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Abstract—The robust and efficient streaming of video over
wireless networks poses serious challenges. Inherent instabilities
in the wireless medium lead to large, highly variable delay,
throughput variations, and data loss. To cope with this problem
the wireless MAC has incorporated many features such as relia-
bility and aggregation. These features allow transport protocols
such as TCP to work by hiding the frame losses from layers above
the MAC. The problem is that in doing so they create overhead
leading to loss of throughput. In this paper, we investigate a
receiver side network stack design that allows these features
to be switched off in the MAC. We instead provide reliability
and aggregation features at the session layer. Our network
stack design reduces the overhead cost significantly over MAC
frame aggregation and increases throughput. We demonstrate the
throughput advantages of our approach in testbed and emulation
and analyze the effects of overhead created by our system.

I. INTRODUCTION

There has been much work in attempting to deliver video
over wireless and in particular, video over HTTP/TCP over
wireless. What makes this an important, relevant, and (again)
a timely topic is the evolution in wireless technology and
the demand for multimedia at high resolution. The traditional
approach to dealing with the lossy wireless medium is to push
more features into the wireless MAC protocol. For example
the wireless MAC provides reliability and frame aggregation
services. The reason for reliability is obvious. The missing
frames must be replaced in order to deliver complete data to the
user. However, reliability is not free. It costs overhead leading
to loss of throughput.

The source of the overhead is the need for the 802.11
MAC to acknowledge frames. Radio time spent transmitting
an ACK is radio time that could have been used to transmit
data. The frame aggregation system attempts to address this
problem by transmitting many frames in an aggregate and then
a single acknowledgment for the entire aggregate. However,
the wireless MAC is inherently limited in its ability to provide
reliability and efficiency because of its position in the stack.
Since the MAC is below the transport layer, it must replace the
missing frames before the TCP Retransmit Time Out (RTO).
Otherwise, TCP will trigger a false congestion event. In fact,
the wireless MAC must also beat the MAC reorder buffer
timeout (typically 40 ms). If the MAC has not replaced the
missing frames before this deadline, the frames will be released
without the replacement frame. The missing segment number
that was inside of the lost frame will cause a false TCP

congestion event. The implication of this is that the data flow
will be reduced.

Our approach to solving this problem is novel because,
rather than solving the reliability problem at the MAC layer
and incurring the associated overhead, we provide reliability
at the session layer in socket.c. It is better to keep the data
flowing through the wireless MAC, IP, and transport layers and
retransmit in the session layer closer to the application. The
intuition driving this approach is that, for most multimedia
streams, there is a large jitter buffer that can absorb the
reliability overhead much better than the wireless MAC is
capable of. In fact, Video on Demand (VoD) normally has
a jitter buffer of 30 seconds, and live video a buffer of
8 seconds.1 This large difference in buffer size allows us to
reduce the ACK count and the overhead dramatically.

In our Fast Wireless Protocol (FWP), the retransmission
system is in the session layer above the transport layer. We
reduce the acknowledgment overhead to near zero because we
are not restricted by the transport or the MAC reorder buffer.
The tradeoff with our FWP approach is that the reliability
mechanism is implemented over HTTP. This places additional
load on the network because some of the data has to be
retransmitted from the server over the network. We weigh
the benefits of our solution in terms of increased throughput
from taking advantage of all transmission opportunities against
the drawback of increased overhead in the network in our
evaluation.

For the sake of deployability our FWP system is imple-
mented in the receiver stack only. There are no changes to
any device in the network and no special data encodings
at the server. Since FWP is implemented without crossing
administrative domains, it can be deployed without the need
to secure the cooperation of other administrative entities.

In this paper our contributions are to analyze the overhead
caused by wireless 802.11-style MAC protocols, and compare
this to our FWP network stack. We build a prototype system in
testbed and evaluate FWP in terms of throughput fairness and
overhead. Additional contributions are TCP Centric, a transport
system that distinguishes congestion loss from wireless bit

1We focus on video delivery, for example entertainment. Other kinds
of video delivery, for example, video conferencing with its more stringent
delay requirements is beyond the scope of this work. However, given that
video delivery has grown to dominate Internet traffic [8], [19], [9], this is a
reasonable tradeoff
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errors, and an HTTP retransmission system that exists in the
session layer.

The remainder of this paper is organized as follows. In
Section II we review relevant work in this area. In Section III
we provide a background of 802.11 frame aggregation systems
and closely examine the problem with wireless transmission of
data. In Section IV we describe the operating details of our
FWP system. In Section V we describe the implementation
details of our prototype used for experimentation. In Section VI
we perform experiments and analyze our solution. Finally in
Section VII we conclude and discuss our future work.

