
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Modeling the guaranteed delivery of bulk data

Mauro Femminella and Gianluca Reali
DIEI, University of Perugia, Perugia, Italy

{mauro.femminella, gianluca.reali}@diei.unipg.it

Roberto Francescangeli
CS – Columbia University, New York, USA

roberto.francescangeli@gmail.com

Abstract—The delivery of bulk data is an increasingly pressing
problem in modern networks. While in some cases these transfers
happen in background without specific constraints in terms of
delivery times, there are a number of scenarios in which the
transfer of tens of GB of data must occur in specific, limited time
windows. In order to face this task, a suitable solution is the
deployment of virtual links with guaranteed bandwidth between
endpoints provided by a Service Overlay Network (SON)
provider. We model this scenario as an optimization problem, in
which the target consists of minimizing the costs of the virtual
links provided by the SON and the unknowns are the provisioned
bandwidths of these links. Since the resulting objective function is
neither continuous nor convex, the solution of this problem is
really challenging for standard optimization tools in terms of
both convergence time and solution optimality. We propose a
solution based on an heuristic approach which uses the min-plus
algebra. Numerical results show that the proposed heuristic
outperforms the considered optimization tools, whilst
maintaining an affordable computation time.

Index Terms— bulk data transfer, overlay network,
guaranteed delivery time, min-plus algebra, optimization.

I. INTRODUCTION

The delivery of bulk data is an increasingly pressing
problem in different network services, such as those enabling
content distribution networks (CDN) [1], (mobile) cloud
computing [29][38], Digital Cinema distribution [2], and so on.
Although in some cases file transfer may happen in background
without specific constraints in terms of delivery times (e.g.
distribution of data backups), in some other challenging
scenarios, transfer of (tens of) GBs of data must occur in a
limited timeframe, which could be in the order of minutes or
hours. Hence, these kind of network service can be referred to
as guaranteed delivery of bulk data. Typical use cases include
content update in CDN edge servers, for instance for pre-
loading new HD videos when a flash crowd of requests is
expected, migration/deployment of virtual machines in remote
datacenters [38], distribution of digital cinema files to theatres
the night before projection.

We face this problem from the viewpoint of a generic
content operator. We assume that the main goal to achieve is
having the desired contents correctly stored and available to
customers in all sites at a given time. In order to solve this
problem, content operators make typically use of a number of
tunnels with guaranteed bandwidth connecting content sources
and content destinations. In this way data transfer time is
predictable. Such tunnels constitute a so-called hybrid virtual
private network (VPN) in the terminology defined by the VPN
Consortium [9] or a provider-provisioned VPN (PP-VPN) in

that of RFC 4110 [11]. Deployment of hybrid VPNs with
guaranteed bandwidth is clearly not an activity typical of a
content operator. Thus, we assume the presence of a Service
Overlay Network (SON) provider, that runs the business
activity of providing content operators with hybrid VPNs
on-demand. Thus, the ultimate objective is to minimize the cost
of these tunnels, having the desired contents stored in all target
locations at a given time. In turn, a SON needs to buy resources
from underlying Internet Service Providers (ISPs) so as to
provide his customers with virtual paths with guaranteed
bandwidths. Thus, we need to consider a three layer
architecture, illustrated in Fig. 1. Since our contribution is part
of the distribution layer, we focus only on it and do not deal
with details relevant to lower layers, already widely treated in
literature, such as internal structure and algorithms of overlay
networks [10][21][22][24]. Also, both suitability of existing
transfer protocols to support efficient transfer of bulk data
([12][13][14]) and solutions to secure SON tunnels ([15][23])
are topics which have been widely addressed in the literature
and are considered out the scope of this paper. We assume that
for each pair of endpoints <content source, content
destination>, a SON provider is able to provide information
about the amount of bandwidth that could be guaranteed for
connecting them (i.e., the maximum VPN capacity).

Content Sources
Content Destinations
ISP router
SON node

Hybrid VPN
Virtual QoS link
Physical link

Distribution layer

SON layer

ISP layer

Fig. 1. Distribution architecture at different layers.

We model this scenario through an optimization problem,
in which the target consists of minimizing the costs of the
virtual paths provided by the SON and the unknowns are the
provisioned bandwidths of these paths. We assume, without
restriction of generality, that the content to distribute is present

Networking 2013 1569711151

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

in either one or more sources. This is quite common in many
scenarios, such as the simultaneous availability of the same
virtual machines in multiple datacenters for disaster recovery,
as illustrated in [28]. This feature allows implementing parallel
downloading techniques [5], giving to the content operator
larger degrees of freedom and solution space.

Under the realistic assumptions, we show that the objective
function may be neither continuous nor convex. Under these
conditions, the solution of this problem is really challenging for
standard optimization tools in terms of both convergence time
and solution optimality. To overcome these issues, we propose
a solution based on an heuristic approach which uses the min-
plus algebra. Numerical results show that the proposed
heuristic outperforms the considered optimization tools, whilst
maintaining an affordable computation time.

The paper is organized as follows. In Section II, we
illustrate the mathematical model of the above distribution
system. In Section III we illustrate the proposed heuristic
solution based on the min-plus algebra. In section IV we show
a comparison between the results obtained with our heuristic
and the those obtained with standard optimization solver tools.
In section V, we discuss our finding and relate them to other
works in the field. Finally, in Section VI, we draw our
concluding remarks.

II. BANDWIDTH ALLOCATION PROBLEM FORMULATION

In this Section, we illustrate the mathematical model of the
system. Below we report inputs, outputs, constraints and
optimization function of the optimization problem.

A. Inputs to the problem

• K: Number of content source (indexed by j).
• N: Number of content destinations (indexed by i).
• H: Number of data item (indexed by l) in the system.
• Dl: Size of the data item l.
• CT

i: Current available bandwidth on the access link of
destination i.

