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Abstract. The purpose of this paper is to model quality of experience
(QoE) of media streaming service in a shared fast-fading channel. In this
context, the arrival and the service processes of the playout buffer do
not have the same job size. We present an analytical framework based
on Takács Ballot theorem to compute the probability of buffer starvation
and the distribution of playback intervals. We model the arrival processes
of Proportional Fair and Round Robin schedulers, and feed them into this
framework to study the impact of prefetching on the starvation behavior.
Our simulations match the developed model very well if the base station
knows the playback rate and the channel gain. Furthermore, we make
an important observation that QoE metrics predicted by users are very
sensitive to the measurement error of arrival process.

Keywords: Media streaming, Quality of Experience, Starvation Prob-
ability, Prefetching Delay, Ballot Theorem

1 Introduction

With the widespread use of smart phones, Http streaming service is become more
and more popular on cellular networks. In contrast to the rapid growth of users
and traffic load, the bandwidth provision usually lags behind. Under this context,
media servers and network operators face a crucial challenge on how to avoid
the degradation of user perceived media quality, namely quality of experience
(QoE). The most undesirable case is the interruption of playback when users
watch videos or listen to music. The primary goal is to avoid the starvation of
playout buffer or to reduce the frequency of starvation. One feasible way is to
introduce a start-up (also called prefetching) delay before playing the stream,
and a rebuffering delay after each starvation event. After a number of media
frames accumulate in the buffer, the media player starts to work. However, a
large delay may impair the user perceived streaming quality, which demands an
appropriate setting of content prefetching.

In this work, we evaluate the impact of prefetching thresholds on the starva-
tion probability and the playback interval in a cellular downlink system. We aim
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to answer the following questions: 1) how can we model the starvation behavior
in a playout buffer whose arrival and service processes work at different levels
(e.g. arrival at the bit level and service at the video frame level); 2) how efficient
can a user predict its starvation behavior based on local measurement of arrival
process. In our setting, mobile users experience Rayleigh fast-fading. The base
station adopts proportional fair (PF) or round-robin (RR) algorithms to sched-
ule a user for transmission in each slot. To carry out the analysis, we first model
the playout buffer as a GI/D/1 queue whose arrival process is determined by the
wireless scheduler. Then, a probabilistic framework is proposed to compute the
starvation probability and the playback interval based on Takács Ballot theorem
[1]. In comparison with recent works [2–5], we consider a network with shared
resource, instead of a single streaming session. The arrival process and the de-
parture process do not work at the same granularity of jobs. The Ballot theorem
approach provides a simple way to compute the starvation behaviors.

Our study leads to the following interesting observation. The QoE metrics
predicted by a user are very sensitive to the estimation error of arrival process.
Especially, the prediction is not meaningful in the heavy traffic regime (i.e. arrival
rate approaches service rate). This phenomenon implies that autonomous QoE
optimization of mobile users may not perform well in a wireless downlink.

The rest of this work is organized as follows. In section 2, we characterize the
QoE metrics in a Wireless fading environment. Section 3 presents a probabilistic
framework for QoE analysis. In section 4 we present numerical studies. Section
5 concludes this paper.

2 Media Streaming Service and Quality of Experience

In this section, we present a GI/D/1 queue model for persistent media streaming
service, and define a set of metrics for the user perceived streaming quality.

The wireless downlink is shared by multiple elastic flows that can be http
media streams, ftp downloading, or other real-time services with flow control.
The system architecture with N streaming users is shown in Fig.1. Mobile users
request streaming service from media servers, and the media streams are trans-
mitted by the base station over a fast fading channel. The streaming system in
Fig.1 is composed of two types of buffers, the wireless buffer at the base station
as well as the playout buffer at the user side. We assume that the media streams
always have backlogged packets in the wireless buffer. This assumption holds
due to two reasons. First, the online movies are usually very large, ranging from
100MB to 1GB. Second, most of Internet streaming servers use HTTP protocol
(over TCP) to deliver streaming packets. TCP congestion control mechanism
exploits the available bandwidth by pumping as more packets as possible to the
wireless buffer. Therefore, we can simply regard the wireless buffers to be always
saturated. The wireless buffer and the playout buffer work in a tandem way,
which means that the departure process of a user in the former is exactly the
arrival process in the latter. However, they work at different time scales and at
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different layers. The wireless buffer works at the bit level due to the bit loading
in the lower layers, and the playout buffer functions at the video frame level.

