Networking 2013 1569701111

CobWeb: In-Network Cobbling of Web Traffic

THitesh Khandelwal, iFang Hao, ¥Sarit Mukherjee, fRamana Rao Kompella, IT.V. Lakshman
fPurdue University, {Bell Labs Alcatel-Lucent

Abstract—Existing per-flow measurement solutions provide
coarse-grained information for ISPs to manage their networks,
that are insufficient for many new emerging applications such as
reverse billing, where charges associated with accessing a web
service are billed back to the web service provider rather than
the users. For such applications, it is important to construct
the entire session tree that represents the transitive closure of
all traffic downloaded as a result of a user accessing a given
web service. Automated construction of the session tree based
on network traffic observation is challenging mainly due to the
complex composition of modern web services. In this paper, we
present COBWEB, a system that performs automated in-network
cobbling and monitoring of web services traffic. Using extensive
evaluation using over 700GB of traces, we show COBWEB can
achieve good accuracy with low (< 5%) false positive and negative
rates.

I. INTRODUCTION

Today, per-flow traffic measurement and application iden-
tification are extensively used by ISPs to gain insight into
their network operations. These are often done using several
specialized monitoring boxes currently in the market [2], [1],
that provide extensive per-session, per-application or per-flow
usage and performance reports. These boxes also identify
traffic to various popular web-sites by time-of-day, region,
etc. However, these solutions provide measurements at a very
coarse-granularity (e.g., IP address, protocol signature), which
is not sufficient for many emerging network measurement tasks
such as the reverse billing application.

In reverse billing, any charges associated with accessing a
web service are billed back to the web service provider rather
than to users. It is motivated by the growing shift from flat-rate
to tiered-pricing in wireless networks, and in some countries,
wired networks as well. Examples include AT&T which permits
250MB data for about $15 and 2GB for $25 per month in the
US. Thus, service providers may want to attract customers by
providing ‘toll-free’ access to their services. Another alternate
could be a subsidized service model where the ISP may provide
access to web-services such as ESPN or CNN for some nominal
fee per month.

For such applications, it is important to precisely associate
all the traffic that is generated upon each access to a given
web service. This entails identifying all the traffic that is due
to downloads from the original host for the web service, its
content delivery network (CDN), and downloads of embedded
objects from third-party services (e.g., advertisements). Unlike
per-flow traffic measurement, for this more general problem,
it is necessary to construct a session tree that represents the
transitive closure of all web service accesses that happen as
a consequence of accessing a given root web service. Note

that the session tree may be quite dynamic and the internal
nodes can change across users as well as across time. While we
motivated this measurement problem in the context of reverse
billing, we believe there are several other contexts where such
a capability is useful. To our knowledge, there is no effective
solution to this general measurement problem yet, and we are
among the first to consider this problem.

Constructing the session tree in the network is challenging
for many reasons. Widely used web services are a com-
plex mashup of content from several supporting services
including CDNs, third-party advertisement platforms (e.g.,
ads.doubleclick.com), and other third-party services (e.g., CNN
web services using Facebook for friend recommendations). This
makes the structure of the session tree difficult to infer. Also,
with the inherent flexibility in designing web services, the
session tree is rarely static. Moreover, web services are largely
personalized—the content served varies with the user even for
the same URI. Thus, one cannot use a unique set of URIs
to identify a service. Yet another issue is that potentially many
different web services are usually co-hosted within a data center
(e.g., Akamai) making IP addresses ineffecitve.

In this paper, we describe a system, COBWEB, that au-
tomatically performs in-network cobbling of different web
services—we use the term “cobbling” for the identification and
measurement of all traffic associated with a given web service.
We assume that COBWEB has access to both upstream and
downstream traffic flows, as it is envisioned to be deployed
at the network edge with port mirroring used for access to
traffic flows. COBWEB works in two stages. It identifies any
supporting CDN used by a web service and then, it identifies
all the embedded objects downloaded for that web service. The
total data usage consists of all the traffic that is associated with
access to this service—be it from the original access, from
the CDNs, and from all the related chain of accesses that are
triggered by the embedded links. Designing a system that tracks
all the traffic belonging to a web service with 100% accuracy is
a big challenge given the lack of any uniform methodology or
standards in the composition of web services; the mechanisms
that we use therefore rely on heuristics that reflect current
practices in web service composition.

We evaluate our system based on two web traffic traces
in total amount of 739 GB collected from a large university
campus network, along with traces that are generated in lab
controlled environment for emulating user browsing behaviors.
We take 70 web sites from the Alexa top 100 US sites, along
with the top 26 popular web sites for users in a large university
campus network, as the target web services. Our results show
that the system can achieve an average false positive rate of

GET /index.js
Host: cdn.turner.com

Referer:
cdn.turner.com’,

GET /888BFFEA-DF82....
Host: content.pulse360.com

GET /cnn/..../btn_play.jpg ™~
Host: i.cdn.turner.com

GET: /extern/login_status.php?...
Host: www.facebook.com

GET /cnn/..../hdr-search-google.gi
Host: i.cdn.turner.com

GET: /rss.xml?edition=int
Host: feeds.bbci.co.uk

(a) Constituents of a CNN session

Fig. 1.
websites are not part of the CNN session tree.

3.5% and false negative rate of 4.8% across these 96 web
services.

II. PROBLEM STATEMENT

In this section, we start with some preliminaries about web
services. We then clearly define our main objective in this paper,
argue why the problem is hard, and show that simple solutions
do not work well.