• CM
j: Current available bandwidth on the access link of

content source j.
• jic : Maximum bandwidth which can be allocated for

the VPN from source j to destination i.
• τil: Maximum download for film l required by

destination i ()l,i(,C/D T
ilil ∀≥ τ)

• uil: Request indicator, it is equal to 1, if destination i
has requested data item l, otherwise it is set to 0

• vjl: Presence indicator, it is equal to 1 if source j stores
data item l, otherwise it is set to 0

B. Outputs of the problem:

• cjil: Capacity allocated from source j to destination i to
download (eventually a part of) data item l

• Djil: Size of the fragment of data item l to be retrieved
by destination i from source j

• cji:  =
=

H

l jilji cc
1

is the capacity allocated to the VPN

from source j to destination i

C. Problem constraints

The problem is characterized by the following constraints:

K,..,j,Cc M
j

N

i ji 1
1

=≤ =
 ; (1)

N,..,i,Cc T
i

K

j ji 1
1

=≤ =
 ; (2)

)l,i(uDD ill

K

j jil ∀= =
 ,

1
; (3)

)l,i,j(,cD jililjil ∀⋅≤τ ; (4)

),(, ijcc jiji ∀≤ ; (5)

),,(,0 lijcuvc jiiljljil ∀⋅⋅≤≤ ; (6)

),,(,0 lijDuvD liljljil ∀⋅⋅≤≤
. (7)

Equations (1) and (2) represent the bandwidth constraint
on source and destination access links, respectively. The
integrity constraint on each requested data item is given by
(3), whereas the maximum download time constraint for each
data item request is set by means of (4). The bandwidth
constraint on each VPN (j→i) is represented by (5). Finally,
constraints (6) and (7) enforce a value equal to 0 on reserved
bandwidth (cjil) and fragment size (Djil) for data item l between
source j and destination i, if the relevant data item l is not
requested by destination i or is not available in source j.

We recall that the amount of allocated bandwidth on each
VPN is

 =
=

H

l jilji cc
1 . (8)

Please note that cji is the amount of bandwith to buy from
the SON and thus it is the real output of the system, whereas
cjil is the bandwith contribution to cji given by the download of
data item l on that VPN.

D. Objective function of the problem

The objective cost function to be minimised is

=
),(

)(
ij jijiTOT cfF

, (9)
where fji(cji) is the cost of the VPN (j,i). This function has to
be non-decreasing with the amount of reserved capacity cji,
and obviously fji(0)=0. In general, it depends on the specific
(j,i) pair and can be written as follows:

),(,
 0 0

0)(
)(ij

c

ccga
cf

ji

jijijiji
jiji ∀







=

>+
=

, (10)
where the parameter aji>0 accounts for the VPN (j,i) set-up and
maintenance cost1 and gji(cji) is the cost contribution accounting
for reserved resources on the VPN. The gji() function has to be
positive, sub-additive, and non-decreasing with cji, and gji(0)=0.
We choose gji(cji) to be sub-additive, since, due to economies of
scale, the operational/commercial cost of network resources is
typically sub-additive. For the same reason, the authors in [21]

1 Each edge device of the SON managing provisioned VPNs must maintain a
separate, logical body (Virtual Forwarding Instance, VFI) for each connected
VPN [11]. A VFI contains a router information base and a forwarding
information base for each VPN. Thus, an edge device uses an amount of
network and computing resources in proportion to the number of VFIs. This
limits the number of VPNs which an edge device can support, and thus it is
reasonable that just the set-up of a VPN has a cost, independently of the
provisioned resources.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

suggest to use concave cost functions with respect to
provisioned bandwidth. Thus, fji is non-convex, discontinuous
at cji=0 (with fji(0)=0), non-decreasing, and sub-additive.

Note that all the outputs reported above can be computed
by combining the cjil values; clearly, if cjil>0 the source j has
been selected to satisfy (a part of) the request uil. In fact, cjl
can be expressed as a combination of cjil. In addition, Djil can
be computed as τil cjil if the download time is reasonably set to
the maximum achievable value τil, minimising the bandwidth
consumption. This occurs when fji(cji) strictly increases with cji
and/or the constraint (4) is set as an equality. Thus, in order to
solve the system, we have to calculate cjil.

The obtained cost function (9) is thus a linear combination
of discontinuous, non-convex functions, and thus the problem
is neither convex nor continuous. This suggests that
convergence to the global optimum cannot be guaranteed, and
that the usage of heuristics methods is justified.

III. THE MPH HEURISTIC

The intuition underlying the proposed formulation is that,
for the case of the single request, it provides an elegant and
effective way to define an exhaustive search method within the
set of admissible solutions. If there are more requests, different
ways to solve the problem exist. The first is using classic
optimization techniques, which however cannot be
successfully applied to this problem, since the objective
function is not convex, non linear, and not continuous. A
second option could be to use an exhaustive search method to
the problem in equation (9) as a whole. This way is
mathematically intractable, an example will be provided in
section IV. The third one, which we adopt, consists of (i)
selecting the service requests one at time, (ii) calculating the
transmission resources needed at each node to provide the
content within the desired download time, (iii) update the
available transmission resources, and go on with another
service request until they are exhausted. Thus, it is necessary
to design an algorithm which selects the service request at
each computation cycle so as to minimize the cost function.

In more detail, we propose a greedy, heuristic algorithm
(Min-Plus Heuristic, MPH). Optimal solutions are searched by
applying rules defined by means of min-plus algebra [6]. The
flow diagram of the algorithm is depicted in Fig. 2. The key
point is the algorithm that selects the request for which
calculating the VPNs to set up at each computation cycle. As
shown in Fig. 2, our solution uses a centralized decision
system, which collects service requests, network status, and
finally takes decisions about which on-demand VPNs to set-
up. The inputs of the algorithm are the service requests
collected at a given time, the network status (bandwidth
availability) and the data item catalogue available per-source,
and the output are the VPN endpoints and their bandwidth.

The algorithm is organised in cycles, and for each cycle
one data item request, uil, is served. This means that for each
cycle the set of sources from which the data item will be
downloaded has to be determined and the bandwidth has to be
allocated to the relevant VPNs according to the required
download time. Clearly, the network status is updated at the
beginning of each cycle by considering the amount of
resources allocated in the previous one. The algorithm ends
when all requests are served.

