to u, both with αi = 1. One can immediately check that for every arc e ∈ E(J),
∑

i≥0 | e∈E(Pi)
αi ≤ 1, as indeed, for an arc e of a full Steiner component, e

appears in two paths Pi: one is a part of the Eulerian traversal, and one is the
reverse of a path P in the Eulerian traversal, precisely P that contains the arc
antiparallel to e. Incidentally to this proof, we remark that Kashyap et al. [12]
also do this Eulerian traversal (though they don’t call it Eulerian, look at their
Figure 2), but implicitly set αi = 1 for all i and then the equation above only
holds with 2 as the RHS. Here is where we improve the approximation ratio by
a factor of two.

For i ≥ 2, replace each Pi by an arc ei joining the start and end vertex
of Pi, obtaining a directed graph H with vertex set A; note that H does not
include arcs given by P0 and P1. Add new vertex s and two arcs sx and sy to
H , resulting in digraph H+. Let αsx = αsy = 1. It remains to show that the
vector α is feasible for P(H+, s). Once again incidentally, we mention that [12]
implicitly obtain the same H+ but put α = 1 on all the arcs, while we use 1/2
for all arcs with at least one Steiner endpoint. This is where we improve the
ratio - and this also explains why our proof is much longer and complicated.

Constraints (1) are immediate. We proceed to Constraints (2). Pick an arbi-
trary X ⊆ (V (L) \ {s}). If {x, y} ∈ X , then the two arcs sx and sy with α = 1
satisfy Constraint (2) for X .

Consider now the case x ∈ X and y 6∈ X . We have αsx = 1. Going back
to the undirected J , there are two internally-disjoint paths P and P ′ from y
to x. We claim that one of them must be P1, the path inside the full Steiner
component T0. Indeed, assume otherwise, and let C be the cycle obtained from
putting together P and P ′. If P1 has edges not C, then it has a subpath that is,
in J , a chord-path for C with no internal vertices of A, contradicting Lemma 1.
Thus without loss of generality we assume P = P1. As P1 does not give an arc
in H+, we concentrate on P ′. Note that the lack of chord-paths without internal
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vertices of A also shows that not internal vertex of P ′ appears in T0. Let v be
the first vertex of X on P ′ (v = x possible), and v′ be the vertex before v on
P ′ (v′ = y possible). If v′ ∈ A (note that v ∈ A), then we have a path Pj from
v′ to v in the bidirected J with αj = 1, and then in H we have an arc ej from
v′ to v with αj = 1. Then the arcs sx and v′v together satisfy Constraint (2). If
v′ 6∈ A, then there is a full Steiner component Ti that contains v

′ and that has
endpoints both in X and outside X (the last vertex of A on P ′ before v is not in
X ; recall v ∈ X). Note that i 6= 0. The Eulerian traversal of Ti gives two paths,
Pj and Pk, one entering X and one exiting X . Then αj = 1/2, and also there is
another path Pq, the reversal of Pk, that also enters X and has αq = 1/2. Then
the arcs sx, ej , and eq together satisfy Constraint (2).

The case x 6∈ X and y ∈ X is symmetric. The last case for verifying Con-
straint (2), considered next, has x 6∈ X and y 6∈ X ; let v ∈ X . Going back to
the undirected J , there are two internally-disjoint paths P ′

1 and P ′
2 from x to

v. Let C be the cycle obtained from putting together P ′
1 and P ′

2. Let v1 be the
first vertex of X on P ′

1 (v1 = v possible), and v2 be the first vertex of X on
P ′
2 (v2 = v possible). Let v′1 be the vertex before v1 on P ′

1 (v′1 = x possible),
and let v′2 be the vertex before v2 on P ′

2 (v′2 = x possible). If v′1 ∈ A (note
that v1 ∈ A), then we have a path Pr1 from v′1 to v1 in the bidirected J with
αr1 = 1, and then in H we have an arc ej1 from v′1 to v1 with αj1 = 1. Similarly,
if v′2 ∈ A (note that v2 ∈ A), then we have a path Pr2 from v′2 to v2 in the
bidirected J with αr2 = 1, and then in H we have an arc ej2 from v′2 to v2 with
αj2 = 1. If v′1 6∈ A, then there is a full Steiner component Ti1 that contains v′1
and that has endpoints both in X and outside X . If v′2 6∈ A, then there is a full
Steiner component Ti2 that contains v′2 and that has endpoints both in X and
outside X . If we have both Ti1 and Ti2 , we remark that i1 6= i2 since otherwise
we obtain in J a chord-path for C with no internal vertex in A. The Eulerian
traversal of Ti1 gives two paths, Pj1 and Pk1

, one entering X and one exiting
X . Then αj1 = 1/2, and also there is another path Pq1 , the reversal of Pk1

, that
also enters X and has αq1 = 1/2. The Eulerian traversal of Ti2 gives two paths,
Pj2 and Pk2

, one entering X and one exiting X . Then αj2 = 1/2, and also there
is another path Pq2 , the reversal of Pk2

, that also enters X and has αq2 = 1/2.
Note that neither of j1, q1, j2, and q2 could be 0 or 1, as both P0 and P1 have
their endpoints outside X . Thus H contains either er1 with αj1 = 1, or both
ej1 and eq1 with αj1 = αq1 = 1/2. Also H contains either er2 with αj2 = 1, or
both ej2 and eq2 with αj2 = αq2 = 1/2. In all four subcases, Constraint (2) is
satisfied.