Web Service Preliminaries A web browser interacts with a
web server by sending HTTP requests to the server, and then
receiving response messages back. The page returned in the
response to a request to say cnn.com web service may contain
many links to other embedded objects as shown in Figure 1(a).
For accessing the CNN page, more than 150 additional requests
are sent to 24 other hosts to acquire all the additional content.
Of course, such numbers may change due to dynamic nature of
the content. The hosts that provide content to a web page can
be classified into three broad categories: original hosts, CDN
hosts and third party hosts. Original hosts are those that belong
to the same root domain of the web service, e.g., cnn.com and
money.cnn.com. CDN hosts are the servers that are part of the
CDNs associated with that main domain (e.g., cdn.turner.com
is the main CDN associated with CNN). Third-party hosts
provide content such as advertisements, statistics collection,
social networking, and so on (e.g., feeds.bbci.co.uk and www.
facebook.com for CNN).

Objective ~ Our goal is to ‘cobble’ an entire session tree
corresponding to a user accessing a given web service in the
network at an ISP edge router, where both directions of user
traffic are visible. We define a web session more precisely as
follows: (1) All the content downloaded from the original hosts
(e.g., *.cnn.com) responsible for the web service. (2) All the
content downloaded from CDN servers (e.g., *.cdn. turner.com)
the web service uses as part of the session. (3) All the embedded
objects automatically downloaded for the web service from any
servers, e.g., original hosts, CDNSs, or third-party hosts.
Figure 1(b) shows an example navigation of the CNN web
page. The root of the session tree starts at cnn.com that involves
the browser automatically fetching embedded content from the
original hosts, CDN hosts or third party hosts. The user clicks

Host: www.cnn.com

GET /.element/.../1pix.gif
Host: www.cnn.com

————— Referer:

ads.cnn.com

GET /adi/N5776
Host: ad.doubleclick.com

ad.doubleclick.com

GET /2656415/Robots.swf
Host: s0.2mdn.net

GET /banner.htm|

USER CLICK

Original Hosts

cnn.com/politics
CNN TREE

s Y

USER CLICK

CDN Objects

Third-Party Hosts

CDN Objects

Original Hosts

FACEBOOK TREE
facebook.com

Third-Party Hosts
Original Hosts.

(b) Defining CNN web session

Referer:

Subfigure (a) shows a subset of URLs downloaded when a user downloads the base cnn.com page. Subfigure (b) shows that clicks to third party

on cnn.com/politics leads to another series of sessions to various
hosts and this is again considered part of the session tree since
the click leads to a CNN webpage. When a user clicks on a link
to a third party website such as facebook.com, we consider it
to be outside of the CNN session tree (as shown in the figure).
Though not shown in the example, any clicks to URLs which
involve the CDN hosts or original hosts are considered as
part of the session tree. For example, if the user clicks on
URL cdn.turner.com/xyz.html (a contrived example), it would
be considered a part of the session tree. While this example
started with cnn.com, a user may directly enter the URL
cnn.com/politics into the browser and make that URL the root.
However, we do not consider session trees starting directly
from a CDN URL as part of the web service since CDNs are
known to be shared across different web services. For example,
cdn.turner.com may host content from tbs.com.

Why is the problem hard ? The key difficulty comes
from the fact that routers only observe a stream of HTTP
requests but there is no obvious handle one can use to easily
isolate the requests that belong to a given session. One simple
solution is to, for every web service of interest, simply keep the
domain names or IP addresses that it needs to match. Anecdotal
evidence suggests that ISPs may be doing exactly this, due
to the lack of a more compelling alternative. While such an
approach may have worked 10-15 years ago when web services
were very simple, e.g., a few servers would serve static HTML
content, unfortunately this approach will not work well today
due to their more complex composition. For instance, many web
services involve fetching objects from common domains. For
example, the main cnn.com and nytimes.com web pages include
an embedded request to facebook.com. Thus, the request to
Facebook needs to be classified as part of CNN or NYTimes or
even just Facebook depending on the overall context, making
it difficult to come up with a blanket rule for all websites.
IP addresses unfortunately are not helpful either since the
same web servers (e.g., Akamai) may be hosting content from
different providers.

In certain settings, if we have cooperation from a given web
service provider, the problem may become easier. We however
cannot assume that such cooperation is the norm always.

Indeed, for the reverse billing application, the relationship may
only be between the customer and the ISP, with no cooperation
from website content provider. (Thus, for generality, in this
paper, we assume no such cooperation.) We cannot also assume
any client cooperation since it is too intrusive an approach to
run a special agent on the client side machine.

III. COBWEB DESIGN

In this section, we describe the design of COBWEB, a
system for in-network cobbling of web service traffic. We first
present an overview of our approach, and then describe the
heuristics that form the basis for COBWEB. We assume that
both directions of the traffic can be observed by COBWEB.

A. Overview

In our approach, we mainly leverage a key field within the
HTTP headers, namely the ‘Referer’ field, which most browsers
today set. This field mainly indicates the (previous) page that
referred to the current page. For example, when a user clicks on
www.cnn.com/politics URL on the www.cnn.com/US web page,
the corresponding GET request will contain www.cnn.com/US
as the Referer. Note that the Referer field contains both a
referrer host (e.g., cnn.com) and referrer URI (e.g., /US) should
it be present. We leverage the Referer field to keep track of the
navigation chains to identify the roots of the session trees.

While using the Referer field, one can form an association
between two different webpages A and B if A led to B, it
is not always easy to establish whether B was a result of the
user clicking on A, or an automated download. The reason
why this is important is that automated downloads need to be
counted as part of the actual web service, even if it is to third
party domains, i.e., non-origin domains. On the other hand, user
clicks to third party domains, that start a new session tree (as we
discussed in Figure 1(b)). However, sometimes a user can click
on an associated CDN domains (e.g., turner.com for CNN),
which must be considered as part of the session tree. Thus, to
make this differentiation, it is important to first establish the
set of CDNs for a given domain, after which we need methods
to differentiate between the embedded downloads and clicks to
third party sites. Note however, all accesses to the CDN cannot
be considered as part of that particular web service, since the
same CDN may host multiple web services.