II. RELATED WORK

Research solutions addressing the efficient utilization of
bandwidth in wireless networks fall into a few general cat-
egories, the most popular of these being the new generation
of DASH video streaming applications. DASH solutions adapt
the quality of the video stream delivered in order to match the
bit rate required for media playout to the available throughput
provided by TCP [25]. Examples of this type of solution are
Adobe HTTP Dynamic Streaming server2, Adobe OSMF3,
Microsoft’s IIS Smooth Streaming player, 4 and the proprietary
protocols used by Netflix, Move Networks5, and others.

Further work in this area includes an evaluation of Akamai
HD Network for Dynamic Streaming of Flash over HTTP
provided by Cicco et al. [6]. Of particular interest in this study
are the experiments showing how the player reacts to sharing
the bottleneck router with a greedy TCP flow. In addition, a
study by Akhshabi et al. compare the behavior of Microsoft
Smooth Streaming, Adobe OSMF, and the Netflix player [2].
These solutions prevent video playout from stopping due to
a lack of throughput. However, they do this by reducing the
quality of the video stream, not by increasing the efficiency of
the network stack.

Before the adoption of HTTP/TCP by video streaming
service providers, much research was done to investigate
alternatives to the TCP protocol. Prime examples of this type
of solution are the Datagram Congestion Control Protocol
(DCCP) [16], [17], and RTP/UDP [23], [22]. A cross-layer
example of a UDP based protocol is provided in Krishna-
machari et al. [30]. Although these types of solutions provide
demonstrable results, they were not adopted for general use.
It is a common practice for Internet service providers to use
firewalling to drop UDP packets making non-HTTP solutions
unacceptable. However, some streaming applications such as
Skype6 will attempt to find an RTP/UDP connection before
falling back to an HTTP/TCP stream.

Many adaptations to TCP’s congestion control algorithms
have been studied in [7], [10], [27], [15], [24], [20]. However,
these solutions require changes to the TCP sender as well as
the receiver. It has proven difficult to convince large content
providers to change their network stacks. Our solution works
within the receiver kernel and can be deployed without such
large scale changes.

2http://www.adobe.com/products/
3http://www.osmf.org/
4http://www.iis.net/media/experiencesmoothstreaming
5http://www.movenetworks.com/
6www.skype.com

Equation based TCP friendly solutions were studied in, [4],
[11]. However, these equations are only fair within a factor
of 2. This is inadequate for TCP fairness. TCP fairness and
benchmarks have been studied in [28], [29], [5], [1], [21]. We
used these studies to help generate our fairness metric.

Multipath TCP has been studied in, [31], [12]. These types
of solutions attempt to increase throughput by using multiple
paths through the Internet. Split TCP solutions separate chan-
nel condition loss from congestion loss thus increasing TCP
throughput in lossy networks [14]. However, these solutions
do not address the overhead problems in the wireless network
stack.

Erasure coding and it’s use with TCP have been studied
by Luby, and Mitzenmacher et al., [18], [26]. TCP/NC applies
network coding in a shim layer between the TCP and IP layers.
This approach is powerful, but it’s positioning in the network
stack requires a large overhead (5n+7 where n is the number
of packets involved in a linear combination). This overhead
is caused because of the variable size of TCP packets. Our
solution works at the Session layer where fixed size blocks
can be used thus avoiding almost all of this overhead. In
addition, TCP/NC requires sender side kernel changes making
it as difficult to deploy.

The ossification of the TCP protocol has been studied and
it has been found that TCP modifications that relay on TCP
options have difficulty passing through proxies such as those
found in many wireless networks, [13], [3]. Our receiver side
only architecture avoids this problem

All of these solutions, although effective in their own right,
solve fundamentally different problems than our FWP system.
None of these solutions effectively address the overhead prob-
lem encountered in 802.11 wireless MAC.

III. BACKGROUND

The 802.11 retransmission scheme causes a tremendous
amount of overhead at higher bit rates. This is because the
radio header, the Short Interframe Spacing (SIFS) wait times,
and the ACK transmission take up a significant amount of radio
time (2∗SIFS+ACK). In order to reduce this overhead the
802.11n standard provides for two frame aggregation schemes.
The Aggregate Mac Service Data Unit (A-MSDU) system, and
the Aggregate Mac Protocol Data Unit (A-MPDU) system. in
this section we describe each of these aggregation techniques
and then summarize the overhead of 802.11 reliability.

