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Abstract—Current research on cyber-insurance has mainly
been about studying the market success of an insurance-driven
security ecosystem. Such an ecosystem comprises of a set of
market elements (e.g., cyber-insurers, network users, security
vendors (SVs), regulatory agencies, etc.,) that coexist together as
a system with the success goal of mutually satisfying each other’s
interests. However, existing works have not explicitly considered
SVs as market elements, and have analytically proved the
moderate/no success1 of cyber-insurance markets due to insurers
not satisfying their interests in making zero expected profits at
times. In this paper, we model a security vendor (e.g., Symantec,
Microsoft) as a cyber-insurer, thereby making the former as an
explicit market element. We then propose a novel consumer
pricing mechanism for SVs based on their client/consumer logical
network and consumer security investment amounts, with the
goal to improve SV profits. Our simulation results show that
SVs could improve up to 25% of their current profit margins
by accounting for client location and investment information.
A fraction of the extra profits could then be used up by the
SVs to recover costs related to providing insurance coverage to
their clients, and also to always make strictly positive profits as
insurers. Finally, we propose a discrete-time sequential dynamic
pricing strategy for an SV, and show that it leads to improved
SV profits when compared to a static pricing strategy. Our work
demonstrates one particular way for a cyber-insurance market
to be successful on a more than moderate scale.

Keywords: insurance, security vendor, pricing, centrality

I. INTRODUCTION

The infrastructure, the users, and the services offered on computer
networks today are all subject to a wide variety of risks. These risks
include distributed denial of service attacks, intrusions of various
kinds, eavesdropping, hacking, phishing, worms, viruses, spams,
etc. In order to counter the threats posed by the risks, network
users2 have traditionally resorted to antivirus and anti-spam softwares,
firewalls, intrusion-detection systems (IDSs), and other add-ons to
reduce the likelihood of being affected by threats. In practice, a
large industry (companies like Symantec, McAfee, etc.) as well as
considerable research efforts are currently centered around developing
and deploying tools and techniques to detect threats and anomalies
in order to protect the cyber infrastructure and its users from the
negative impact of the anomalies.

Inspite of improvements in risk protection techniques over the
last decade due to hardware, software and cryptographic method-
ologies, it is impossible to achieve a perfect/near-perfect cyber-
security protection [2][7]. The impossibility arises due to a number

1Currently, the US cyber-insurance market is worth $800 million with only
certain industries and organizations buying insurance to cover for losses due to
cyber-threats. A more than moderate success would imply a cyber-insurance
market where common people, apart from industries and organizations, would
also buy insurance.

2The term ‘users’ may refer to both, individuals and organizations.

of reasons: (i) scarce existence of sound technical solutions, (ii)
difficulty in designing solutions catered to varied intentions behind
network attacks, (iii) misaligned incentives between network users,
security product vendors, and regulatory authorities regarding each
taking appropriate liabilities to protect the network, (iv) network
users taking advantage of the positive security effects generated by
other user investments in security, in turn themselves not investing in
security and resulting in the free-riding problem, (v) customer lock-in
and first mover effects of vulnerable security products, (vi) difficulty
to measure risks resulting in challenges to designing pertinent risk
removal solutions, (vii) the problem of a lemons market [1], whereby
security vendors have no incentive to release robust products in the
market, and (viii) liability shell games played by product vendors.
In view of the above mentioned inevitable barriers to 100% risk
mitigation, the need arises for alternative methods of risk management
in cyberspace. In this regard, some security researchers in the recent
past have identified cyber-insurance as a potential tool for effective
risk management.

Cyber-insurance is a risk management technique via which net-
work user risks are transferred to an insurance company (e.g., ISP,
cloud provider.), in return for a fee, i.e., the insurance premium.
Proponents of cyber-insurance believe that cyber-insurance would
lead to the design of insurance contracts that would shift appropriate
amounts of self-defense liability on the clients, thereby making the
cyberspace more robust. Here the term ‘self-defense’ implies the
efforts by a network user to secure their system through technical
solutions such as anti-virus and anti-spam softwares, firewalls, using
secure operating systems, etc. Cyber-insurance has also the potential
to be a market solution that can align with economic incentives of
cyber-insurers, users (individuals/organizations), policy makers, and
security software vendors, i.e., the cyber-insurers will earn profit from
appropriately pricing premiums, network users will seek to hedge
potential losses by jointly buying insurance and investing in self-
defense mechanisms, the policy makers would ensure the increase
in overall network security, and the security software vendors could
go ahead with their first-mover and lock-in strategies as well as
experience an increase in their product sales via forming alliances
with cyber-insurers.