Our overall approach therefore consists of the two basic
steps: CDN detection and Embedded object detection. The CDN
detection step is an offline process that involves identifying the
CDN (or supporting) domains that play an important supporting
role for delivering a given web service. We expect that for web
services of interest, we separately track their associated CDNs
(which rarely change) and incorporate them into the cobbling
process. For embedded object detection, which is an online
process, the goal is to identify the set of embedded objects
fetched as part of a given web page as opposed to those that
are retrieved due to user clicks. The key metric used here to
distinguish between the two types of retrievals is that embedded
object retrieval has much less ‘think time’ than user-click based
retrieval since the embedded objects are automatically fetched

by the web browser. We also use the fact that some embedded
objects have standard file-types such as javascript (extension
Js, .json) that are not usually associated with objects retrieved
by user clicks.

Given the importance of the Referer field in our approach,
one could argue that it is easy to disable the Referer field
since many modern browsers provide the appropriate settings
anyway. In most modern browsers, however, the Referer field is
by default turned on; very few people even bother to turn it off
(or are even savvy enough to turn it off). If indeed, the Referer
field were turned off completely by a majority of the users,
the whole multi-billion dollar Internet advertisement industry
would crumble, since they heavily rely on the Referer field
for tracking the source of their clicks. Thus, companies such
as Google/Microsoft have incentive to keep the Referer field
on in Chrome/IE browsers to support their online advertising
businesses. We discuss our heuristics next.

B. CDN Detection

The goal of CDN detection is to identify supporting CDNs
(if any) for a web service. In the example of Figure 1(a),
the focus for this would be the left portion of the tree, i.e.,
requests with host *.cdn.turner.com that belong to the CDN
for CNN. One method for CDN detection is to monitor web
request traffic at a network edge router (e.g., campus gateway
or ISP border router), and use it to identify the domain that has
delivered the most amount of traffic to clients when the pages
are downloaded.

Implementing this idea is not straightforward since we still
need to identify, from the monitored traffic, the total traffic to a
web site (which is the cobbling problem that we started with).
We first focus on the portion of the traffic that can be clearly
identified—the HTTP GET/POST requests with referer URL
belonging to the root domain. For example, to detect CDN
for cnn.com, we first look at all requests where the request
has its referer host as cnn.com or sub-domain of cnn.com
such as money.cnn.com. This is the traffic for downloading the
embedded pages of the root domain (e.g., embedded content
for main cnn.com web page) and the traffic for accessing pages
when user navigates away from the page (e.g., user clicks on
nytimes.com on cnn.com page). Note that in the second case,
only the first GET or POST request has referer as cnn.com.
The rest of the requests have nytimes.com or subsequent pages
as referer. As long as the traffic for accessing the external
web sites, in the second case, does not exceed the traffic for
accessing the CDN for cnn.com, it will not affect the result of
CDN detection.

Another issue is that web services may use multi-
ple CDNs. For example, cnn.com uses both Level 3 and
Akamai CDNs. Fortunately, in many cases, we find that
the CDN host contained in HTTP requests is an alias
of the canonical name (CNAME) of the actual server.
For example, cnn.com has iz.cdn.turner.com for differ-
ent types of content. i.cdn.turner.com is an alias for
CNAME cdn.cnn.com.c.footprint.net and is owned by Level
3, z.cdn.turner.com is an alias for CNAME z.cdn.turner.

com.edgesuite.net and is owned by Akamai. Use of this kind of
aliasing allows web pages to be not tied to any particular CDN
provider. Given the structure of the CDN aliases, we can detect
the “CDN domain” (e.g., cdn.turner.com) instead of specific
CDN host (e.g., i.cdn. turner.com). Our algorithm looks at
different levels of the host domain, and tries to aggregate them.
For example, level-1 (top-level) domain of i.cdn.turner.com is
com, level-2 domain of that is turner.com.

CDN Detection Algorithm We start with traffic monitored at
the network edge router. The algorithm starts by looking for all
the HTTP GET requests that contain the main host domain as
the referer (e.g., cnn.com or ads.cnn.com or money.cnn.com
for CNN). Let this total number be n. We also compute
the break down of these requests individually to each and
every host h (denoted by nj). For example, if x and y GET
requests with referer as cnn.com were made to disqus.com
and cdn.turner.com, respectively, we denote ngisqus= ¢ and
Nedn.turner=Y. Note that all counts are in number of bytes.
Out of all hosts h, we pick the host with maximum portion of
traffic (ny,/n) as the top host.

Suppose we identify i.cdn.turner.com as the top host in this
step, we then try the next aggregated level of the top host
domain: cdn.turner.com by repeating the counting procedure
for level-3 domains. We can continue this procedure for further
aggregated levels to get the top domain at each level. Starting
from the lowest level (most aggregated) [= 3, we select the top
level-3 domain as the CDN domain if the difference between
the proportion of traffic for the top level-3 domain and the top
level-4 domain is above a pre-set threshold ¢ (r3 —ry > t). In
our system we choose ¢ to be 5%. Otherwise we do not use
the level-3 domain, and check the next level | = 4. We select
level-4 if ry —r5 > t. We continue this process until either we
find a level [such that r; —r;41 > ¢ or [is the full host domain.
We then select top level-I domain as the CDN domain.

Special cases For less popular web sites that do not use any
CDNs, the main domain usually covers majority of the traffic
anyway. However, we need to handle a web site that heavily
uses services from some third party sites. For example, we
found that reddit.com is a popular site (in the Alexa top 50
sites in the US) that relies on imgur.com for hosting images,
although imgur.com is neither a CDN nor the main supporting
domain owned by reddit.com. Given that our algorithm selects
the most heavily referred site as the CDN, it will end up picking
imgur.com as the CDN for reddit.com, which is not true even
though its presence may be vital to the particular web service.
The reason we need to differentiate imgur.com from CDN sites
is that the clicks beyond the embedded requests at imgur.com
should not be part of reddit.com service, unlike for CDN sites.
In that sense, imgur.com should be considered similar to a third-
party host, where embedded object accesses from the origin
web pages are considered part of the web service in question
while user clicks are not.