We proceed to Constraints (3), which must hold ∀ z 6= s ∀ ∅ 6= X ⊆
(V (L) \ {s, z}). If x ∈ X , regardless of y and z, the arc sx with αsx = 1 satisfies
the constraint. Similarly, sy satisfies the constraint if y ∈ X . Consider now the
case x 6∈ X and y 6∈ X . The argument is the same whether z = y or z = x or
z 6∈ {x, y}; we will assume by symmetry x 6= z, and let v ∈ X . Going back to
the undirected J , there are two internally-disjoint paths P ′

1 and P ′
2 from x to v;

assume by renaming P ′
1 and P ′

2 that z is not a vertex of P ′
1. Let C be the cycle

obtained from putting together P ′
1 and P ′

2. Let v1 be the first vertex of X on
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P ′
1 (v1 = v possible), and v2 be the first vertex of X on P ′

2 (v2 = v possible).
Let v′1 be the vertex before v1 on P ′

1 (v′1 = x possible), and let v′2 be the vertex
before v2 on P ′

2 (v′2 = x or v′2 = z possible). If v′1 ∈ A (note that v1 ∈ A), then
we have a path Pr1 from v′1 to v1 in the bidirected J with αr1 = 1, and then in
H we have an arc ej1 from v′1 to v1 with αj1 = 1. So, if v′1 ∈ A, Constraint (3)
is satisfied.

Assume from now on that v′1 6∈ A; therefore there is a full Steiner component
Ti1 that contains v′1 and that has endpoints both in X and outside X . Consider
the case when z is an interior vertex of P ′

2; then we cannot have that Ti1 has z as
a vertex, since otherwise, in J , we get a chord-path of C with no internal vertex
in A. The Eulerian traversal of Ti1 gives two paths, Pj1 and Pk1

, one entering
X and one exiting X . Then αj1 = 1/2, and also there is another path Pq1 , the
reversal of Pk1

, that also enters X and has αq1 = 1/2. None of Pj1 and Pk1
and

Pq1 start or end at z, since z is not a vertex of Ti1 . Also, {j1, q1} ∩ {0, 1} = ∅,
since both Pj1 and Pq1 have one end in X , and P0 and P1 have endpoints x and
y which are not in X . The two arcs of H : ej1 and eq1 satisfy Constraint (3).

From now on, z is not an interior vertex of P ′
2. If v

′
2 ∈ A (note that v2 ∈ A

and v′2 6= z), then we have a path Pr2 from v′2 to v2 in the bidirected J with
αr2 = 1, and then in H we have an arc ej2 from v′2 to v2 with αj2 = 1. So, if
v′2 ∈ A, Constraint (3) is satisfied.

We are left with the case v′1 6∈ A, z not on P ′
2, and v′2 6∈ A; recall that z is

not on P ′
1. We have the full Steiner component Ti1 as above, and the full Steiner

component Ti2 that contains v′2 and that has endpoints in both X and outside
X . Note that i1 6= i2 since otherwise we obtain, in J , a chord-path for C with
no internal vertex in A.

Let v′′1 be the last vertex of A before v1 on P1; then v′′1 ∈ V (H+)\ (X ∪{z}).
Consider the Eulerian traversal of Ti1 ; it passes through each vertex of A∩V (Ti1)
exactly once (as these are the leafs of Ti1). Then, in this traversal, we can get
from v′′1 to v1, or from v1 to v′′1 , without passing through z (which can be a
leaf of Ti1). Thus, we have that either a path Pj1 of this traversal goes from
V (H+) \ (X ∪ {z}) to X , or goes from X to V (H+) \ (X ∪ {z}). In the second
case, Pq1 , the reverse of Pj1 goes from V (H+)\(X∪{z}) to X . Let Pk1

be either
Pj1 or Pq1 , such that it goes from V (H+) \ (X ∪ {z}) to X . Pk1

cannot be P0 or
P1, since it ends in X , and P0 and P1 end in x or y, both being outside X . Thus
ek1

exists in H+; also αk1
= 1/2. We repeat the argument for Ti2 , to get another

arc ek2
∈ E(H+) going from V (H+) \ (X ∪ {z}) to X , and with αk2

= 1/2.
These two arcs of H : ek1

and ek2
satisfy Constraint (3).

In all cases, Constraint (3) is satisfied. ⊓⊔

Theorem 2. Let S be an instance and Q an optimum feasible solution for Bi-

connected Relay Placement. Let G be the weighted graph on S. Then there

exists xy ∈ E(G) such that, after bidirecting G and adding to
−→
G a vertex s and

arcs sx and sy of weight 0, resulting in graph G+, G+ contains a 2-outconnected
subgraph D from s such that w(D) + w(xy) ≤ dMST |Q|.