Fig. 1. Media streaming system in wireless cellular networks

The playout buffer at a mobile user stores packets transmitted over the wire-
less channel. The streaming packets are reassembled into groups of pictures
namely “frames” according to the codec of source coding. The size of a frame
depends on streaming quality, e.g. a high-definition (HD) video requiring more
bits to render each frame. When the media player starts, those frames are served
with a deterministic rate. Here, the term “frame rate” refers to the number of
pictures that are displayed per second (e.g. 24fps, 25fps, and 30fps). We define
P-slot Dp as the constant service interval in the playout buffer. For a playback
rate 25fps, the duration of a P-slot is 40ms. Let Q(t) be the number of frames
at time t in the playout buffer and A(t) be the arrival rate of frames. Then, the
playout buffer is modeled as a GI/D/1 queue,

Q(t+ 1) = [Q(t)− 1]+ +A(t+ 1), (1)

where [x]+ denotes the maximum between 0 and x. The general arrival process
A(t) is determined by the throughput distribution of a particular flow at the
wireless buffer. The maximum buffer size is assumed to be large enough so that
the whole media file can be stored without packet drops.

When Q(t) is below a certain threshold, the media player halts. We call this
event a starvation. Without loss of generality, we set the starvation threshold
to be 0 frame at the beginning of each P-slot. The starvation property (e.g.
probability or frequency) is an important measure of the quality of experience for
media streaming services. To avoid starvation, a prefetching stage is introduced
by almost all the commercial streaming applications. When a streaming session
is initiated, the media player starts to play until the number of accumulated
frames reaches a certain value called start-up threshold. One extreme strategy
is to download the whole video file before watching. However, the prefetching
may cause a long initial waiting time called start-up delay, which is usually
unwanted. Therefore, an appropriate choice of the start-up threshold is vital
to the users’ quality of experience. For a long video stream, starvation events
can take place more than once. If the streaming service interrupts during its
playing, the media server restarts after a number of packet arrivals. We call this
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threshold rebuffering threshold, and the induced time rebuffering delay.
The streaming provider can either set the same value for the rebuffering and the
start-up thresholds, or tune the rebuffering threshold adaptively. Our study in
this work is concentrated on long media streams, in which N flows are either
persistent or coexisting for a long period. The QoE metrics include the start-
up delay, the rebuffering delay, the starvation probability, and the continuous
playback interval. Similar metrics has been used in [9] to reveal the interplay
between QoE and user satisfaction.

3 Probabilistic Framework For Analyzing QoE

3.1 Preliminaries: Transmissions over a Rayleigh Fading Channel

We consider the media streaming service over a single-cell wireless downlink
using HSDPA or EV-DO1. The base station is transmitting to a set of mobile
users denoted by N = {1, 2, · · · , N}. The wireless channel is shared by all the
mobiles where time slot is the allocable resource. We denote by Ds the duration
of a scheduling slot (S-slot). In general, Ds is smaller than Dp, (e.g. Ds = 2ms
[8]). Define an integer K := Dp/Ds (if Dp/Ds is not an integer, our method still
applies with slight modification). The wireless channel is assumed to undergo a
Rayleigh fast fading due to the mobile environment. This assumption enables us
to treat the SNRs of a user to be independent and identically distributed (i.i.d.)
in different time slots (see e.g. [6]).

Denote by Γ the symbol of SNR and by γi the value of user i’s SNR. Then,
γi is a random variable with the probability density function given below

gΓ (γi) =
1

γ̄i
exp(−γi

γ̄i
), (2)

where γ̄i is the average SNR of user i. The BS decides not only the user for
transmission, but also the modulation and coding scheme (MCS). To help the BS
determine the appropriate MCS, each user measures its channel quality and feed-
backs channel quality information (CQI) to the BS. We adopt the square M-ary
quadrature amplitude modulation (M-QAM) with M = 22r, r = 0, 1, 2, · · · , r̂,
where r̂ is the highest modulation order (or equivalently the maximum informa-
tion bits in each signal). The case r = 0 means that the transmission fails. Given
the fact that the loaded bits take all values between 0 and r̂, the SNR is parti-
tioned into r̂ + 1 disjoint regions. Denote by Rr the SNR region of the rth rate.
Denote by br the lower boundary of Rr that has 0 = b0 < b1 < · · · < br̂+1 := ∞.
The boundary br is obtained by br = −2