One other issue is that multiple web sites may claim the
same CDN as its own CDN. For example, both cnn.com
and adultswim.com use cdn.turner.com as the CDN. This is

acceptable for our method, since we can trace back to the origin
domain through the chain of referer fields and separate out the
requests originating at different origin domains.

C. Embedded Object Detection

Besides the traffic from the origin domain and CDN (or
main supporting domain), there is also traffic for download-
ing embedded content from third party web sites. This in-
cludes objects such as www.facebook.com/extern/login... and
ad.doubleclick.com/adi/... in the example shown in Figure 1(a).
In this section, we investigate two methods for detecting
requests for fetching such objects—one based on the file-type
extensions and the other based on timing.

Classification based on file-types: Our first observation
is that certain file-types are almost always embedded. This
includes css, js, swf, ico, json, and xml. Download of such files
is always triggered automatically by the download of another
(embedding) web page since such files are not useful on their
own. Our preliminary inspection of the trace collected at a large
university gateway shows that 15% in terms of requests and
11.3% in terms of bytes of all the HTTP traffic are for such
files. In terms of percentage, they cover a smaller portion of
traffic than the CDN, but still significant in terms of volume
especially for services that use these embedded objects more
frequently. In addition, the almost certainly embedded nature
of these objects makes it an accurate classification rule, and is
also easy to implement. It also helps cross-checking with other
heuristics as we discuss next.

Classification based on timing: Our second observation
is that the embedded objects are downloaded shortly after its
referer page (called the base page). The time interval between
the two downloads should typically be shorter than the time
it takes for a user to browse a given web page and then click
on a URL in the page to navigate to a different page. For
convenience, we define the time interval between downloading
the base page and the embedded links as think time. More
precisely, we define think time 73p;n,x = T — T'r, Where T
is the time at which the GET/POST request for the embedded
page has been sent, and Tk is the time instant at which the
last response packet of the corresponding referer page arrived.
For example, the think time for URL cdn.turner.com/index.jpeg
in Figure 1(a) is the interval between the time when the last
response packet for its referer cnn.com is received and when
the GET request for cdn.turner.com/index.jpeg is sent. Note
that it is possible to have Tjp;,r < O since browsers can
start downloading the embedded URL even before it finishes
downloading the entire base page. Intuitively, think time is the
time it takes for the browser to process the web page, extract
any embedded URLs, and then send subsequent requests to
download these embedded objects.

Naive timing heuristic: =~ We may use the following naive
heuristic: A session is classified as embedded URL download
if Tinink < Tinresh, where Tipresp 1S a timing threshold, e.g.,
1 second. Unlike the file-type heuristic, the timing heuristic can
generate both false negatives (missing requests part of the target

1
09 r
0.8
0.7 r
0.6
0.5 r
04
03 r
0.2
0.1

CDF

Naive Timing heuristic
_Refined timing heuristic
100 1000 100001000001e+06 1e+07
Time (msec) - Log scale

1 10

Fig. 2. Think time distribution for embedded object downloads with both
naive and refined heuristics.

web service) and false positives (including requests after the
user navigates to third party web pages) depending on the value
of Tipresn. To understand how practical the timing heuristic
is, we take advantage of the file-type heuristic described in
previous section.

Results from a real packet trace. We calculate the think time
for all embedded file downloads based on the file-type heuristic
in a full HTTP trace we collected at the large university
gateway. Figure 2 shows the think time distribution. We observe
that think time varies across a wide range. Although about 60%
of think time falls below 1 second, 10% of think time is above
10 seconds. If we naively set the Tip.esn to 10s, we will be
able to capture almost 90% of all the embedded objects. But,
this has the negative effect of increasing the false positives,
since 10 seconds is sufficient time for a user to click on a third
party link, which will then be classified as an embedded object.
Similarly, keeping threshold too low will cause missing many
embedded objects. Finding a fixed threshold that will work for
a large number of web-services is not easy.

3000 T T

————
cnn.com/ —+—
turner.com/common.css

2500 ¢ turner.com/main.css ---x-

2000

1500

Time (msec)

1000 -
500 (o

0 P S S S
0 10 20 30 40 50 60 70 80 90 100
GET request index

Fig. 3. Think time for multiple embedded objects with the same referer

Refined timing heuristic: To better understand why the
browser think times are sometimes exceedingly long, we in-
spect the time sequence of web page downloads more carefully.
Figure 3 shows the timing for downloading multiple embedded
URLs following the referer URL cnn.com/XXX. The X-axis
shows the index of the URLs sorted according to the time
when the GET/POST request is sent. We observe that the
think time increases almost linearly though the requests towards
the end are spaced farther apart than at the beginning. The
increased spacing is because third-party embedded objects or
advertisements are among the last to be requested and they
take more time to load as well. In addition, Browser limits on
parallelism causes sequential access of embedded URLs leading
to this phenomenon.

Examination of the figure further reveals that the time offset
when a GET request for an embedded object is made, relative
to the request for the base page, is proportional to the number
of GET requests for embedded object downloads. This is
why choosing one fixed threshold is hard. Notice, however,
that the gap between two adjacent requests is more constant
and predictable, compared to the time differences between the
original page and the embedded objects. Hence, we propose the
use of the following refined timing heuristic: For each referer
page R, maintain time 7'y as the “latest activity time”. The
activity can be either the last response packet being received
for this referer page (Tr), or be a GET request sent for an
embedded URL of this referer page (T;). When a new request
is sent with referer R at time T, we check if T — T4 < Ty,
where T35, is a chosen threshold. If the condition holds, we
classify this request as an embedded URL for R and also update
Ty =Tg.