A. A-MSDU frame aggregation

Frame aggregation systems combine MAC data units, either
service or protocol, into an aggregate with a single header. This
significantly reduces overhead. The A-MSDU aggregation sys-
tem combines Mac Service Data Units (MSDU) into 7935 byte
aggregates with one MAC header and the payload protected
by a single CRC. The A-MSDU frame aggregation system is
very efficient in relatively error free channels. However in error
prone channels it suffers. The single CRC error protection does
not allow the decoding of bits that were received correctly and
the entire aggregate must be retransmitted.

Figure 1 demonstrates the A-MSDU aggregation system. In
Time Series A, frame 2 is lost. There is no per packet Frame
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Check Sequence (FCS) so the entire aggregate is undecodable
and nothing is received. The entire transmission sequence
is overhead. In Time Series B, all the frames are received
correctly and the overhead to data ratio is good. The A-MSDU
frame aggregation suffers greatly from error prone conditions.

Radio

Head

Radio

Head
Frames 1 .. 64 AIFS ACK

Lost 2

Radio

Head

Received

nothing

Radio

Head
Frames 1 .. 64 BIFS ACK

Lost none
Received

64 frames

Fig. 1. A-MSDU Frame Aggregation

B. A-MPDU frame aggregation

The A-MPDU system has an error correction protocol to
cope with lost frames individually rather than in aggregate.
In the A-MPDU system up to 64 frames are aggregated into
a single A-MPDU with a single radio header. A checksum
of 4 bytes is provided for each frame. With these checksum
bytes the receiver can determine which packets were received
correctly then generate a bit map called a Block ACK (BA)
requesting the missing frames. The Block ACK Window
(BAW) sliding window system is implemented to retransmit
the requested missing frames.

Figure 2 demonstrates the BAW advance mechanism. In
Time Series A, the aggregate is full and 64 frames are
transmitted. Frames 2 and 3 were not received correctly and
the BA indicates that they should be retransmitted. The BAW
sliding window cannot be advanced past the first missing frame
until a BA indicates that frame has been successfully received.
The BAW is advanced one frame and this queue has stalled.

In Time Series B, a smaller aggregate is transmitted. Only
one new frame (number 65) can be added to the A-MPDU
because the BAW was only advanced by one. The two lost
frames can also be added for a total of 3 frames. The aggregate
is now very small compared to the 64 frames that could have
been transmitted. In this example frame 3 is again lost leading
to another small aggregate transmission in Time Series C.

The A-MPDU system is reasonably efficient even in error
prone conditions. However, its sliding window retransmission
system can sometimes stall resulting in the transmission of
a small aggregate. This becomes a problem when there are
other stations contending for air time. The station has used its
transmission opportunity to send the small aggregate consisting
of only a few frames. Now it must wait until it wins the
contention for air time to transmit again.

C. 802.11 Reliability

Reliability in the 802.11 MAC is provided by an ac-
knowledgment system. This acknowledgment system creates a
great deal of overhead especially at higher speeds. The frame
aggregation systems are designed to reduce this overhead.
However, even with modest frame losses, which are quite
common, they lose efficiency and reduce throughput.

Radio

Head

Advance

BAW 1

Radio

Head

Advance

BAW 1

Radio

Head

Frames

2, 3, 65
BIFS BAW !3

Lost 3

Radio

Head

Radio

Head
Frames 1 .. 64 AIFS

!2 and !3

BAW

Radio

Head

Frames

3, 66
CIFS

Advance

BAW

BAW 64
Lost none

Lost 2 and 3

Fig. 2. A-MPDU Block ACK Window Advance

IV. FAST WIRELESS PROTOCOL

Our approach to resolving issues with overhead problems
created by wireless MAC reliability is to switch it off. With
the MAC acknowledgment system turned off there is no ACK
overhead, and since the sliding window system is turned off, it
cannot cause a queue stall. We instead push reliability and in-
order delivery systems to the session layer above the transport.

With the MAC acknowledgment system turned off and the
MAC reorder buffer disabled the transport system will receive
a stream of data with missing segments. In common forms of
TCP such as Cubic, Compound, and NewReno this will cause
false congestion events and reduce throughput. To resolve this
problem we designed a receiver side modification to TCP
called compatible TCP.

Compatible TCP will deliver the data stream to the Session
Layer with missing chunks of data. To resolve this problem,
we designed an HTTP retransmission scheme with a reorder
buffer that will replace the missing chunks of data. Once the
retransmission is complete, it will release the buffer and deliver
the data to the application. The application remains oblivious
that the stack has changed beneath it.