In this Section, we first describe the single-request routing
algorithm based on the min-plus convolution, and then we
present a set of possible scheduling criteria.

In the next Section, we will compare the performance of
MPH with that of two commercial solvers, LINGO [7], and
MINOS [8], a solver for non-linear optimization problems
using the AMPL modelling language, in both homogeneous
(all service request are equal, i.e. the same download time, the
same data item requested or the requested data items are of the
same size and are present in the same source nodes) and
heterogeneous scenarios.

start

Service requests (uil,τil) and
CDN status () are collected

Selection of the service request (uil) to serve

The service request is routed
(bandwidth reservation: cjil)

ljl
M
j

T
iji DvCCc ,,,,

Network status () updated

Any
request

left?

YES

end

NO

*,,, ji
M
j

T
iji cCCc

The served request is removed

Fig. 2. MPH flow diagram.

A. Single service request algorithm

We start by considering a simple case with two sources
(K=2), indexed by j ∈ {1,2}, both of which store a data item l
requested by destination i. If the size of the data item l is Dl
and the maximum download time is τil, then the total amount
of bandwidth to allocate to the two VPNs (1→i and 2→i) is

illil /DC
~ τ= . For the sake of simplicity, we denote ilC

~
 with

C
~

 within a cycle. Clearly, a solution exists if Ccc ii
~

21 ≥+ ,

C
~

CT
i ≥ , and CCC MM ~

21 ≥+ .
As regards VPN (j→i), the maximum amount of

bandwidth which can be allocated is equal to
),,min(max T

i
M
jjiji CCcc = . Let c*

ji be the amount of bandwidth

already allocated to VPN (j→i); at the beginning of the first
cycle c*

ji =0 for each theatre i.
The optimisation problem in (9) for each cycle can be very

easily reduced to

)
~

,min()
~

,0max(

*
212

*
11112

max
11

max
2

.)]
~

()([min)
~

(
CcccC

iiii
i

ii

ccCfccfCF
≤≤−

+ +−++=
 (11)

The structure of equation (11) has appeared very
frequently in literature under the framework of min-plus
algebra; it is called the min-plus convolution [6]. The
computation of (11) enables us to obtain iF12 (i.e., the
minimum cost), which corresponds to a specific c1 value that
will be referred as c1opt . Thus, the bandwidth to reserve is:
c1il=c1opt and optoptil ccCc 212

~
=−= . Note that the min-plus

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

convolution enables the optimum to be found for the specific
request analysed. In fact, such an operation explores all
possible admissible solutions and selects the best one. In the
case of different solutions which provide an identical
minimum cost, we force the minimum operator to first saturate
a VPN (up to max

jic), and then to allocate the residual

bandwidth (C
~

- max
jic) in the other VPNs. For this reason, we

have denoted this modified minimum operator with min+.
Thus, there are fewer mirrors with more available bandwidth,
rather than more mirrors with fewer available resources to
serve the subsequent service requests, and this may limit the
number of VPNs to set-up.

Let us now increase the complexity and consider K=3. This
case will require two iterations. The constraints become:

{ } Cc
j ji

~
3,2,1

≥ ∈
, CCT

i
~≥ , and { } CC

j

M
j

~
3,2,1

≥ ∈
. If we

assume we know c*
1i and c*

2i, we can write the partial cost
function)(12 cF i in the first iteration, where c∈[*

2
*
1 ii cc + ,

) ,
~

min(max
2

max
1

*
2

*
1 iiii ccCcc +++]. In the second iteration, we

proceed by computing

)
~

,min())(
~

,0max(

*
1

*
2312

*
333123

max
33

max
2

max
1

)]
~

()([min)
~

(
CccccC

ii
i

ii
i

iii

cccCFccfCF
≤≤+−

+ ++−++=
(12)

From (12), we obtain iF123 (the minimum cost),
corresponding to a specific c3 value that will be referred to as
c3opt. The values of bandwidth to allocate to the VPN (3→1) is
c3il=c3opt and the total bandwidth to allocate VPNs (2→1) and
(1→1) is optopt cCC 312

~ −= . Finally, from)(1212 opt
i CF , it is

easy to find c1il=c1opt and optoptoptil ccCc 21122 =−= .

The approach can be easily extended to the general case of
K sources. In this case, the minimum cost)

~
(...12 CF i

K
corresponding to cKil has to be computed, and then, on its
return, all the other capacities, c(K-1)il…c1il, have to be
allocated.

At the end of the optimal routing of a service request, the
values jic , c*

ji, C
T

i, and CM
j, which will be the inputs of the

next cycle of the algorithm, have to be updated (see the step
“Network status updated” in Fig. 2).

We stress that, looking at (11) and (12), it is clear that for
the case of the single request, this approach based on the min-
plus algebra provides an effective way to implement an
exhaustive search within the set of admissible solutions.

1) Complexity analysis for the single service request

In this section we evaluate the computational cost of our
heuristic algorithm. It is based on a number of cycles equal to

=
l i iluQ , corresponding to the number of requests.

Each cycle requires the computation of a number of min-plus

convolutions which is bounded by 12 +



 − Zv

j jl , where Z

is the maximum number of values, spaced by the unit interval
Δc, used to represent the variable parameter of the min-plus
convolution (e.g., c3 in (12)), thus { } c//DmaxZ ill

)l,i(
Δ= τ .

Clearly, the lower Δc is, the higher the computational time.
Note that all the iterations, with the exception of the last,

need to evaluate the min-plus convolution for all the
admissible values of the independent variable c. Instead, the
last iteration requires only one min-plus convolution

for Cc
~= to be computed.

To sum up, considering that the maximum number of steps
needed to compute a min plus-convolution (as defined in (11))
is Z, the number of operations to compute)

~
(...12 CF i

K and the
resource allocation in an MPH cycle is

212 ZKZZv
j jl ⋅≤⋅







 +



 −

. (13)
Since the MPH consists of Q cycles, the complexity of

computing all the min-plus convolutions is O(QKZ2).
In addition, the complexity to update the network status is

O(Q(K+N+KN))=O(QKN). At this stage, we indicate with S
the number of operations to perform the request scheduling
(see Section III.B for details). Thus, the MPH complexity is

OMPH=O(QKZ2+ QKN+S). (14)
In Theorem 3.1.6 (Properties of min-plus convolution for

concave/convex functions) of [6], the Authors show that if f1
and f2 are concave with f1(0)=f2(0)=0, then the min-plus
convolution F12(c)=min{f1(c), f2(c)}. Note that, a
non-decreasing, concave function, null in zero, is also sub-
additive, and thus non-decreasing, concave functions passing
through zero are good candidates to represent the operational
cost of a VPN.