The think time distribution of the refined timing heuristic is
shown in Figure 2. Most adjacent requests (almost 90%) are
within about 100-500ms, which is much less than the human
think time. Of course, if the chain of requests is long, the
chances of false positives will increase since a user may click
on some link. However, the chance of a user clicking on a
link before the page completely loads is quite small and this
approach therefore works for almost all practical cases. The
problem with the naive timing heuristic was that it was trying
to choose one threshold for all web sites, whereas the refined
heuristic adapts to the number of objects and to the time taken
to download all the previous objects.

Note that the tail still contains a small percentage of requests
that were sent almost 1000s (about 16.67 minutes) after the
previous request. While this may seem like a user click, our
file-type heuristic indicates otherwise. On further investigation,
we found that the browser was requesting the same embedded
object several times (with the same referer). This happens every
so often, as in an auto-refresh. If the browser refreshes certain
objects automatically after a long time, it could be difficult for
us to correctly classify these refreshes as embedded requests.
However, for the refresh requests present in the trace, we
observed that the file type was almost always of embedded
variety. So, our file-type heuristic would have correctly flagged
them as embedded.

D. Overall Algorithm

The cobble tree construction algorithm combines the multi-
ple heuristics discussed above: CDN detection and embedded
object detection based on both file-types and refined timing.
To combine them, we run them as two separate procedures.
In the first procedure, we detect the CDNs or main supporting
domains for each target web site by using the CDN detection
algorithm described in Section III-B. Note that the administrator
can choose to include multiple CDNs or supporting domains
here based on the few top domains flagged using the algorithm.
In the second procedure, we use the detected CDN domains
along with the file-type heuristic and the refined timing heuristic
to classify the traffic. Given a list of targeted origin domains,

Algorithm:
for each request req
BEGIN
if host(req) € Origin
root(url(req)) = Origin
else if (host(req) € CDN &
root(referer(req)) € Origin)
root(url(req)) = Origin
else if (url(req) is embedded file-type &
root(referer(req)) € Origin)
root(url(req)) = Origin
else if (req passes refined timing test &
root(referer(req)) € Origin)
root(url(req)) = Origin
else
root(url(req)) = NULL
END

Fig. 4. Overall classification algorithm for one domain

the goal of the algorithm is to classify each connection either
as belonging to one of the target domains or as NULL when it
does not belong to any target domain.

We classify each HTTP session based on the request message
that the client sends to the server. Figure 4 shows the procedure
for classifying a request. Each URL is associated with a “root”
domain, which can be either NULL or one of the target do-
mains. During processing, the heuristics are applied according
to the specified precedence. Note that although conceptually
we are isolating the session tree for each target origin domain,
we do not need to maintain one unified data structure for the
entire tree. Instead we can just maintain the root for each URL
so that we know which tree this URL belongs to.

The precedence rules in the algorithm in Figure 4 are
intuitive. If the host belongs to the origin domain, or to the
CDN domain provided that referer’s root belongs to the origin
domain, then the host belongs to the origin domain. Then, we
perform the file-type and timing checks, coupled with whether
the referer’s root belongs to the origin domain. Thus, if there is
a false positive in the timing heuristic (i.e., a GET request was
sent to a third party host as a result of a user click and was
not automatically fetched by the browser, but was misclassified
by the timing heuristic) the overall algorithm is robust enough
to stop further misclassification. For example, while the CNN
page is loading, suppose a user clicks on some third party link,
say facebook.com, on the CNN page. Because the page is still
getting loaded, this user click may be inadvertently classified
as an embedded object by the timing heuristic. The algorithm
will set the root(facebook.com) to the origin domain (CNN).
Further accesses to links from this third party page, however,
will not match any of the rules because their referer would
be facebook.com. For this one false positive to cascade into
including an entire browsing tree, the user must repeatedly
click on one link after another while the page is loading, with
virtually no think time, which is difficult.

The algorithm also handles URL shorteners flawlessly. An
URL shortener redirects a short URL to the actual long URL
using HTTP’s 301 return code. When a browser fetches the
long URL, the referer field remains NULL and so the cobble

tree for the long URL can be formed in its entirety as if
the redirect never happened. In a similar fashion near domain
names (e.g.nyt.com and nytimes.com) can also be handled since
usually the shorter name redirects the browser to the longer one.
The algorithm can be made even more robust by filtering out
the links to embedded objects by parsing the content within
the HTTP response. This not only helps reduce the number
of false classification of the URLSs, but also remedies against
auto-refresh and other fraudulent activities trying to circumvent
the cobbling process. We however, chose not to implement that
in our current algorithm due to the large overhead involved in
storing, uncompressing and parsing the content within a HTTP
response.

1V. EXPERIMENTAL EVALUATION

Before we evaluate the accuracy of COBWEB system, we
first describe our experimental setup.

A. Evaluation Methodology

Packet trace and ground truth We take 70 out of the top
100 US web sites listed in Alexa, along with the top 26 popular
web sites for users in the campus network. We exclude the
sites that heavily rely on HTTPS (e.g., gmail.com) because
our algorithm is not applicable there, and those that require
logins since ground truth is hard to obtain. We have collected
two packet traces, Field2011 (227GB compressed trace on
July 29th, 2011) and Field2012 (512GB compresssed trace
on Jan 19th, 2012), from a 10Gbps large university network
gateway link. Obtaining ground truth from traces in the field is
challenging since there is no easy way to distinguish between
user clicks and embedded downloads—a key requirement for
measuring false positives and false negatives. Parsing the base
page does not work since modern web sites heavily rely on
javascripts to generate URLs dynamically. Thus to establish
credible ground truth, we also simulate a real user clicking on
the 96 web sites and collect these traces. We use a web browser
to open each of the main web pages and wait for 1 min to record
the traffic trace for each session. Hence we obtain 96 manual
traces one for each web service, totalling 108MB.