In order to make the needs of our FWP system more
concrete we have developed a set of requirements that we
believe an FWP stack must have.

1) Remove data protection and in-order delivery services
from the MAC.

2) Remove data protection and in-order delivery services
from the transport layer.

3) TCP congestion control must remain intact.
4) Implement data protection and in-order delivery ser-

vices at the session layer.

Requirements 1 and 2 ensure that the flow of data is not
inhibited by the lower layers. Requirement 3 ensures that the
design is interoperable with other flavors of TCP. Requirement
4 ensures that the application is unaware of the new network
stack.

Requirement 1 is accomplished by turning off the positive
acknowledgment system in the 802.11 MAC and reducing the
MAC reorder buffer timeout to zero. We used the 802.11n
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standard’s NoAck policy to turn acknowledgments off. With
the acknowledgment system turned off the A-MPDU frame
aggregation system’s BAW sliding window is disabled. In this
mode there is no possibility of a queue stall. These steps satisfy
Requirement 1.

Our TCP compatible solution fulfills Requirements 2 and 3.
It removes reliability and in order delivery services from TCP
while leaving congestion control intact. To avoid the reliability
and in order delivery TCP compatible detects sequence number
holes and fills them in by injecting placeholder segments.
Congestion control is maintained by means of a switch. When
there is no congestion, TCP compatible injects placeholder
segments, when congestion is detected TCP compatible is
switched off. With TCP compatible switched off TCP will
throw congestion events normally and maintain fairness with
other flows.

We fulfilled Requirement 4 by implementing data protec-
tion and in order delivery systems in the session layer at
socket.c. This consists of a reorder buffer and an HTTP re-
transmission scheme. This design decision produces overhead
since it retransmits the lost data over the entire path rather than
just the wireless hop.

V. FWP IMPLEMENTATION

We implemented a prototype in order to facilitate our
evaluation and to make practical the conceptual framework
described in Section IV.

Our FWP prototype design consists of four components.

1) An 802.11 FWP aggregation emulator.
2) An 802.11 A-MPDU aggregation emulator.
3) A compatible TCP.
4) An HTTP retransmission scheme.

We decided to use an emulator rather than 802.11n drivers
and hardware for our experiments. We made this choice be-
cause emulation allowed us to study the effects of 802.11 frame
aggregation without interference from other 802.11 systems.
This is difficult to accomplish with wireless hardware because
wireless standards have multiple systems interacting with each
other. The rate adaptation system interacts with the driver to
construct the transmit retry chain, and both of these systems
interact with the packet aggregation system. These interactions
between systems are driven by external effects that are difficult
to control in an experiment.

In addition, the emulators let us compare the systems while
they are in a constant state. This is critical because we need
to be certain that any effects observed in our experiments are
not caused by seemingly random external effects. For instance
if there is a throughput change we need to be certain that it
was not caused by a Modulation and Coding Scheme (MCS)
change or other system interaction.

We implemented our emulators using packet schedulers
running in kernel modules at the IP layer. We implemented
4 MIMO streams with channel error calculated independently
on each stream. The channel error rate on each stream is the
same in order to facilitate channel contention experiments. We
set MTU size to 1500 bytes making a packet about equal to
a frame. Packets are enqueued to each aggregation queue (1

per MIMO stream) round robin. We implemented two modes
of operation, FWP, and A-MPDU. We also built an A-MSDU
aggregation emulator. However, the performance of A-MSDU
aggregation was so poor that we will not highlight any of the
experiments in order to save space. Also we found that in
the Atheros 802.11n drivers that A-MSDU aggregation is not
implemented and we suspect that is the case for other drivers
as well.

In the dequeue function of the emulators we implemented
aggregation. When enough packets have been enqueued to an
aggregation queue to fill an aggregate (or to fill it as much as
possible in the case of an A-MPDU) the aggregate is delayed
to account for the overhead of the radio header, IFS, and
ACK time. Frame loss is calculated, then successful packets
are sent across 1 Gbps Ethernet. Many simulators use a Bit
Error Rate (BER) curve to calculate frame loss over wireless
channels. However, since aggregations do not contain error
correction bits (only per frame checksums) this is unnecessary.
To streamline kernel calculation, we used the Frame Error Rate
(FER) model instead. Our designs are based on the open source
Atheros driver code and the IEEE 802.11n standard. Other
drivers are proprietary. However, we believe that they behave
in a similar fashion.