Proof. Define, for graph L , dL(v) to be the degree of vertex v in L. For path P
in L, define P̆ to be the set of vertices in its interior, and define l′L(P ) = |P̆ |.



10

Assume Q is minimal such that U(Q∪S) is biconnected, and |S| ≥ 2. Choose
a biconnected spanning subgraph K of U(Q∪S) as in Lemma 2. Apply Lemma 3
with K as J , and S as A, obtaining vertices x, y ∈ S, paths (Pi)i≥0, nonnegative
numbers αi, arcs ei (for i ≥ 2) giving digraph H , and then digraph H+ after
adding vertex s and arcs sx and sy. Use these x, y as the two vertices of G
required by the theorem.

For arcs e of H+, define ce = 0 if e = sx or e = sy, and ce = l′K(Pi)
if e = ei is obtained from Pi (for i ≥ 2). Consider the linear program LP:
Minimize

∑

e∈E(H+) ceβe subject to β ∈ P(H+, s), and note that α from Lemma
3 gives a feasible solution. Apply Theorem 1 to get and integral solution for LP,
and therefore a digraph D, subgraph of H+, 2-outconnected from s. It remains
to check the weight condition. Note that for any edge e of G with endpoints u
and v, and for any path P from u to v in K, w(e) ≤ l′K(P ), as beads can be

placed on the vertices of P̆ . Also, every arc ei ofD of non-zero weight comes from
a path Pi (with i ≥ 2) of K. Thus (using Theorem 1 for the second inequality):

w(D) =
∑

e∈D

w(e) ≤
∑

i≥2 : ei∈D

l′K(Pi) ≤
∑

i≥2

αil
′
K(Pi).

Write e ⋄ v if edge e is adjacent to vertex v, and next(P, v, e) if on path P ,
edge e is used to leave v. We have:

w(D) + w(xy) ≤
∑

i≥0

αil
′
K(Pi) =

∑

i≥0

αi

∑

v∈P̆i

1 =
∑

v∈Q

∑

i≥0 | v∈P̆i

αi

=
∑

v∈Q

∑

e | e⋄v

∑

i≥0 | next(Pi,v,e)

αi ≤
∑

v∈Q

∑

e | e⋄v

1

=
∑

v∈Q

dK(v) ≤ |Q| · dMST

where the first inequality follows from the previous equation and the facts that
P0 is a path of K that starts at x and ends at y with α0 = 1/2, and that P1 is a
path of K that starts at y and ends at x with α1 = 1/2. The second inequality
comes from Lemma 3, and the last inequality from Lemma 2. ⊓⊔

The analysis given above is tight. Precisely, in the two-dimensional Euclidean
plane, the ratio of the biconnectivity algorithm above is indeed 5− o(1), assum-
ing all ties are broken in worst-case manner, and no post-processing removes
redundant relay nodes. First look at the example in Figure 2. It has two sea
stars (one relay node, the star’s center, U -adjacent to five U -independent nodes
of S, called tentacles) with u and v in the center. In general, we are going to
use q spread-out sea stars, and we connect their tentacles as those of u, v are in
Figure 2 – this can always be done maintaining planarity to create a biconnected
graph. Precisely, plane curves connect tentacles of different sea stars such that no
two points on distinct curves are at distance at most 1. Each curve is subdivided
such that only consecutive nodes on the curve are U -adjacent; the nodes used for
subdivision are put in S. Done carefully, we end up with m paths, each giving a
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x

y

v

u

Fig. 2. The nodes of S are black disks. Optimum uses the relay nodes u and v. If we
start Algorithm KR with x and y as in the figure, ten edges of weight one would be
chosen by the algorithm (precisely, the arcs passing “around” each of u and v, each arc
needing a bead node). The two arborescences from Theorem 3 are represented, except
for edges sx and sy, by dotted and solid arcs, respectively. One could get only nine
beads by starting with x, y not U -adjacent. However, in a larger example, one or two
beads saved still results in a ratio of five.

connected component of U(S) (one for each curve), such that m = 5q/2− o(q).
Optimum is q (and let q → ∞). We use the following theorem of Whitty [23]:

Theorem 3. [23] Suppose that, given a directed graph D = (V,A) and a spec-
ified vertex s ∈ V , there are two internally vertex-disjoint paths from s to any
other vertex of D. Then D has two arc-disjoint outgoing arborescences rooted
at s such that for any vertex v ∈ V − s the two paths to s from v uniquely
determined by the arborescences are internally vertex-disjoint.

Wherever we start with x and y in Algorithm KR, each of the two arbores-
cences from the theorem above needs m− 1 arcs of weight 1 to enter each of the
m paths/connected components of U(S), except those containing x or y. Thus
Algorithm KR produces a solution of weight at least 2(m− 1) = 5q − o(q).

A similar (but non-planar) construction can be made for the three dimen-
sional Euclidean space, using far-apart sea stars with 13 tentacles each.
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