In addition, since the min-plus convolution is associative
and distributive over the minimum operator [17], it is easy to
show that, given K functions concave and passing through the
origin, their min-plus convolution is:

F12…K(c)=min{f1(c), f2(c),…, fK(c)}. (15)

Thus, it is possible to calculate)(...12 cF K faster than by
using the classic, direct computation of min-plus convolutions.
The complexity reduces from O(KZ2) to O(KZ). Please note
that (14) can be applied only when the condition

)(min
~ max

ji
j

cC ≤ holds. However, since such a condition may

occur quite frequently, the computation of the bandwidth to be
allocated would reduce to one step (i.e., K operations). Thus,
the MPH complexity can be reduced from O(QKZ2+ QKN+S)
to O(QK3+ QKN+S).

B. Service request scheduling

In a homogeneous scenario (as defined in Section III),
request scheduling does not influence the final solution. On
the other hand, the schedule in heterogeneous scenarios for
serving service requests by using the MPH algorithm can
influence the final solution, and thus the cost FTOT. Below, we
introduce different scheduling algorithms, whose effectiveness
in minimizing the global cost is analysed in Section IV. They
are based on different sorting criteria, which are part of the
scheduling algorithms themselves.

We first present a set of scheduling criteria based on the
service demand only, characterised by the data item size and
download time. In this case, a scheduling algorithm may be

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

implemented as an initial sorting of requests according to the
desired criteria; subsequently, the requests are selected
according to their position in the order. As regards complexity,
it is well known that the achievable complexity of a general
sorting algorithm running over y values is O(ylog2y) [19].
Thus, O(S)=O(Q·log2Q). These sorting criteria are listed
below.

Dd – service requests are sorted according to the data item
size (uil·Dl) in descending order; in this case,

Da – service requests are sorted according to the data item
size (uil·Dl) in ascending order.

dC
~

– service requests are sorted according to the amount

of requested bandwidth illilil DuC τ/~ ⋅= , in descending order.

aC
~

– service requests are sorted according to the amount of
requested bandwidth, in ascending order.

Rand – service requests are randomly ordered; note that in
this case, O(S)= O(Q).

We then present another set of scheduling criteria, which
depend not only on the service demand, but also on the data
item catalogues in source nodes and their current available
bandwidths. In this case, since the network status is updated at
the end of each cycle, a single, initial sorting is useless. Thus,
the selection parameter associated with each request must be
computed each cycle and the best one is selected. As regards
complexity, it is well known that the achievable complexity of
a general selection algorithm running over y values is O(y).
Thus, O(S)=O(Q[Q·K+Q])=O(Q2K). The selection criteria are
listed below.

Nd – the service request is selected according to the
maximum number of source nodes (equal to

 −⋅
j

M
jjl)C(uv 1) which store the requested data item and

still have available bandwidth for allocation; u-1(c) denotes the
unitary step function, equal to 1 when c>0 and 0 when c≤0.

Na – the service request is selected according to the
minimum number of source nodes which store the requested
data item and still have available bandwidth for allocation.

Cd – the service request is selected according to the
maximum total access bandwidth of the source nodes which

store the requested data item, (equal to  ⋅
j

M
jjl Cv).

Ca– the service request is selected according to the
minimum total access bandwidth of the source nodes which
store the requested data item, in ascending order.

dĈ – the service request is selected according to the
maximum, total bandwidth of the source nodes which store the

requested data item (equal to  ⋅
j

M
jjl Cv) normalised by the

bandwidth associated with the specific request, ilC
~

.

aĈ – the service request is selected according to the
minimum, total bandwidth of the source nodes which store the
requested data item normalised by ilC

~
.

IV. NUMERICAL RESULTS

In this Section, we evaluate the effectiveness of MPH in a
homogeneous scenario, and then we extend the performance
evaluation to heterogeneous cases.

The considerations made at the end of sub-section II.D
about the characteristics of the objective function suggest that
convergence to the global optimum cannot be guaranteed with
standard solver for non-linear, convex problems, and that the
usage of heuristics methods is justified. We have verified this
conjecture by both analysing a simple, homogeneous scenario
and solving the problem with the above mentioned commercial
solver LINGO and MINOS. In the considered scenario,
destination nodes access links, source nodes access links,
maximum VPN capacities, data item sizes, download time
requirements, source node data item catalogues and cost
functions per-VPN are identical, and each destination requests
one data item. In more details, this scenario models delivery of
Digital Cinema movies [2] from K mirrors to N theatres, and is
characterised by the following parameters: Dl= 200 GB with
l=1,…,H=16, CM

j= 1 Gb/s with j=1,..,K (K=2, 3, 4 for the three
different configurations analysed), CT

i= 150 Mb/s with
i=1,..,N=20, jic =150 Mb/s ∀ (j,i). We remark that the

maximum VPN capacities are set equal to the destination node
access speed, i.e., the core network is not the bottleneck. Each
destination randomly performs a single request from the set of
data item, and each source node has all data items in its
catalogue. The download time is τil=τ (τ=3, 4, 5, 6 hours for
the four different cases analysed).

With reference to (10), the VPN cost functions are
homogeneous with aji=a=1 and gji(cji)=bji·cji, with bji=b=0.01
(Mb/s)-1 ∀ (j,i). In this case, minimising the overall cost is
equivalent to minimising the number of VPNs to set up.