A. 802.11 FWP Aggregation Emulator

Requirement 1, Section IV calls for the wireless driver
to operate in A-MPDU mode with no ACKs, this is called
ADDBA noack mode. We emulate this by queuing packets
into our emulated aggregation queues. The maximum A-
MPDU aggregation size in the Atheros driver code is 32
rather than the 64 specified in the IEEE standard. We use 32
packets to an aggregate following the Atheros code. Frame
loss is calculated using the FER. Packets representing lost
frames are dropped. Packets representing successful frames are
transmitted across 1 Gbps Ethernet after an appropriate delay
for wireless transmission. This is demonstrated in Figure 3.

Delay

Received
Lost 72

B

A

Delay

Received
Lost 2

1 Gbps
Send

1 Gbps
Send

31 frames

31 frames

Frames 33...64

Frames 1..32

Fig. 3. FWP 802.11 emulator using ADDBA noack

In Time Series A, enough packets to represent 32 frames
are queued. Frame 2 is lost so its packet is dropped. A total of
31 frames are received. In Time Series B, the aggregate is filled
with 32 more packets and the process is repeated. Another
frame is lost and 31 more frames are received. A total of 62
frames have arrived at the receiver. The aggregate is always
filled and there is no sliding window. The throughput with
FWP is always linear with frame loss because frame errors
are not corrected.
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B. 802.11 A-MPDU Aggregation Emulator

In our A-MPDU emulator frame loss is also calculated
using FER. However this time, packets representing lost frames
are not dropped. Instead they are held in the queue. Packets
representing successfully transmitted frames are delayed for
overhead then transmitted over 1 Gbps Ethernet. In the next
aggregate the BAW is advanced up to the first lost frame. New
packets are added to the aggregate queue to account for the
BAW advance. The aggregation queue now holds these new
packets as well as any packets representing lost frames from
the last round.

1 Gbps
Send

1 Gbps
Send

B

Delay

Advance BAW 1

A

Delay

Received

31 frames

Received

2 frames

Lost 2

Frames 1...32

Frames 2, 33

Advance BAW 32

Fig. 4. A-MPDU 802.11 emulator

Figure 4 demonstrates this. In Time Series A, frame 2 is
lost and the BAW is advanced 1. The packet representing frame
2 is not transmitted. The successful frames are delayed and
transmitted over 1 Gbps Ethernet. In Time Series B, frame 2
is still in the queue from last time. The BAW has advanced
one so the end of the window now points to 33. Packets
representing frames 2 and 33 are transmitted. All of the other
frames within the window have been successfully transmitted
and the A-MPDU cannot be filled. In this example, both frames
are successful in Time Series B, so the packets are delayed for
overhead and then dequeued.

The A-MPDU in Time Series B, represents a lost transmis-
sion opportunity. If there is no contention then this will not
matter much and the A-MPDU because the station will be able
to transmit again without contention. The system will achieve
reasonable performance. However, in the normal case when
there is contention for the wireless medium the station will
not be able to regain airtime until it wins contention again. In
contention with other stations the A-MPDU system will lose
throughput because of missed transmission opportunities.

C. TCP Compatible

A standard TCP such as Cubic, Compound, or New Reno
will not work well with our FWP system because it delivers
data to the transport layer with missing segments. In fact, these
TCPs are quite sensitive to sequence number holes. When
a sequence number hole occurs dupACKs are sent for the
missing segment until it is received. It takes approximately
one Round Trip Time (RTT) to retrieve a missing segment.
In normal use with RTTs above 30 ms many dupACKs will
be sent before the missing segment is received. This behavior
erroneously triggers the congestion control mechanism when
segments are lost due to wireless transmission through the
802.11 FWP Aggregation Emulator.

In order to cope with this problem we developed com-
patible TCP. In keeping with our receiver side only design
philosophy the server side transport layer code remains un-
touched implementing whatever congestion control mechanism
is selected in the server kernel. Compatible TCP will fulfill
Requirements 2, and 3 from Section IV.

In order to fulfill Requirement 2 (remove in order delivery,
and reliability) we monitor the TCP ACK stream. When a
duplicate ACK is detected a placeholder segment is generated.
The sequence number of the placeholder segment is fixed
to the sequence number of the missing segment, and the
DATA section is filled with marker data to indicate that
the data in this segment was not received. The placeholder
segment is then checksummed and injected into the stack
filling in the sequence number hole. This prevents TCP from
detecting missing segments removing data protection and in
order delivery services from the transport layer as specified in
Requirement 2 from Section IV.