False negatives To evaluate false negatives, we mainly rely
on manual downloads in a controlled environment. We run the
algorithm on the manual traces and compute the false negative
rate, the proportion of traffic that is in the manual tree but
is missed by the cobbled tree returned by the algorithm. For
convenience, we also use its complement frue positive rate in
our discussion.

False positives Unlike false negatives, it is difficult to evaluate
false positives using manually downloaded web pages, because
by construction, we are not injecting any interference in the
user click emulation. We address this problem by combining
campus trace with controlled browsing as follows. First, we use
our cobble algorithm to generate the cobbled tree for each user
browsing session of each target web site in the campus trace.
Recall that the root of each session tree is the starting point
for each browsing session for a web page. The leaves of the

From | From | Others
CDN domain Origin domain | Main | Self | Others
2mdn.net doubleclick.net | 0.247 | 0.149 | 0.604
gstatic google 0.854 | 0.006 | 0.140
images-amazon amazon 0.523 | 0.207 | 0.269
imgur reddit 0.749 | 0.107 | 0.144
imwx weather 0.373 | 0.263 | 0.364
mzstatic apple 0.919 | 0.001 | 0.080
turner cnn 0428 | 0.215 | 0.357
twimg twitter 0.489 | 0.011 | 0.500
yimg yahoo 0.544 | 0.105 | 0.351
TABLE I

CDN TRAFFIC IN PROPORTION OF BYTES

tree include both the embedded objects that are automatically
fetched from any server, and user navigations to other pages
within the same web site (as in Figure 1(b)). In order to find out
the accuracy of this tree, we use the manual trace as the ground
truth (we call this the ground tree) and compare it against the
cobbled tree. However, one issue is that it is not easy to emulate
the user opening other pages within the web site; for ease of
evaluation, therefore, we only consider root page downloads
(called pruned cobbled tree).

Ideally, both the ground tree and the pruned cobbled tree
should overlap perfectly; branches missing in ground tree
implies false positives. However, many web sites have very
dynamic content which can cause the trees from two different
sessions differ and introduce “noise”. Such content is typically
dynamic ads. For example, when we make two consecutive
downloads for cnn.com, each download generates 150 and 148
GET requests, respectively. Among the 150 requests generated
in the first download, 33 requests do not appear in the second
download, with 25 being ads. Hence to address this problem,
we mark a node as false positive if the following two conditions
hold: (1) it is in the pruned cobbled tree, but not in the ground
tree; and (2) its URL belongs to third-party non-ads domain.
If a node is marked as false positive, then the entire sub-tree
below the node is also marked as false positive.

B. Results

CDN Detection In order to test the CDN detection heuristic,
we first run the CDN detection algorithm with the Field2011
trace and then verify the detection result by using tools such
as whois, dig and google search. Table I shows a sample
of the detection result (for a subset of websites for space
reasons). CDNss for most web sites are correctly detected except
reddit.com, for which imgur.com was mistakenly identified as
the CDN or main supporting domain. The reason was that lots
of reddit users are browsing image links of imgur during the
measurement period.

Table I also shows the traffic break-down for each CDN
(or main supporting) domain. Traffic for each CDN domain
can be referred by either the main domain, the CDN domain
itself, or other domains. We observe that although in most
cases the majority of traffic for a CDN is referred by its main
domain, significant fractions of traffic for many CDNs are
referred by external web sites. This confirms our intuition that
classification just based on host domains is not sufficient. For

True positive

20

CDN
CDN+Filetype
Overall algorithm ——

0 10 20 30 40 50 60 70 80 90 100
Webservice

(a) True positives for CDN and file-type heuristics

True positive

20

Refined timing
C‘)verall‘a\gom‘hm -

0 10 20 30 40 50 60 70 8 90 100
Webservice

(b) True positives for refined timing heuristic

Fig. 5. Proportion of traffic correctly classified by individual heuristics and
overall algorithm. Webservices are sorted based on the True positive rate for
the overall algorithm

example, even though 2mdn.net is the main supporting domain
for doubleclick.net, majority of its traffic is referred by external
web sites to show ads, and hence should be classified as part
of the corresponding external web site traffic. The same can be
said for twitter.com’s supporting domain twimg.com.

We further run the CDN detection algorithm with the Field
2012 trace. For all 96 top sites, we find that the algorithm
correctly identified CDNs for 89 sites (92.7% accuracy). In
the other cases another third party site is marked as CDN
incorrectly since there is no separate CDN domain for this web
site and the third party domain exceeds the 5% threshold. There
are also two web sites that use more than one CDN domain,
so the algorithm just picks the top one.

Once the CDN or main supporting domain is determined
for the target web site, we can apply the CDN heuristic to
classify traffic. In order to find out the proportion of traffic
classified by using the CDN heuristic, we construct the cobbled
tree as follows: Starting from the target root domain with empty
Referer field, we include a HTTP request into the tree if its host
belongs to the root domain or CDN domain, and its referrer also
belongs to the tree. Here we only evaluate the true positive rate
since there are no false positives for the CDN heuristic. We use
the 96 manual traces for this evaluation. Figure 5(a) (the green
line) shows the proportion of traffic correctly identified by using
the CDN heuristic. We observe that true positive rate varies
across a wide range between 5.09% to 100%. The average true
positive rate over the 96 sites is 75.68%. This indicates that the
CDN heuristic is very effective for many web sites, but if used
as the only heuristic, it is not robust enough to classify traffic
for all web sites.