Table I and Table II report the number of VPNs and the
total cost obtained by LINGO and MINOS, with the maximum
download time, τ, and the number of source nodes, K, as
parameters. Tables also report the global optima, which can be
very easily computed by hand in this particularly simple case
study, used to test the effectiveness of the tools. As expected,
also in this trivial case study, LINGO and MINOS provide a
higher number of VPNs (and thus a higher cost) than the
global optimum for all configurations, with the exception of
two cases ((K=3, τ=3h), (K=3, τ=4h)) for LINGO and three
cases ((K=3, τ=3h), (K=3, τ=4h), (K=4, τ=4h)) for MINOS.
When K=2, due to the constraint (1), it is impossible to respect
the maximum download time set at 3 and 4 hours, and thus the
problem cannot be solved.

As for MPH, the result is that it can always find the
optimum values of the VPN number and total cost reported in
Tables 2 and 3, respectively. This is an expected result in
homogeneous scenarios, since the MPH can find the optimal
solution (with the minimum number of VPNs) for the single
service request; in addition, it can also perform a resource
allocation (via the min+ operator) at each step, so as to
concentrate the access bandwidth availability in a minimal
subset of source nodes, thus allowing the minimisation of the
number of VPNs for serving future requests. Finally, in
homogeneous scenarios, we remark once again that the
scheduling scheme does not have any impact on the solution.

In a further experiment, we enabled the LINGO option for
using the GLOBAL OPTIMUM (GO) search criterion, instead
of using default configuration suitable for convex
optimisation. With this setting, the solver proved to be able to
reach the global optimum, at the expenses of a strongly
increased computation time.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

TABLE I. NUMBER OF VPNS (LINGO VS. MINOS VS. GLOBAL OPTIMUM)

Download

time, τ
(hours)

K=2 K=3 K=4

LINGO
AMPL/
MINOS

Global
optimum

LINGO
AMPL/
MINOS

Global
optimum

LINGO
AMPL/
MINOS

Global
optimum

3 - - - 22 22 22 22 22 20
4 - - - 20 20 20 22 20 20
5 21 21 20 21 21 20 21 21 20
6 21 21 20 21 21 20 21 21 20

TABLE II. TOTAL COST (LINGO VS. MINOS VS. GLOBAL OPTIMUM)

Download

time, τ
(hours)

K=2 K=3 K=4

LINGO
AMPL/
MINOS

Global
optimum

LINGO
AMPL/
MINOS

Global
optimum

LINGO
AMPL/
MINOS

Global
optimum

3 - - - 51.6296 51.6296 51.6296 51.6296 51.6296 49.6296
4 - - - 42.2222 42.2222 42.2222 44.2222 42.2222 42.2222
5 38.7778 38.7778 37.7778 38.7778 38.7778 37.7778 38.7778 38.7778 37.7778
6 35.8148 35.8148 34.8148 35.8148 35.8148 34.8148 35.8148 35.8148 34.8148

In more detail, the average solution time for default

configuration results in the order of few seconds, whereas
enabling the GO flag increases it up to hundreds of seconds
for this trivial and size-limited configuration.

Any further increase of the system size makes the solver
no longer effective. In fact, if the number of both source and
destination nodes is scaled by a factor equal to 10, the solver
requires about 45 minutes to provide the first admissible
solution. Note that we are not referring to the global optimum,
since the solution found has a cost larger than that found by
using MPH. For any further increase of the system size, the
solver, after being running for 3 hours, has not been able to
provide even an admissible solution.

Instead, the computation times provided by MPH remains
in the order of few seconds, setting the unit interval parameter
Δc equal to 1 Mb/s. These results definitely confirm the
inadequacy of LINGO with this option to solve real scale
problems. As for MINOS, it does not provide a similar feature
for global optimizaton. In the following, we will compare
MPH with LINGO without the GO criterion enabled, since
this is the only configuration which makes the solver usable
for this problem also on larger system sizes with affordable
computation times.

In the next case studies, the network scenario is still the one
described above. There are K=4 source nodes, with an access
capacity of 1 Gb/s, N=20 destination nodes, with an access
capacity of 150 Mb/s, and a maximum VPN capacity of 150
Mb/s. Heterogeneity is put on the film catalogue, service
demand, and VPN cost functions.

As regards the data item catalogue, the number of data
item is equal to H=40, the size of each is modelled as a
random variable uniformly distributed in the range from 130
GB to 270 GB (values compliant with Digital Cinema
scenario); each data item is present in 3 source nodes, thus
each mirror stores 30 data item (approximately 4 TB of data
per source nodes). The data item catalogue has been assumed
to be identical in all the experiments we performed.

As regards the service demand, each theatre requires HR=2
data item each time, randomly selected from the data item
catalogue, with a download time, τi,, for both data items. τi is

modelled as a random variable uniformly distributed in the set
of integers ranging from τmin=6 hours to τmax=12 hours. In
order to do an exhaustive analysis of the performance of the
solving algorithms, it would be necessary to evaluate the cost
values and number of VPNs averaged over all the
configurations of the service demand. Since exploring all
configurations is infeasible (it is easy to verify that they would
be equal to 857525), we have run MPH over a sample of 104
configurations, and computed the average of the total cost
values and of the number of VPNs for all the scheduling
algorithms presented in the previous section, as well as for the
Lingo solver (labelled as LS). The LS performance proved to
be very close to that of MINOS, which is not reported to
improve figure neatness.

For the considered configuration, it is possible to give a
rough estimation of the computing power needed to perform
an exhaustive search on the whole problem (the second option
sketched at the beginning of section III). Assuming to use for
the content size the average value D =200 GB, and for the
download time the average value τ =9 hours, a brute force
analysis considering all requests simultaneously means
exploring a number of configurations Nc equal to:

()  







=











×××Δ
Δ×=

2000

4000

R

M

c
HNc/D

c/CK
N

τ , (16)

which is definitely not feasible.
As regards the VPN cost functions, we assume them to be

in the form of (10) with g(c)=b·c. We have analysed three
different scenarios:

Scenario 1: all VPN cost functions are equal, with
parameters a=1 and b=0.01 (Mb/s)-1;

Scenario 2: all VPN cost functions are equal (with
parameters a=1 and b=0.01 (Mb/s)-1), with the exception of
those connecting destination nodes to source node 1, with a=3
and b=0.03 (Mb/s)-1;

Scenario 3: destination nodes and source nodes are
partitioned into two subsets of equal cardinality, named T1 and
T2 for destination nodes and M1 and M2 for source nodes,
respectively. The VPNs which connect T1 to M1 and T2 to M2

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

have a cost function characterised by a=1 and b=0.01 (Mb/s)-1,
whereas those connecting T1 to M2 and T2 to M1 have a=3 and
b=0.03 (Mb/s)-1.