3 (ln(5BER))(2
2r − 1) [10].Thus, Rr is

written as [br, br+1). In this paper, the BER requirement is taken as 10−5. Let
B be the spectrum frequency in Hz. If user i is scheduled in a S-slot with
modulation M = 22ri(t) at time t, the number of transmitted bits is 2Bri(t)Ds.

1 Our analysis can be easily extended to 3G long term evolution (LTE) networks if
time slot is substituted by OFDMA resource block.
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In the past decade, a large body of scheduling algorithms have been proposed
for various design purposes. Here, we look into two representative schedulers, the
SNR-based proportional fairness (PF in abbreviation)[6, 7] and the round robin
(RR) algorithms.

PF Scheduling: PF scheduler selects the user i∗ with the highest relative SNR
for transmission, that is,

i∗ = argmax
i∈N

γi
γ̄i
, ∀i ∈ N . (3)

We consider a heterogeneous scenario in which different users have different
average SNR values due to different path losses. When PF scheduling is adopted,
the user with the highest relative SNR is selected for transmission. Then, we
obtain the following probability

P{user i scheduled |γi = γ} = P{ γ

γ̄i
>

γj
γ̄j

, ∀j ∈ N \ i} =
(
1− exp(− γ

γ̄i
)
)N−1

.

We denote by γ∗
i the SNR of user i if it is scheduled. Its distribution is calculated

by:

P{γ∗
i < Γ} =

∫ Γ

0

1

γ̄i
exp(− γ

γ̄i
)
(
1− exp(− γ

γ̄i
)
)N−1

dγ =
1

N

(
1− exp(−Γ

γ̄i
)
)N

.

Denote by β∗
i,r the probability that user i is scheduled with rate r, (r ≥ 1). Then,

β∗
i,r is obtained by

β∗
i,r = P{br ≤ γ∗

i < br+1} =
1

N
(1− exp(−br+1

γ̄
))N − 1

N
(1− exp(−br

γ̄
))N .

Let β∗
i,0 be the probability that user i is not scheduled, or the SNR of user i is

below b1. Then, the equality β∗
i,0 = 1 −

∑r̂
r=1 β

∗
i,r holds. Given the probability

of using r-QAM modulation, we can derive the p.g.f. of U by

Φi
U (z) = β∗

i,0 +

r̂∑
r=1

β∗
i,r · zr. (4)

The p.g.f. in (4) yields the expectation and the variance

µ =
r̂∑

r=1

rβ∗
i,r and σ2 =

r̂∑
r=0

β∗
i,r(r − µ)2. (5)

The p.g.f. ΦW (z) is obtained by convoluting ΦU (z) for K times. Applying our
derivations in section 3, we can obtain the QoE metrics of a streaming user with
PF scheduling.
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Round Robin Scheduling: We consider a simplified scenario where a P-slot
is evenly divided into N S-slots. Denote by βr the probability of SNR within Rr.
Then,

βr = exp
(
− br

γ̄

)
− exp

(
− br+1

γ̄

)
, r = 0, 1, · · · , r̄. (6)

Therefore, the probability generating function is given by

ΦU (z) = (1− 1

N
+
β0

N
) +

r̂∑
r=1

βr

N
· zr. (7)

The expectation and the variance of U are obtained by

µ =
r̂∑

r=1

rβr

N
and σ2 = (1− 1

N
+
β0

N
)µ2 +

r̂∑
r=1

βr

N
(r − µ)2. (8)

3.2 Interaction Between Scheduler and Playout Buffer

We define a set of random variables to measure the user throughput in bits/Hz
per S-slot. Let the i.i.d. random variable U(s) denote the modulation scheme
at the S-slot s. The number of bits transmitted in S-slot s is U(s)× 2BDs. We

denote by W the sum of U(s) in K S-slots, i.e. W :=
∑K

s=1 U(s). The volume of
the transmitted bits in a P-slot is W (s)×2BKDs. Let Vk record the transmitted

bits in k P-slots, i.e., Vk :=
∑k

t=1 W (t). Recall that ΦU (z) is the p.g.f of U that
depends on the used scheduler, as detailed previously . Due to the i.i.d. property,
the probability generating function of W , ΦW (z), is