File-Type Heuristic We next investigate how much the file-

type heuristic can further improve the classification result. We
construct the cobbled tree in a similar way as before, and in
addition, include a session if the URI is for an embedded file
type and its referrer host belongs to the tree. Similar to CDN
heuristic, file-type heuristic does not generate false positives
and we use the 96 manual traces for evaluation. Figure 5(a)
(blue line) shows the proportion of traffic classified correctly by
combining file-type heuristic with the CDN heuristic. Note that
such embedded files can be downloaded from either CDN or
third party. As a result, the two detection methods have certain
overlap between their results. We observe the effectiveness of
the file-type heuristic varies across web sites. On an average,
the method with combined heuristics can correctly classify
83.75% of total traffic, an 8.08% increase over the original
CDN heuristic. In other words, the file-type heuristic classifies
an additional 8.08% traffic for embedded file downloads from
third party websites.

Refined Timing Heuristic To evaluate effectiveness of the
refined timing heuristic, we construct the cobbled tree using
this heuristic, and use the method discussed before to evaluate
mainly true positive rate. We find that the Tp.esn, value of
500ms gives a good tradeoff between false positive and false
negative rates, and hence we use this value across our study.
We evaluate true positive rate by using the 96 manual traces as
before. Figure 5(b) shows the true positive for each target web
site. We observe that the true positive rate varies across a wide
range between 14.98% to 100%. The average true positive rate
over all web sites is 87.11%. Again, as shown in the Figure 5
the combination of all these heuristics has the best chance of
correctly classifying most of the traffic. We discuss this next.

Overall Algorithm We now evaluate the overall algorithm
(shown in Figure 4) that combines all the heuristics. We first
use the manual traces to evaluate false negatives, and then use
both Field2012 campus trace and manual traces to evaluate
false positives. In the latter case, there are typically multiple
browsing sessions for each of the 96 sites. We take the average
false positive rate of all the sessions for the same site. Figure 6
shows both the false negative and false positive rates by using
the overall algorithm. Timing threshold is 500ms. Result is
shown in two rows, sorted based on false negative rate. We
observe that the overall algorithm performs very well for most
web sites. The average false positive rate across all web sites
is 3.54%. With very few exceptions, the false positive rate is
below 10%. One anomaly is www.reddit.com with false positive
65.12%. We conjecture that this is caused by very frequent
content update due to active user postings. Since we compare
all sessions within the 5 hour field trace with just one ground
truth trace, the “ground truth” is outdated for most sessions.
To verify this, we collect a shorter 20 min trace on the same
campus gateway along with a ground truth trace. For the 48
reddit sessions that we capture, the average false positive rate
is now 5.2%, indeed much lower. This confirms that the high
false positive rate we have observed in Figure 6 is indeed caused
by the evaluation artifact rather than the cobbling algorithm.
The average false negative rate is 4.14% across all web

services. Except the last 8 sites, all false negatives for all other
sites are below 10%. Further investigation of the trace shows
that the high false negatives for the last 8 sites are mostly caused
by flash video players. Unlike the browser, the video players
often have empty Referer field in their GET requests, hence our
algorithm would not associate the request to the current session
tree and miss the traffic completely. Not setting the Referer field
is alright for the CDN or main domain , since they will still be
accounted for, although as part of a different cobbled tree.
We think this problem can be addressed by correlating the
sessions without Referer field with those with Referer field. For
example, when we see a GET request with empty Referer field,
we take its URL and find the “best matching” URL of another
request among all the cobbled trees of the same user within
a certain time period, say 5 sec. The intuition here is that if
the flash player retrieves video from a domain, the browser is
likely to retrieve some other content from the same domain. We
have tested out this approach on the four domains with highest
false negative rate, and found that their false negative rate is
reduced to 19.1%. Work is still needed to further validate such
approach, and exploring other alternative correlation methods.

V. DISCUSSION

Mobile Apps. Mobile phone browsers use Referer field
similar to the desktop browsers. However, our analysis using an
Android phone indicates that mobile apps often do not set User
Agent and Referer fields; COBWEB therefore cannot be applied
for mobile apps. However, further investigation reveals that the
mobile apps send requests to a significantly smaller number of
domains; for randomly selected 17 popular web service apps,
we found one average only 5 domains are accessed and 90%
of traffic belongs to main and supporting domains (CDN) for
the app. Hence simple static traffic rules may work well.

Video Services. Our algorithm does not directly apply to
video service sites (e.g. Hulu, Netflix) that use HTTP streaming
to deliver video content, since they typically have multiple
domains for supporting content delivery. However, since there
are very few of such large scale video service sites, it is
affordable to make specific rules for such web services [3].

Disabling Referer. The cobbling algorithm can potentially
be vulnerable to disabling Referer field. However, unless most
users disable it, we can detect anomalous user behaviors and
easily blacklist them. Collusion between users and providers
makes the detection more difficult, but is rare since there is no
clear incentive.

Prefetching and Auto-Refresh. Prefetching at the origin
or CDN server does not affect our algorithm. In addition,
prefetching by the client browser is similar to user accessing
such content, so it will be classified accordingly. Auto-refresh
is also fine, since it is similar to the user accessing the content,
and hence billed accordingly.

NAT and multiple sessions. For network behind NAT with
single external IP address, all the users inside the network
would be correctly treated as one single giant user by the ISP
for billing purposes. Multiple tabs inside a browser of a single