A. Research Motivation
Recent research works on cyber-insurance [6][7][10] have math-

ematically shown the existence of inefficient insurance markets.
Intuitively, an efficient market (see Section I-C.) is one where all
stakeholders (market elements) mutually satisfy their interests. These
works state that cyber-insurance makes every stakeholder (see Section
I-C.) satisfied apart from the regulatory agency (e.g., government)
and sometimes the cyber-insurer itself. The regulatory agency is
unsatisfied as overall network robustness is sub-optimal due to
network users not optimally investing in self-defense mechanisms,
whereas a cyber-insurer is unsatisfied due to it potentially making
zero expected profits at times. Lelarge et.al. in [7] recommended
the use of fines and rebates on cyber-insurance contracts to make
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each user invest optimally in self-defense investments and make
the network optimally robust. However, there is still no work that
guarantees the strict positiveness of insurer profits at all times. The
notion of making zero expected profits at times is enough for cyber-
insurers to opt out of the market in future, leading to an insurance
market failure. The important question that thus arises is is there a
way for a cyber-insurer to make strictly positive profits at all times,
and at the same time ensure optimal network robustness? A positive
answer to this question would imply cyber-insurance market success
on a larger than moderate scale.

In addition, in a correlated risk environment such as the Internet,
an insurers cannot afford to be risk-neutral as there are chances it
might go bankrupt due to expected aggregate losses in a period being
more than what it could afford to compensate. As a result it might
hold a safety capital for a certain cost in order to prevent itself from
going bankrupt [3]. The question that arises here is how can the
cyber-insurers recover costs of buying safety capital?

The above two questions motivate us to investigate a way in which
cyber-insurers can always make profits and recover their costs to
provide insurance coverage to clients, and at the same time ensure
optimal network robustness.

B. Research Contributions
We make the following research contributions in this paper.
• We model risk-averse security vendors as cyber-insurers and

propose a one-period static product pricing scheme for their
consumers based on the consumers’ logical network and their
security investment amounts. Our proposed approach (i) po-
tentially increases the current profit margins of SVs upto 25%
and allows an SV to make strictly positive profits at all times,
solely as an insurer, (ii) ensures the state of optimal network
robustness, and (iii) allows risk-averse SV insurers to recover
costs such as ones related to buying safety capital. (See Section
III.)

• We extend the one-period static pricing scheme above to a
sequential multi-stage dynamic pricing scheme and show that it
results in an SV cyber-insurer making more profits compared to
that in the static one-period pricing scheme. (See Section IV.)

C. Basic Economic Concepts
In this section we briefly describe some basic economic concepts

relevant to the paper. Additional details can be found in a standard
economics text such as [8].

externality: An externality is an effect (positive or negative) of a
purchase of self-defense investments by a set of users (individuals or
organizations) on other users whose interests were not taken into
account while making the investments. In this work, the effects
are improvements in individual security of network users who are
connected to the users investing in self-defense.

risk probability: It is the probability of a network user being
successfully attacked by a cyber-threat and incurring a loss of a
particular amount.

market: It is a regulated platform where cyber-insurance products
are traded with insurance clients, i.e., the network users. A market
may be perfectly competitive, oligopolistic, or monopolistic. In a
perfectly competitive market there exists a large number of buyers
(those insured) and sellers (insurers) that are small relative to the size
of the overall market. The exact number of buyers and sellers required
for a competitive market is not specified, but a competitive market
has enough buyers and sellers that no one buyer or seller can exert
any significant influence on premium pricing in the market. On the
contrary, in a monopolistic market, the single insurer has the power
to set client premiums to its liking. An oligopolistic insurance market
is a special type of a competitive market where multiple insurance
firms exist in a manner so that each insurer can set client premiums
to its liking.