ΦW (z) = [ΦU (z)]
K , (9)

and that of Vk, ΦVk
(z), is

ΦVk
(z) = [ΦW (z)]k. (10)

Denote by µ and σ the mean and the standard deviation of U , respectively. Then,
W has a mean Kµ and a standard variation

√
Kσ. Similarly, the mean and the

standard deviation of Vk are kKµ and
√
kKσ. We further define new variables

as follows: ϕU (j) = P{U = j}, ϕV (k, j) = P{Vk = j}, ϕW (j) = P{W (t) = j},
FU (x) = P{U ≤ x}, FW (x) = P{W ≤ x}, and FV (k, x) = P{Vk ≤ x}. In what
follows, we define a constant c := 2BDs/d where d is the video frame size in
bits. Define a new variable ρ := cKµ as the traffic load.

The p.g.f. of Vk is obtained from k convolutions of W . The r.v. W takes
integer values from 0 to Kr̂. Then, Vk takes values from 0 to kKr̂. As k is large,
it needs a heavy computation to obtain ϕV (k, j). When k is large enough, we
can approximate Vk by a diffusion process according to Donsker’s theorem [11],

Vk ≈ kKµ+
√
Kσ · B(k) + o(

√
k), (11)
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where B(k) is a standard Brownian motion and the symbol ≈ denotes “has
approximately the same distribution as”.

We define X for the frame arrival to the playout buffer in each P-slot. Denote
Yk :=

∑k
t=1 X(t) to be the total frame arrivals in k P-slots. In a P-slot, W takes

integer values in the set [0,Kr̂]. Define a constant R := ⌈cKr̂⌉. The r.v. X(t)
takes values from 0 to R. The exact distributions of X and Yk are intractable
because the number of arrived media frames can be a fractional value in reality.
Even if the distribution of X is known, it is still complicated to obtain the
distribution of Yk for large k. To carry out our analysis, we make two important
assumptions:

– The r.v., X(t), is i.i.d. at all time t;
– The stochastic process {Yk} has

Yk ≈ Ỹk = ckKµ+ cσ
√
K · B(k) + o(

√
k), (12)

where {Ỹk : k > 0} is the approximated diffusion process.

By simplifying the arrival process to the playout buffer, we can approximate the
probability mass function by

P{Ỹk = y} ≈ ΦỸ (k, y) =
1√

2πkKcσ
exp

(
− (y − ckKµ)2

2kK(cσ)2
)
. (13)

3.3 Computing Playback Interval: A Ballot Theorem Approach

In this paper, we consider the scenario of infinite size of media files. Because
a “tagged” user is examined, the user index is dropped in all r.v.s. Given the
rebuffering threshold, we are interested in the probability distribution of contin-
uous playback interval TI (in P-slots). Let P-slot 1 be the starting point of time
axis when media player resumes. We denote by Pns(l, xr) the probability of no
starvation in the duration [1, l],

Pns(l, xr) = P{
t∑

s=1

X(s)− (t− xr) > 0, ∀ xr ≤ t < l}. (14)

An intuitive explanation of eq.(14) is the following. The prefetched xr frames
will be served in xr P-slots. If there is no new arrival, i.e.

∑xr

s=1 X(s) = 0, the
media player meets with an empty buffer at the beginning of slot xr+1, thus
causing a starvation event. Therefore,

∑xr

s=1 X(s) must be greater than 0 if there
is no starvation. Similarly, we can replace xr by an arbitrary t, (t > xr).

The direct computation of Pns involves a number of complicated iterative
equations. We hereby adopt the famous Ballot theorem for a combinatorial anal-
ysis. The version of most referenced Ballot theorem is developed by Takács [1].