In scenario 1, there is not any preference on the choice of
source node(s) for all destination nodes. The scenario 2 may
represents a distribution system with a source node accessible
through an expensive connection provided by the SON, to be
used only when the other source nodes are overloaded.
Finally, the scenario 3 models a distribution system with a
preferential pre-association (e.g, on the basis of geographical
or IP distance) between groups of destination nodes with
groups of source nodes.

The maximum processing time for the network
configurations analysed is in the order of few seconds for
LINGO, and few milliseconds for the heuristic approach
(implemented in C++) on an standard PC (Intel Core2 Duo
@2.2 GHz equipped with 2 GB of RAM).

Fig. 3 is relevant to the scenario 1 and illustrate the
estimation of the cumulative probability distribution function
(CDF) of the total cost function, obtained from the 104
configurations. The number of samples equal to 104 appears
sufficient to have a good estimation of the CDF, since the
coefficient of variability (standard deviation divided by the
average value) is always lower than 6%. Fig. 3 shows that LS
performance is worse than MPH, whichever scheduling
algorithm is used. Similar performance is observed for the
scenarios 2 and 3, not shown due to space limitations.

In order to investigate which are the best scheduling
algorithms for the three scenarios, Fig. 4 shows the percentage
of runs in which MPH outperforms LS in terms of total cost,
for all the scheduling criteria and for all scenarios. It appears
that the best ones are those depending not only on the service
demand, but also on the data item catalogues in source nodes
and current available bandwidth. In general, the schemes Nd
and Na (based on the number of source nodes storing the
requested data item) provide a total cost lower than that of LS
in more than 94% of runs in all scenarios; Na shows the best
performance (approximately 96% on average), whereas Nd
performs slightly worse (approximately 95% on average). As
for the scenario 3, the best scheduling algorithm is Cd (based
on the maximum total access bandwidth of the source nodes
which store the requested data item), which provides a cost
lower than LS in 96% of runs.

Fig. 5 gives quantitative details concerning the gain of
MPH over LS in terms of cost (Fig. 5.a) and number of VPNs
(Fig. 5.b). Also for these performance figures, the three best
performing scheduling approaches are Nd, Na, and Cd. For
instance, in the scenario 2, the gain of Na is next to 12% for
the cost and 20% for the number of VPNs.

As regards the solving capabilities of LINGO, we also
remark that five runs out of 30,000 did not produce any
admissible solutions after several hours of processing time,
whereas MPH always succeeded in a few milliseconds.

We can conclude that, on average, MPH outperforms
LINGO independently of the specific scheduling scheme.
Moreover, the scheduling algorithms which updates the
selection parameter in each MPH cycle are the best
performing ones.

This behaviour has also been confirmed in other system
configurations (network scenario, service demand, cost

functions, and film catalogues on mirrors); the relevant
quantitative results are not reported in this paper due to space
limitations.

35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cost

C
D

F
 e

st
im

at
io

n

Dd

Da

Nd

Na

Cd

Ca

Rand

C̃d

C̃a

Ĉd

Ĉa

LS

Fig. 3. Estimation of the CDF of network cost for all scheduling algorithms in

the scenario 1

0

50

100

Dd Da Nd Na Cd Ca Rand C̃d C̃a Ĉd Ĉa

P
er

ce
nt

ag
e

(%
)

Scheduling approaches

Scen. 1
Scen. 2
Scen. 3

Fig. 4. Performance analysis of MPH for each scheduling algorithm:

percentage of runs performing better than Lingo in terms of cost.

0

0.05

0.1

Dd Da Nd Na Cd Ca Rand C̃d C̃a Ĉd Ĉa

%
 G

ai
n

(a) Network Cost

Scen. 1 Scen. 2 Scen. 3

0

0.05

0.1

0.15

0.2

Dd Da Nd Na Cd Ca Rand C̃d C̃a Ĉd Ĉa

%
 G

ai
n

Scheduling approaches

(b) Number of VPNs

Scen. 1 Scen. 2 Scen. 3

Fig. 5. Average performance improvement of MPH for each scheduling

algorithms with respect to Lingo, in terms of both cost (a) and number of
VPNs (b).

In addition, in the specific scenarios that we have
considered, the MPH with the Nd, Na, and Cd. scheduling
schemes prove to be the best ones. Nevertheless, this may not
be true in a general configuration. Even if these results do not
hold for all possible application scenarios, many practical
situations that can be found in operation can be led back to one
of the analysed scenarios. In any case, since the time needed to

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

execute the MPH algorithm is definitely low (in the order of a
few milliseconds for this simple type of case study, up to few
seconds for larger configurations), depending on the timing of
the considered service environment, a practical way to proceed
is to solve the problem by using different scheduling schemes
and then to pick up the solution which provides the lower cost.

One could argue that that in a slightly more realistic
setting, service requests will come and go and resources are
allocated and released accordingly (on-line problem), whereas
in our approach they are packed and then resources are
allocated to all requests together (off-line problem). We note
that, if the arrival times are close to each other so that there are
no requests that have completed the download at the arrival of
the last request, solving this problem in a first-in first-out
order corresponds to adopt a random selection strategy (Rand
in section III.B) for what concerns the value of the overall cost
function. Since the Rand strategy is not one of the best
performing ones, whenever it is possible formulating the
problem as an off-line, it is convenient doing so.

V. RELATED WORK

There are a number of related works in the field, which we
can roughly classify in server selection problems, planning
solutions, non guaranteed delivery solutions, peer-to-peer
(P2P)-based solutions, and multicast-based solutions.