Symbol Meaning
ui(·) utility of user (consumer) i in consumer-seller model
N number of consumers of an SV
hij externality effect of user j on user i
xi amount of self-defense good consumed by user i
G matrix representing externality values between user pairs
−→x−i vector of self-defense amounts of users apart from i
B(·) Bonacich centrality vector of users in a logical network
c constant marginal manufacturing cost to SV
pi price per unit of self-defense good consumed by i
xki self-defense good consumed by user i in round k
pki price per unit of self-defense to user i in round k
−−−−→
x1:k−1
i vector of user i’s self-defense amounts up to round k − 1
−−−→
p1:k−1
i vector of user i’s prices up to round k − 1
φk sequential order in which SV visit its consumers in round k

TABLE I
LIST OF IMPORTANT SYMBOLS

stakeholders: The stakeholders in a cyber-insurance market refer
to entities whose interests are affected by the dynamics of market
operation. In our work we assume that the entities are the network
users, a regulatory agency such as the government, and security
vendors (also the cyber-insurers) such as Symantec and Microsoft.
When all stakeholders in a market are satisfied, it results in a market
success.

market efficiency: A cyber-insurance market is called efficient if
the social welfare of all insured network users is maximized at the
market equilibrium. The market is inefficient if it fails to achieve this
condition. Here ‘social welfare’ refers to the sum of the net utilities
of insured network users after investing in self-defense and/or cyber-
insurance. At the maximum social welfare state, the moral hazard
problem3 in cyber-insurance is alleviated, i.e., network users adopt
safe Internet browsing habits even after after getting insured, knowing
that they would be covered by their insurers.

II. SYSTEM SETUP AND MODEL

In this section we propose our system model. First, we qualitatively
describe the insurance environment under which our proposed SV
pricing mechanisms could operate. We then follow it up with a
description of the SV pricing environment. Finally, we define our
system model. A list of important symbols relevant to the paper is
shown in Table I.

A. Insurance Setting (Environment)
We consider a system of security vendors existing in a market

and offering cyber-insurance solutions to their clients. Each client is
locked4 with his corresponding SV with respect to using security
products manufactured by the SV, i.e., he does not use products
manufactured by any other firm for self-defense purposes. A con-
sumer (network user) of security products may or may not buy cyber-
insurance, i.e, buying cyber-insurance is not made mandatory. In
general, a risk-averse consumer would want to buy insurance, whereas
risk-loving or risk-neutral users would not care that much about
buying insurance. A consumer buying cyber-insurance is provided
a full coverage by his SV on facing a loss and is charged a premium
which is not necessarily fair, i.e., the expected value of the loss. Each
SV also premium discriminates its clients in the form of charging

3Moral hazard is a well known problem in insurance literature where an
insured could behave recklessly after getting insured, knowing that he could
get coverage from his insurance company for the losses faced.

4A client may lock-in with a security vendor due to various aspects such
as reputation, service quality etc.
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fines/rebates atop premiums. Here we assume that the SVs are located
in a competitive market setting where each SV can afford to premium
discriminate its clients in a certain manner without the fear of losing
consumer demand to other SVs. Based on works in [6][7], premium
discriminating cyber-insurance clients is one way to alleviate the
moral hazard problem, enables the insured’s to optimally invest in
self-defense investments, and maximizes the social welfare of the
insured’s in the network. We assume that each cyber-insurer in the
market wants to maximize social welfare of its clients as a regulatory
constraint imposed upon it by a regulator such as the government,
and therefore premium discriminates its clients.
Remark: Since our focus in the paper is on SV pricing, and the
pricing step is a pre-cursor to the client premium charging step, we do
not mathematically model the insurance aspects in the paper. By the
term ‘pre-cursor’ we mean that the net premiums (including fines and
rebates) charged to clients will depend on the self-defense investment
amounts of users which in turn depend on the prices set by the SV on
its security products. However, it is important to state down the type
of insurance environment/s where our proposed pricing mechanism
would fit in.

B. SV Pricing Environment
We consider SVs adopting a product pricing mechanism that is

based on the logical network of its consumers and their corresponding
security investments. The purpose of an SV to price products in this
way is to make additional profits to cover up for the costs of providing
insurance to clients as well as make strictly positive profits at all times
as an insurer. It has been stated in [6][7] that cyber-insurance with
premium discrimination my not lead to the insurer making strictly
positive profits at all times. An important question that arises here is:
why would an SV need to price differently based on consumer logical
network and his security investment amount when it could transfer a
part of his current profits to the insurance business and always make
strictly positive profits? The answer to this question has three parts:
(i) a rational firm would not mind finding a way to make more profits
than their current scenario, and from principles of basic economics,
pricing based on increased client information results in more profits
[8], (ii) the amount of security investments of users results in unpaid
positive externalities for other users in the logical network and these
externalities need to be accounted for in some manner to ensure
a certain price fairness amongst consumers5, and (iii) specifically
when an SV is the cyber-insurer, our proposed pricing philosophy
would allow appropriate contracts (with fines/rebates) to be handed
out to consumers buying insurance. For example, a consumer who
generates a high amount of externality would be priced less for SV
products than a consumer generating a low amount of externality, and
as a result the latter might end up paying a fine, whereas the fomer
consumer might get a rebate on his premium.