100 ————————————
False negatives
80 False positives
i) 60
©
o 40
20 -
0+ - e,oo« ‘;l144;l¢¢¢lL
o‘% :%”% %”%%%%%%’Z%Zm%% s ‘:%? o, "%30205’%:%”} 5 %’%% e
%
’b @o' "F/ 9"/ 'O& °o % % @b % D/}/ o °o®°é> ;66‘ ’?9 s $/ KA “‘4 06 0, o’s/o’/e % %, %%, Q?o%}, 3, ?@z 66) ’Of %, ‘5@‘9’? S, oé%,"fo ”o k) “‘s, 6o %, ‘9(9 %
" 6’0’ o'b % B 0.0, 00.% % to % 1, %, é‘y/oo K O%G'o 6706‘\0»0’% 2 %7 O S O, Ry %, %, o, 28 0, e 00000 2,7 4 o, 0 0, %
% % % o_o % &, %, ’b’b RSN %, % © "’oo’@:o’\b % % 0 % /gooo % 7 O %9,70,@ % ‘?Jfo %, %, % %,
7o O, % K @ 0,2 02 % % TG 7 9,7 Y
20 N - %y N)) o % %, %
0, O, % % S K %, ox
)) % ’ ; % ’
” 4 0. <, %, %,
© ”) 2
100 ——————————————
False negatives
80 - False positives 1
o 60 - 1
©
] I I I]
20 - I R
0;444¢;¢;¢¢¢¢¢¢¢..__ Illllllll
. . % %
Y, %, 60/,) %;,-'O %, %%%% 0 K O’7/ 6\9 5’;,, +/>, K %%‘P/ ‘9’ %%%%% %, "y, /’)e U, M, ", %00, ", ", 9//»@
% oy o oy O 08, B P oy oy, ety 0, % o, ety eyl R 0) S0, ey ey, . Ol
"y, % Yo, . %, /?’71/ %, o %, % /b% j/”’b “ 7 %’3)%/ Qc'o &”e R /’>o o% K %G%'/ % ‘Q o_% 6 &‘9/ % ,/C’o Yo, % QJ@ B, Yo, 00, 94 % ’7904 R
RN 9% %, 8 & Ty S % ", %, . 0, % %, ‘0, e R, 05 R e, e 7, %, %, () %, %o % Oy, % % % So. D e %
AR SRR NS G o S B 2 O T Sy 0%’0 % % 0%, % %, O, 0y ?
070 qo{_o@ 6’2\,5 /709/0 %9 6,0 000, 'oo\p, K K] /‘9/},5) % % “‘o,b % O K 60 % 2
@, 20,) “Q ‘Q S, 8 9
) %, o, o, 0,) fel Xy K
2 % % % % 2 %, Oo’b
Fig. 6. False positive and false negative for all the webservices with timing threshold 500 ms.

user would not affect the accuracy of our algorithm because of
chaining of requests by the Referer field.

VI. RELATED WORK

Feldmann et al. uses a simple method for classifying traffic
into web services by mapping hostnames to IP addresses [5].
Although such method worked several years ago, it is no longer
suitable for the much more sophisticated web services today.
For instance, if cnn webpage includes embedded objects from
facebook, such objects cannot be associated with cnn based on
IP addresses. In addition, same CDN server IP address may
serve multiple web services.

In work by Butkiewicz et al. [4] they analyzed the complexity
of modern web sites in terms of number, types and size of ob-
jects downloaded, and contribution of non-origin domains like
CDN. This measurement study finds the impact of complexity
on user experience. Research work has also been done in the
past to catalog web services based on the type of their services,
by using techniques such as machine learning [12], [8]. The
focus in our paper is not to catalog the web services, but to
isolate each target individual web service traffic to assist better
billing and service management.

There exists related work in traffic classification and iden-
tification in general, especially at the application level [11],
[13], [7]. There also have been some measurement studies to
understand the new web technologies such as Ajax (e.g., [14],
[10], [9]). Our goal however is to provide a mechanism to
identify sessions corresponding to a web service. Finally, a
recent paper [6] proposes an algorithm called StreamStructure
that also exploits the Referrer field for grouping web requests
together, but the goal of that paper is to traffic characterization
and not developing an online system for cobbling web traffic.

VII. CONCLUSIONS

We have presented the COBWEB system for in-network
cobbling of traffic associated with a given set of web services.

Such system can enable new types of monitoring and mea-
surement capabilities, and can potentially enable new revenue
models such as reverse billing for service providers. Our
extensive evaluation suggests COBWEB can achieve low false
positive and false negative rates. We view COBWEB as the
first step towards solving the complex problem of web service
classification.

REFERENCES

(1]
(2]
(3]

Allot. http://www.allot.com.

Sandvine. http://www.sandvine.com.

V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and
Z.-L. Zhang. Unreeling netflix: Understanding and improving multi-cdn
movie delivery. In JEEE INFOCOM, 2012.

M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Understanding website
complexity: measurements, metrics, and implications. In IMC, 2011.

A. Feldmann, N. Kammenhuber, O. Maennel, B. Maggs, R. D. Prisco,
and R. Sundaram. A methodology for estimating interdomain web traffic
demand. Oct. 2004.
S. Ihm and V. S. Pai.
IMC, Nov. 2011.

T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: Multilevel
traffic classification in the dark. In ACM SIGCOMM, 2005.

I. Katakis, G. Meditskos, G. Tsoumakas, N. Bassiliades, and I. Vlahavas.
On the combination of textual and semantic descriptions for automated
semantic web service classification. In AIAI, 2009.

E. Kiciman and B. Livshits. Ajaxscope: a platform for remotely
monitoring the client-side behavior of web 2.0 applications. SIGOPS
Operating System Review, 41(6):17-30, 2007.

M. Lee, R. R. Kompella, and S. Singh. Active measurement system
for high-fidelity characterization of modern cloud applications. In
Proceedings of USENIX Conference on Web Applications, 2010.

J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker.
Unexpected Means of Protocol Inference. pages 313-326, October 2006.
N. Oldham, C. Thomas, A. Sheth, and K. Verma. Meteor-s web
service annotation framework with machine learning classification. In
Int. Workshop on Semantic Web Services and Web Process Composition,
2004.

M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-Service
Mapping for QoS: A Statistical Signature-based Approach to IP Traffic
Classification. In ACM IMC, 2004.

F. Schneider, S. Agarwal, T. Alpcan, and A. Feldmann. The New Web:
Characterizing AJAX Traffic. In International Conference on Passive and
Active Network Measurement, April 2008.

(4]
(3]

(6]
(7]

Towards understanding modern web traffic. In

[8

—_

91

[10]

[11]

[12]

[13]

[14]