We denote as server selection problems those treated in
works such as [30], where the objective is to select the most
suitable server to serve each client. However, in these schemes,
usually the parallel downloading defined in [5] is not
employed. Thus, these proposals are definitely less effective
than ours. In addition, most of these schemes are not able to
provide guaranteed delivery times. In this regard, it is worth to
mention also the recent paper [27], which illustrates an
innovative strategy to assign clients to servers. Nevertheless, as
in other proposals of this kind, this solution cannot provide
guaranteed delivery times. Thus, we can see our solution as an
enhancements of these scheme, able to benefit of both
guaranteed resources and parallel downloading capabilities.

We denote planning solutions those dealing with the
provisioning of either bandwidth and storage resources in the
SON nodes in order to support the distribution of bulk data
service over the Internet, such as [20]. Clearly, in this case the
perspective is completely different, since the goal is to design
an overlay network (provisioned with bandwidth and storage
resources) able to efficiently use resources to effectively
support bulk data transfer service.

NetStitcher [26] is an excellent example of a solution
designed to support bulk data transfer without guaranteed
delivery. This solution usually benefit of unused resources and
proposes a store-and-forward of data contents through
intermediate nodes, to save backbone bandwidth at peak hours.
However, this kind of solution, even if extremely efficient, is
not able to a priori guarantee delivery times in arbitrary time
windows, and thus it is not suitable for the analyzed problem.

One may wonder if a P2P architecture or multicast
distribution may be valid alternatives to our model. Let us start
evaluating the first option. In the considered scenarios, a
completely distributed P2P architecture cannot represent a
complete alternative to centralized-decision delivery, since it is
not able to guarantee the desired QoS yet [4]. For this reason,

we have introduced the role of the SON provider, since the
content operator can guarantee bandwidth only on the access
connections of his servers. Finally, using the SON also in a P2P
setting to guarantee QoS would require a possible huge number
of virtual paths, with relevant cost explosion.

All these considerations enforce the idea that in the
considered scenario (guaranteed delivery), a centralized
decision approach for content distribution is the best solution.
On the other hand, it is also worth noting that in the last few
years, the P2P research community has produced a large
number of interesting results in content distribution. As
highlighted in [3], it is very important to think about how
centralized solutions and P2P solutions can coexist and
collaborate to offer users the best performance. A future
investigation should be carried out into how and whether a P2P
system can represent an improvement in the proposed basic
architecture. In particular, it is evident that, already in the
present form, this work can be employed in a P2P system with
centralized decisions. In fact, let us consider not an whole data
item, but data item chunks, and define a delivery phase as the
time needed to complete a data item chunk download. Thus,
after the completion of a delivery phase, the number of source
nodes is increased, and the MPH algorithm can be re-run,
taking into account also new potential sources, so building a
system similar to that described in [25], but able to provide
performance guarantees and cost minimization. In fact, please
note that this P2P-oriented usage of MPH would always take
into account already set-up VPNs to minimize network cost.

Finally, as for the usage of IP multicast, it seems to be not a
good choice due to the following reasons:

• multicast protocols are not widespread, especially with
the requested reliability features for the guaranteed
delivery of bulk data. Although, the IETF has done
some steps towards the definition of a standard
framework for provider-provisioned multicast VPNs
[18], widespread deployment is still far from reality;

• the access link bandwidth of destination nodes may
differ (heterogeneous scenarios). This means that the
slowest access connection would determine the overall
transfer time, or multiple multicast groups should be
used, collecting “homogeneous” destination nodes, and
thus strongly mitigating multicast benefits.

A more viable option for multicast-based solutions is to
implement them in SON nodes only. Thus, possible candidates
for supporting new generation of guaranteed delivery of bulk
data could be application layer multicast solutions [31][32].
Another slightly different alternative to provide the needed
functions (guaranteed bandwidth, reliability) in an overlay
network with multicast capabilities could be realized using
programmable network devices, such as those supporting the
OpenFlow protocol [33], coupled with platforms supporting
network services with packet processing capabilities, such as
those provided by the NetServ [34], two features allowing to
easily introduce innovation in the network.

VI. CONCLUSION

In this paper we have analysed the problem of bulk data
transfer with guaranteed delivery times. We have considered
the perspective of a generic content/service operator. We have
assumed that content is present in more than one source node

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

and that the operator has to simultaneously manage a number
of bulk transfers, with some source nodes contributing to more
than one download. We have modelled this distribution system
as a continuous and non-linear optimization problem. We
have defined an heuristic named MPH, based on the min-plus
algebra, able solve the problem in acceptable times and with
high effectiveness.

Numerical results show that the proposed heuristic
outperforms two well-known commercial solvers we tested on
a number of sample configurations, whilst maintaining an
affordable computational burden, which is indeed definitely
lower than that of the commercial solvers.

Finally, we have discussed how the proposed solution can
be also used in controlled P2P systems, and/or new application
layer multicast architectures.

Future works will extend the work providing the
calculation of a lower bound to the optimal cost value, usable
to further reduce computation times by introducing a stop
condition, and further investigating on more refined request
scheduling algorithms.

In addition, we will develop a system prototype. The VPN
endpoints will be implemented by using programmable nodes
operating according to the NetServ architecture [34]. The
central signalling node, which is in charge of collecting
service requests and executing the MPH algorithm, will be
implemented through a service running on the Mobicents
JSLEE server (JAIN service logic execution environment), a
carrier-grade telecom software platform [35][36]. This
platform is particularly suitable for this task, since it has been
recently equipped with tools able to ease the design of
complex signalling services [37].

REFERENCES
[1] D.C. Verma, Content distribution networks: an engineering approach,

John Wiley & Sons, 2002.

[2] Digital Cinema Initiative, http : // www.dcimovies.com.

[3] J.A. Patel, I. Gupta, ”Bridging the gap: augmenting centralized systems
with P2P technologies,” ACM Operating Systems Review, 40(3), July
2006.

[4] R. Bindal, P. Cao, “Can self-organizing P2P file distribution provide
QoS guarantees?,” ACM Operating Systems Review, 40(3), July 2006.

[5] P. Rodriguez, E.W. Biersack, "Dynamic parallel access to replicated
content in the Internet," IEEE/ACM Transactions on Networking, 10(4),
August 2002.