C. Defining The Model
We assume that each SV (seller) has a set of clients N (consumers)

connected via a logical network and using self-defense products
manufactured by the SV. Each consumer i εN has an utility function,
ui(·), which is given as

ui(xi,
−→x−i, pi) = αixi − βix2

i + xi ·
X
j

hijxj − pixi, (1)

where xi is the amount6 of non-negative self-defense goods (man-
ufactured by the SV) consumed by user i, −→x−i is the vector of

5A SV can get investment related information from its insurance clients (and
hence estimate externalities) through disclosure agreements signed between
the client and the SV as part of some mandate imposed by the government
[3].

6We assume a continuous amount variable for purposes of analysis. In
reality SV products are bundled in a package which is priced as a single
item.

investments of users other than i, and pi is the price charged by the
SV to user i per unit of good consumed. Here pi is the equilibrium
market price set by the SV after competing with other SVs in the
security product business. αi, βi, hij are constants. αi and βi can be
thought of as indirect representative parameters of advertised cyber-
insurance contracts, whereas hij is the amount of externality user j
exerts on user i through his per unit investments. Here hij ≥ 0 and
hii = 0, ∀i. xi is assumed to be continuous for analysis tractability
reasons. The first and second term in the utility function denotes the
utility to a user solely dependent on his own investments, the third
term is the positive externality effects of investments made by other
users in the network on user i, and the fourth term is the price user i
pays for consuming xi units of self-defense goods manufactured by
the SV. We assume here that xi is bounded. The quadratic nature of
the utility function allows for a tractable analysis and a nice second-
order approximation of concave payoffs.

The SV accounts for the strategic investment behavior (after it
would have set its prices) of users it provides service to, and decides
on an optimal pricing scheme that arises from the solution to the
following optimization problem.

max−→p
X
i

pixi − cxi,

where −→p are the vectors of prices charged by the SV to its
consumers, and xi is the amount of self-defense good consumed by
consumer i after the SV sets its prices. c is the constant marginal
cost to the SV to manufacture a unit of any of its products.

III. STATIC PRICING STRATEGY

In this section we first describe our two-stage pricing game
between an SV and its consumers. We then state the results of the
pricing game.

A. Two-Stage Pricing Game Definition

The game has the following two steps.

1) The SV chooses a price vector −→p so as to maximize its profits
via the following optimization problem.

max−→p
X
i

pixi − cxi,

where −→p is price vector charged by the SV to its consumers,
per unit of investment, and xi is the amount of self-defense
good consumed (invested) by user i after the SV sets its prices.
We consider three types of consumer pricing scenarios in the
paper: (i) Scenario 1 - here, the SV does not price discriminate
amongst its consumers and all elements of −→p are identical,
i.e., pi = p, ∀i, (ii) Scenario 2 (binary pricing) - here, the
SV charges two types of prices per unit of user investment:
a regular price denoted as preg for each user in a particular
category, and a discounted price, denoted as pdsc for other
users, and (iii) Scenario 3 - here, the SV charges different
prices to different consumers and the elements of −→p are
non-identical. c is the constant marginal cost to the SV to
manufacture a unit of any of its products.

2) Consumer i chooses to consume xi units of self-defense
products, so as to maximize his utility ui(xi, ,−→x−i, pi) given
the prices chosen by the SV.

Since the game consists of two stages, we will analyze the subgame
perfect Nash equilibria of this game, instead of just focussing on
simple Nash equilibria.
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B. Results
In this section we state the results related to our static pricing

strategy. We first comment on the equilibrium of the second stage of
the two-stage pricing game, given a vector of prices −→p . Given −→p , the
second stage of our pricing game is a subgame and we denote it as
Gsub. We the have the following theorem. The proof of the theorem
is in the Appendix.