Requirement 3 specifies that the TCP congestion control
must remain intact. TCP congestion control not only prevents
congestion collapse but also maintains fairness with other
TCPs. In order to re-establish the congestion control mech-
anism we operate our compatible TCP in a bi-stable mode. In
one state the compatible TCP injects placeholder packets, and
in the other state normal TCP behavior is observed.

In order to discern congestion loss from wireless loss
we use information from the 802.11n rate adaptation system.
It provides us with the expected frame loss for our current
Modulation and Coding Scheme (MCS). We measure our
segment loss rate in TCP compatible. If the loss rate measured
over a window of 1 RTT is less than the expected wireless
frame loss rate then the loss is determined to be wireless
related. We remain in placeholder injection mode. If the loss
rate exceeds the expected wireless frame loss rate then the
loss is determined to be congestion related and we operate in
normal TCP mode.

An example of this is shown in Figure 5. Segment 3 is
lost and filled in with a placeholder as soon as the sequence
number hole is detected (when segment 4 arrives). At segment
9 the sequence number hole count has exceeded the frame
error rate reported by the 802.11n rate adaptation system. In
response we switch to normal TCP mode. No placeholders are
injected and duplicate ACKs are sent triggering a congestion
event. TCP fairness is maintained.

D. HTTP Retransmission Scheme

The final requirement from Section IV implements in order
delivery and data protection services. This allows applications
to remain unaware of the rearrangement in the stack below
them. We use an HTTP retransmission scheme in order to
accomplish this. The placeholder packets are easily recognized
in the data stream by a character search. The beginning and
the end of the placeholder data indicate the byte range that
must be requested to replace the missing data. We use curl7
to request the byte range and insert the missing data into the
stream before releasing the buffer to the application.

7http://curl.haxx.se/
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Fig. 5. TCP Compatible Transport

We had to implement a reorder buffer in order to wait for
the data to be replaced. Data is released normally until the first
missing chunk. In our prototype the system waits until the data
is replaced. In a production system we believe a timeout should
be implemented. The system introduces a variable end-to-end
delay (jitter). We believe that the jitter is not important since
our target applications have large jitter buffers, 30 seconds for
Video on Demand, and 8 seconds for live video. This is enough
to absorb the jitter.

There are two types of overhead that are caused by this
retransmission scheme. The first is the network overhead
caused by retransmitting the data from the server. This is
discussed in detail in Section VI-D. The second type of
overhead is that caused by the cpu having to identify the
placeholders (character search) and replace the data once it
has been retrieved. Because the cpu is many times faster than
the network (in almost all cases) this overhead is negligible.

VI. EVALUATION

We evaluated FWP by observing three key characteristics
of our solution: throughput, TCP interoperability (fairness),
and overhead. FWP is designed to take full advantage of every
transmit opportunity and achieve better throughput than 802.11
frame aggregation during contention. We evaluate the through-
put gains of our solution over varying channel conditions and
number of competing stations.

In our design, we replaced the receiving side TCP with
our compatible TCP. To determine interoperability with other
TCPs we perform fairness testing. We introduce a variant of
Jain’s fairness metric to determine whether our TCP solution
shares fairly with other TCPs. In addition we characterize the
overhead introduced by our HTTP retransmission scheme.

Our wireless hardware is emulated. We understand that
emulators have difficulty modeling the complex interactions
of the wireless channel. Because of this, we do not rely on
our emulator to provide absolute values, but instead use it to

understand behaviors and trends that cannot be observed in
isolation with real hardware. We first describe our testbed then
the results.

A. Testbed

In order to evaluate our FWP solution and compare it
against A-MPDU frame aggregation we built a testbed in
Emulab facilities provided by the Flux Group, part of the
School of Computing at the University of Utah8.

Nodes 0 through m in Figure 6 are client nodes. Node m
is equipped with an FWP stack. Because Emulab topologies
are easily configurable, we can vary the number of clients and
servers to fit the needs of the experiments. This allowed us
to test contention with a variable number of client and server
nodes in our testbed. The servers (nodes m + 1 through n)
each serve one client from nodes0 through m. Nodes n + 1
and n+ 2 emulate the Internet path from each server to each
client. All links are 1 Gbps Ethernet.

emulator

802.11 aggregation

client

nodes

server

nodes

FWP

node

RTT emulation

netem delay

bottleneck

capacity

emulation

tc HTB

. . .

m+1

n

n+2n+1

m

0

. . .