[6] J.-Y.Le Boudec, P. Thiran, Network Calculus, Springer-Verlag, 2004.

[7] LINGO tool, http : // www.lindo.com / products / lingo / lingom.html.

[8] AMPL/MINOS tool, http : // tomopt.com / ampl / products / minos.

[9] The Virtual Private Network Consortium, http : // www.vpnc.org.

[10] A. Daniel, “IP Virtual Private Networks-A Service Provider
Perspective,” IEE Proceedings Communications, 151(1), February 2004.

[11] R. Callon, M. Suzuki, “A Framework for Layer 3 Provider-Provisioned
Virtual Private Networks (PPVPNs),” IETF RFC 4110, July 2005.

[12] V. Jacobson, R. Braden, D. Borman, “TCP Extensions for High
Performance,” IETF RFC 1323, May 1992.

[13] Y. Gu, R.L. Grossman, “UDT: UDP-based Data Transfer for High-
Speed Wide Area Networks,” Computer Networks, 51(7), May 2007.

[14] Y.-T. Li, D. Leith, R.N. Shorten, “Experimental Evaluation of TCP
Protocols for High-Speed Networks”, IEEE/ACM Transactions on
Networking, 15(5), October 2007.

[15] S. Kent. K. Seo, "Security Architecture for the Internet Protocol," IETF
RFC 4301, December 2005.

[16] M. Roussopoulos, M. Baker, D.S.H. Rosenthal, T.J. Giuli, P. Maniatis, J.
Mogul, "2 P2P or Not 2 P2P?," IPTPS 2004, La Jolla, USA, February
2004.

[17] C.S. Chang, “Deterministic traffic specification via projections under the
min-plus algebra,” IEEE INFOCOM'99, New York, USA, March 1999.

[18] T. Morin, “Requirements for Multicast in Layer 3 Provider-Provisioned
Virtual Private Networks (PPVPNs),” IETF RFC 4834, April 2007.

[19] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, MIT Press, 2001.

[20] T.V. Nguyen, F. Safaei, P. Boustead, C.T. Chou, “Provisioning overlay
distribution networks”, Computer Networks, 49 (2005), pp. 103–118.

[21] Z. Duan, Z. Zhang, Y. T. Hou, “Service Overlay Networks: SLA, QoS,
and Bandwidth Provisioning,” IEEE/ACM Transactions on Networking,
11(6), 2003, pp. 870–883.

[22] Z. Li, P. Mohapatra, “On investigating overlay service topologies”,
Computer Networks, 51(1), 2007, pp. 54-68.

[23] T. Dierks, E. Rescorla, “The Transport Layer Security (TLS) Protocol -
Version 1.2”, IETF RFC 5246, August 2008.

[24] Andersen, D. G., Balakrishnan, H., Kaashoek, M. F., Morris, R.,
“Resilient overlay networks”, 18th ACM Symposium on Operating
Systems Principles (SOSP), Banff, Canada, Oct. 2001, pp. 131–145.

[25] T.-M. T. Kwan, K.L. Yeung, “ServerCast: Efficient Cooperative Bulk
Data Distribution Scheme for Content Distribution Networks”, IEEE
Globecom 2005, Nov. 28 – Dec. 2, 2005, St. Louis, MO, USA,

[26] N. Laoutaris, M. Sirivianos, X. Yang, P. Rodriguez, “Inter-Datacenter
Bulk Transfers with NetStitcher”, ACM SIGCOMM 2011, August 15–
19, 2011, Toronto, Ontario, Canada.

[27] S.C. Han, Y. Xia, “Network load-aware content distribution in overlay
networks”, Computer Communications, 32 (2009), pp. 51–61.

[28] A. Bianco, J. Finochietto, L. Giraudo, M. Modesti, F. Neri, “Network
Planning for Disaster Recovery”, LANMAN 2008, Cluj-Napoca,
Romania, September 2008.

[29] A. Epstein, D.H. Lorenz, E. Silvera, I. Shapira, “Virtual Appliance
Content Distribution for a Global Infrastructure Cloud Service”, IEEE
INFOCOM 2010, San Diego, CA, USA, March 15-19, 2010.

[30] R.L. Carter, M. Crovella, “Server selection using dynamic path
characterization in wide-area networks”, IEEE INFOCOM 1997, Kobe,
Japan, pp. 1014–1021.

[31] S. Banerjee, B. Bhattacharjee, C. Kommareddy, “Scalable application
layer multicast”, ACM SIGCOMM 2002, Pittsburgh, PA, USA, August
2002.

[32] M.C. Castro, M.B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, A. Wolman, “An evaluation of scalable application-level
multicast built using peer-to-peer overlays”, IEEE INFOCOM 2003, San
Francisco, CA, USA, April 2003.

[33] N. McKeown et al, “OpenFlow: enabling innovation in campus
networks”,ACM SIGCOMM Comp. Comm. Rev., 38(2), April 2008.

[34] M. Femminella, R. Francescangeli, J.W. Lee, G. Reali, H. Schulzrinne,
“An enabling platform for autonomic management of the future
Internet”, IEEE Network, 25(6), Nov./Dec. 2011, pp. 24-32.

[35] M. Femminella, E. Maccherani G. Reali, “Performance Management of
Java-based SIP Application Servers”, IFIP/IEEE IM’11, Dublin, Ireland,
May 2011.

[36] M. Femminella, R. Francescangeli, F. Giacinti, E. Maccherani, A. Parisi,
G. Reali, “Design, Implementation, and Performance Evaluation of an
Advanced SIP-based Call Control for VoIP Services”, IEEE ICC’09,
Dresden, Germany, June 2009.

[37] M. Femminella, E. Maccherani, G. Reali, "Workflow Engine Integration
in JSLEE AS", IEEE Communications Letters, 15(12), Dec. 2011, pp.
1405-1407.

[38] C. Peng, M. Kim, Z. Zhang, H. Lei, "VDN: Virtual Machine Image
Distribution Network for Cloud Data Centers", IEEE INFOCOM'12,
Orlando, USA, 25-30 March, 2012.

9