Theorem 1. (Takács Ballot Theorem) If X(1), X(2), · · · , X(L) are cyclically
interchangeable random variables taking on nonnegative integer values summing
to k, then

P
{ t∑

s=1

X(s) < t, ∀ t ∈ [1, l]
}
=

[l − k]+

l
, (t > xr). (15)
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The Takács Ballot Theorem presents a probability that the number of departures
is larger than that of arrivals in all l slots. Because X(s) is i.i.d. at different time
s, it is cyclically interchangeable. Suppose that the starvation event happens
after the media player has worked for t slots, t > xr. The total number of
consecutive departure slots is t−1, and the total number of arrivals is t−1−xr.
We create a backward time axis where the starvation event happens at slot 1.
The number of departures is always greater than that of arrivals. Otherwise,
the starvation event has already taken place. Hence, according to Takács Ballot
theorem, the probability of the departure process leading the arrival process is

P
{ t∑

s=1

X(s) < t, ∀t ∈ [1, l]
}
=

xr

t−1
. (16)

Therefore, the probability that the first starvation takes place at slot t is

Ps(t) =
xr

t−1
· P{

t−1∑
s=1

X(s) = t−1−xr}, (t ≥ xr + 1)

≈ xr

t−1
· P{Ỹt−1 = t−1−xr} =

xr

t−1
· ΦỸ (t−1, t−1−xr) (17)

=
xr

t−1
· 1√

2π(t− 1)Kcσ
exp

(
− (t−1−xr − c(t− 1)Kµ)2

2(t− 1)K(cσ)2
)

=
xr√

2π(t− 1)3Kcσ
exp

(
− ((t−1)(1− cKµ)− xr)

2

2(t− 1)K(cσ)2
)
. (18)

The approximation in eq.(17) means that the actual frame arrival process is
replaced by the corresponding Brownian motion. Eq.(18) yields the c.d.f. of
continuous playback interval

P{TI ≤ l}=
l∑

t=xr+1

Ps(t)=

l∑
t=xr+1

xr√
2π(t− 1)3Kcσ

exp
(
− ((t−1)(1− cKµ)− xr)

2

2(t− 1)K(cσ)2
)
.(19)

The starvation probability of an infinite file size is equivalent to P{TI ≤ ∞}.
According to Lemma 1 in [5], eq.(19) with l = ∞ is further approximated by

P tot
s (∞) :=

{
1 if ρ < 1;

exp
( 2xr(1−cKµ)

K(cσ)2

)
otherwise .

(20)

The probability of starvation is determined by the start-up threshold xr and
the traffic load ρ. If ρ is less than one, the starvation is inevitable. For ρ > 1
and xr is large enough, the starvation probability is negligible. The probability
of no starvation Pns is the complement of P tot

s . Next, we compute the average
playback interval by

E[TI ] =

∞∑
t=xr+1

(t− 1) · Ps(t) ≈
xr

(1− cKµ)
, if cKµ < 1. (21)

The analysis of above approximation can be found in the technical report [12]. If
E[TI ] is infinitely large, the starvation event takes place only in the beginning.
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3.4 Computing Start-up/Rebuffering Delays

The start-up delay Tp denotes the number of minimum required P-slots to have
YTp ≥ xp. Its cumulative probability distribution is expressed as

P{Tp < t} = P{Yt ≥ xp} ≈
∫ xp

0

1√
2πtKcσ

exp
( (x− cKµt)2

2tK(cσ)2
)
dx. (22)

The expected start-up delay, E[Tp], is easily obtained as the busy period of
GI/G/1 queue,

E[Tp] =
xp

E[X]
=

xp

cKµ
. (23)

Similarly, we can compute the distribution of rebuffering time Tr.

3.5 Prediction of the starvation behavior by the user

The computation of eq.(19),(20) and (21) relies on µ and σ that are only ac-
cessible to the BS. An important question is how a user predicts the starvation
behavior based on local measurement of arrival process. Define a time window
TW in P-slots. A user records the complete frame arrival at each P-slot of the
time window TW . We construct a r.v. X̄ and a stochastic process {Ȳk : k > 0}.
The r.v. X̄ characterizes the frame arrival to the playout measured by the user,
and the r.v. Ȳk :=

∑k
t=1 X̄(t). Let µ̄ and σ̄2 be the mean and the variance of

X̄.Therefore, ΦỸ (t−1, t−1−xr) in eq.(18) is substituted by ΦȲ (t−1, t−1−xr).