Fig. 6. Emulab testbed

Node n+ 1 contains the aggregation emulators and Node
n + 2 emulates Internet bottleneck router capacity. We use
our aggregation emulators and tc9 filters and an HTB packet
scheduler10 to accomplish this. The Internet path RTT is
implemented using netem11 to introduce one way delay on
the egress interface of nodes n + 1 and n + 2. All streams
flow through the same bottleneck and have the same RTT in
order to compare FWP against 802.11 aggregation in the client
nodes.

Experiment Parameter Default Value

Round Trip Time 40 ms
RTT Variance 10 percent
Bottleneck Bandwidth 600 Mbps
Frame Loss 10−3 − 10−2

Experiment Duration 120 seconds
Experiment Runs 10

TABLE I. DEFAULT EXPERIMENTAL PARAMETERS

Table I shows a list of default experimental parameters.
Unless otherwise specified in an experiment the parameter
values will be set as shown in the table. We chose a default

8https://www.emulab.net/
9http://www.lartc.org/
10http://linux.die.net/man/8/tc-htb
11http://www.linuxfoundation.org/networking/netem
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RTT of 40 ms. Although the average RTT of an Internet path
is a nebulous and debatable point our observations have shown
that RTTs between 30 and 50 ms are within reason.

Because of the interaction of multiple router queues along
an Internet path RTTs in the Internet are not stable values. In
order to emulate this we used netem to randomly varying the
delay according to a distribution we chose to vary the RTTs
+/-10% in a normal distribution about the mean.

We chose to use 600 Mbps throughput capacity at the
bottleneck since this is the theoretical maximum of 802.11n.
Our links are 1 Gbps so it was not possible for us to measure
more than one 802.11n station operating at full theoretical
maximum. Experiments were run for 2 minutes with 10
experimental runs.

B. Throughput

To understand the throughput gains achieved by our FWP
system we first highlight an example from a series of ex-
periments with 10 competing stations sharing 600 Mbps of
bandwidth. Figure 7 shows a comparison of our FWP versus
802.11 frame aggregation measuring throughput achieved at
the receiving station against probability of frame loss.

 0

 10

 20

 30

 40

 50

 60

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

M
b
p
s

probability of loss 

FWP
A-MPDU

Fig. 7. Throughput gains from 1 FWP station competing with 9 A-MPDU
aggregation stations

As expected the throughput achieved by our FWP system
is very linear to loss. This is because we transmit a full (32
frame) aggregate every time we win contention and do not
stop to retransmit. The A-MPDU system on the other hand is
not linear to loss. The A-MPDU aggregation system suffers a
drastic reduction of throughput at even very small error rates.
It achieves about two thirds of the throughput of FWP at .05
FER, and about half at a probability of .20 FER.

The emulation shows that the trending throughput gains are
significant especially at the FER range of 10% to 40%. This
range of FER is critical because this is where a rate adaptation
system might make a decision such as 40% FER at 600 Mbps
is preferable to 0% FER at 300 Mbps.

Next we sought to determine the effect of the number
of competing stations on our FWP system versus A-MPDU
aggregation. We plot the throughput gains achieved by 1 FWP
station competing with 1 to 9 A-MPDU stations.
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Fig. 8. Speedup of FWP against number of competing A-MPDU stations

We define a metric called speedup to measure the through-
put gains. Speedup is the number of times faster that FWP is
than A-MPDU aggregation. For instance a speedup of 1 would
be the same throughput; a speedup of 2 would indicate twice
as much throughput. The experiments were each two minutes
in duration. The graph in Figure 8 shows a whisker plot of 10
experimental runs. The bars in the whisker plot show values
from the 10th to the 75th percentile, and the whiskers show
the minimum and maximum values.

We can see from Figure 8 that the throughput gains are
more strongly effected by FER (loss) than by the number of
competing stations. In fact the throughput gains are reasonably
flat across the number of competing stations. They are averag-
ing greater than 1.6 for 10% FER, and greater than 2 for 40%
FER.

These experiments have demonstrated that the throughput
gains of FWP over current wireless aggregation technology
are significant and not dependent on the number of competing
stations. This indicates that in real wireless hardware FWP
would almost always (any non zero channel error condition)
develop significant throughput gains and that these gains would
increase with the amount of channel error.

C. Fairness

One of the key goals of our dirty slate design for FWP
is deployability. Because of this we had to determine whether
our compatible TCP operates fairly with other TCPs. First we
wished to determine if the characteristic competitive behavior
of TCP has been affected by our modifications. This involved
many time series experiments to determine that the waveform
generated by our compatible TCP is similar to the waveform
generated by a popular TCP such as Cubic.