Given the i.i.d. assumption of X̃, Ỹk can be approximated by the Brownian mo-
tion Ȳk ≈ kµ̄ +

√
kσ̄ · B(k) for large k. The media player can use eq.(20) and

(21) to predict the starvation probability and the expected playback interval
respectively. We only need to substitute cKµ by µ̄, and substitute

√
Kcσ by σ̄.

4 Simulation

The main goal of this section is to validate the accuracy of QoE model. Due
to the page limit, our simulation is confined to the network where the users
have same average SNR and the BS adopts PF scheduler. (More simulation
studies can be found in the technical report [12].) The frequency width of wireless
channel is set to 2MHz. The base station adopts the proportional fair algorithm
to schedule users every 2ms. 4-QAM, 16-QAM and 64-QAM modulation schemes
are adopted. We assume that the durations of all video streams are large enough.
Each stream has a playback rate of 300Kbps and a frame rate of 25fps. For each
scenario, we conduct three hundreds of simulation runs.

The first set of experiments demonstrate the c.d.f. of playback interval for
different values of user population and average SNR. For each set of parameters,
we compare the c.d.f. curves obtained from the model at the BS side, the model
at the receiver side, and the simulation. The model at the BS side is computed
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by eq.(19). The model at the user side is also obtained from eq.(19), but with
substitutions of cKµ by µ̄ and

√
Kcσ by σ̄. The time window of measuring

the arrival process is set to 200 P-slots (equivalent to 8s). We plot the c.d.f. of
playback intervals with xr = 100 and xr = 200 in Fig. 2. The wireless channel is
shared by 20 homogeneous users, and the average SNR of a user is 10 dB. The
average number of frame arrival is 0.73 per P-slot so that the starvation event
happens for sure. Fig. 2 exhibits a very good matching between the playback
interval model computed by the BS and the simulation. However, the model
based on user measurements is far away from accuracy. Our simulations provide
an important insight that the QoE prediction at the user side might not work
very well.
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Fig. 2. CDF of playback interval: N = 20 and γ̄ = 10dB

The second set of experiments evaluate the average playback interval when
the user number and the average SNR change. In Fig.3, the number of users
increases from 16 to 40, the average playback interval reduces. We have two
observations here. One is that the slop of decrease is much more prominent in
the range 16 ≤ N ≤ 24 than that in the range 26 ≤ N ≤ 40. Here, the expected
frame arrival rate is 0.619 frame per P-slot at N = 24 and 0.897 frame per P-slot
at N = 16. The other observation is that the average playback interval predicted
by a user is not accurate at N = 16. The predicted value is very sensitive to the
measurement error when the frame arrival rate is close to 1.

The third set of experiments explore the behavior with respect to the rebuffer-
ing threshold. We only compare the model at the BS side and the simulation.
Fig.4 illustrates the probability of future starvation after the current rebuffer-
ing. Since the starvation happens certainly with ρ ≤ 1, we only consider the case
where ρ is slightly greater than 1. Suppose that a cell has 19 homogeneous users
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with average SNR of 12dB. The frame arrival rate computed from the model is
1.0492 frames per P-slot. We compare the probability of starvation computed
from (20) and that of simulation. Our experiments validate the accuracy of the
asymptotic starvation probability and startup delay. The figure 4 also shows that
the average startup delay increases linearly with the rebuffering threshold, with
a perfect match between simulation and model.
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5 Conclusion and Future Work

We analyzed the starvation behavior for users experiencing Rayleigh fading in
a wireless channel. The arrival and the service processes of a playout buffer do
not function at the same job size, nor at the same time scale. We use Takács
Ballot Theorem to compute the metrics related to buffer starvation in a very
simple way. When the knowledge of arrival process is complete (e.g. at the BS
side), our model matches the simulation result very well. When the arrival pro-
cess is measured by the playout buffer, the prediction of starvation behavior is
inaccurate. Hence, our study suggests that the BS, instead of autonomous users,
should be responsible for the QoE optimization. In the future, we aim at as-
sessing the impact of flow dynamics on finite video streams and at developing
QoE optimization schemes that take into account the dynamic flow arrivals and
departures.
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