In Figure 9 we see an excerpt from one of this series of
experiments. The bottleneck router capacity in this experiment
was 600 Mbps and the RTT was 40 ms. The graph shows
that the competitive behavior of TCP remains intact in our
compatible TCP. One flow gains an advantage over the other
for a time and then the roles reverse. Normally the variations in
throughput are quite small but sometimes over larger periods
of time the fluctuations are larger.
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These experiments have shown that the competitive behav-
ior of TCP is largely unaffected by our modification. In the
next series of experiments we perform a more rigorous system
testing of TCP fairness over a variety of RTTs. In order to
clearly present these experiments we define a metric called
fairness. This is loosely based on Jains fairness index.
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Fig. 10. Throughput variations of compatible TCP against TCP Cubic

We ran this series of experiments for 2 minute durations
and determined the variations in throughput over 1 second
intervals. The bottleneck router capacity in these experiments
was 600 Mbps and we plot the percentage of throughput
achieved by our TCP compatible against a competing Cubic
TCP.

The design of our TCP compatible can take up to an RTT
longer than a normal TCP to begin congestion control behavior.
This could lead to more aggressive behavior over larger RTTs.
We believe that it is okay for our TCP compatible to act in
a more aggressive manner when the RTT is larger because
TCP throughput gets smaller as RTTs increase. However, the
amount of aggression should not be too great at normal RTTs.

The whisker plot in Figure 10 shows our fairness percent-
age results over 10 experimental runs. The line at 50% fairness
indicates ”perfect sharing”. This would mean that both TCPs
(compatible and Cubic) received 1 half of the throughput over

each 1 second interval. A ”fair” TCP should not fluctuate much
above or below this perfect sharing line. Plus or minus 5%
would indicate very good sharing, and +/- 10 % would still be
a very reasonable amount of fairness.

The graph shows that our compatible TCP operates in a
reasonably fair manner when competing with a Cubic TCP
across a wide range of RTTs from 30 to 70 ms. We see a
small amount of additional aggression at the higher RTTs (60
- 70 ms), however, the sharing of bottleneck router resources
is still very reasonable.

These experiments have shown that our compatible TCP
behaves in a manner consistent with standard TCP behavior
and that it is reasonably fair with other TCPs. We believe that
our compatible TCP is interoperable with other TCPs fulfilling
requirement 3 from Section IV.

D. Overhead

One of the tradeoffs with our FWP solution is that the
HTTP retransmission reliability system generates network
overhead. There are two types of overhead that we examined
in our experimentation. The first is the additional data transfer
across the wireless link. The overhead across the wireless
portion of the link is small because the data portion would have
had to have been retransmitted anyways. The only additional
overhead added to the wireless hop is the HTTP header
required to specify which portion of the data needs to be
retransmitted.

The second type of overhead that we examine is the amount
of additional data transfer across the Internet path. Because
our HTTP retransmission scheme retrieves missing data from
the server this data must be sent all the way across the path.
For every other hop on the path the retransmitted data is pure
overhead since the data would have been transmitted from
the access router instead of the server. Figure 11 shows the
comparison of both kinds of overhead. The overhead across
the Internet path grows quickly reaching 100% at a 50% FER.
This shows that our FWP system places a large burden on the
Internet path rather than the wireless hop.
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Fig. 11. Overhead for Internet path versus wireless hop

The overhead for the wireless hop however, is quite small.
It only reaches 13% at 50% FER. These experiments have
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shown that our FWP system provides a great deal of through-
put gain versus overhead from the point of view of the wireless
hop. However, the increasing overhead across the Internet path
becomes a limiting factor. We plan to address this problem in
future work.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have developed FWP, a very fast wireless
protocol. We have done this using our novel receiver side only
architecture. The system does not require any in-network or
server side changes whatsoever. In addition, it does not require
any special encodings or data formats. Our receiver side only
architecture solves the deployment problems encountered by
previous work in this area.

However, we found that even though the amount of over-
head introduced into the wireless hop is minimal, the amount
of overhead introduced into the Internet path is large. In our
future work we plan to address this problem by expanding
the definition of administrative domain to include not only the
receiving station, but also the access router. This will allow
us to use the driver at the access router to buffer frames.
We will construct a modified version of our session layer
retransmission scheme that does not use HTTP. It will instead
use the Block ACK in the 802.11 frame aggregate to release
or retransmit frames. This will eliminate the overhead across
the Internet path. In addition, we intend to investigate the idea
of injecting placeholder frames in the 802.11 driver rather than
in the transport layer.
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