Theorem 1. Gsub has a unique Nash equilibrium and is represented
in closed form as

xi = BR(−→x−i) =
αi − pi

2βi
+

1

2βi

X
jεN

hijxj , (2)

where BR(−→x−i) is the best response of user i when other users
in the network consume −→x−i. In the case when SV does not price
discriminate its consumers, the Nash equilibrium vector of user
investments is given by

−→x = (Q−G)−1(−→α − p−→1 ), (3)

where p is the optimal per unit investment price charged by the SV
to all its consumers, and matrix Q takes values 2βi at location (i, j)
if i = j and zero otherwise.

Theorem Intuition and Implications: The intuition behind a unique
Nash equilibrium is the fact that increasing one’s consumption incurs
a positive externality on his peers, which further implies that the game
involves strategic complementarities7 [8], and therefore the equilibria
are ordered. This monotonic ordering results in a unique NE. The
unique equilibrium implies that the SV just needs to be concerned
about the single equilibrium vector of user consumption amounts and
base its optimal strategy on that equilibrium vector. If there would be
multiple equilibria to Gsub, it would be cumbersome for the SV to
decide on its optimal strategy. Why? because it would be difficult for
non-cooperative users to decide in the first place which equilibrium
is the best and then jointly play the best equilibria. As a result the SV
might not be sure that the best equilibrium would be played by the
users. However, if the SV is able to compute the best equilibria, it
could base its pricing strategy on that one irrespective of the equilibria
played by the users.

We now discuss the optimal pricing strategy for the SV given that
the users self-protect according to the Nash equilibrium of Gsub.
Before going into the details we first define the concept of a Bonacich
centrality in a network of heterogenous users. The Bonacich centrality
measure [4] is a sociological graph-theoretic measure of network
influence. It assigns relative influence scores to all nodes in the
network based on the concept that connections to high-scoring nodes
contribute more to the score of the node in question than equal
connections to low-scoring nodes. In our work, the Bonacich measure
of a user reflects his influence on other users of the network via the
externalities generated by him through his self-defense investments.
Formally, let G be a matrix defining the logical network of N users
(consumers), and having in its entries the hij values. Let D be a
diagonal matrix, and −→w be a weight vector. The weighted Bonacich
centrality vector is given by

B(G,D,−→w ) = (I −GD)−1−→w , (4)

where (I −GD)−1 is well-defined and non-negative.
We now have our first result regarding the optimal prices charged

by the SV to its consumers. The result addresses pricing scenarios
1 and 3 together as Scenario 1 is a special case of Scenario 3. The
proof of theorem is in the Appendix.

7In economics and game theory, the decisions of two or more players are
called strategic complements if they mutually reinforce one another.

Theorem 2. The optimal price vector −→p charged by the SV is given
by

−→p =
−→α + c · −→1

2
+GQ−1B(G′, Q−1,

−→
w′)−GTQ−1B(G′, Q−1,

−→
w′),

(5)
where G′ = G+GT

2
and
−→
w′ =

−→α−c·−→1
2

.
In the case when the SV does not price discriminate its consumers,

the optimal price (same for every consumer) charged per consumer
is given by

p =
1

2

−→
1 T (Q−G)−1(−→α + c

−→
1 )

−→
1 T (Q−G)−1

−→
1

(6)

.

Theorem Intuition and Implications: The optimal price vector in
the no price discrimination case is independent of individual node
centralities, whereas in the price discrimination case the optimal price
vector depends on the Bonacich centrality of individual users. The
intuition behind the result is the fact that users tend to invest in
security mechanisms proportional to their Bonacich centrality (and
in turn generate proportional amount of network externalities) in
the Nash Equilibrium [11][12]. Therefore it makes sense for the
SV to charge users based on their Bonacich centralities when price
discrimination is possible.
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Fig. 1. Profit Ratio and Its Bounds

We now state the following result regarding profit amounts made
by a SV from its cyber-insurance business for pricing scenarios 1
and 3. The proof of the theorem is in the Appendix.

Theorem 3. The profits made by an SV from its cyber-insurance
business when the latter does not (does) account for user investment
externalities are given by

P0 =

8<:
 −→α − c · −→1

2

!T
(Q−G)−1

 −→α − c · −→1
2

!9=; (7)

and

P1 =

8<:
 −→α − c · −→1

2

!T
(Q−G′)−1

 −→α − c · −→1
2

!9=; , (8)

.

We plot the ratio of P0
P1

for preferential attachment (PA) graphs in
Figure 1. We choose preferential attachment graphs as they represent
social/logical network interactions. For networks of size 100, we
generate 50 PA graphs for each different value of µ ranging from
0 to 1, where µ reflects the influencing nature of a user in a PA
graph w.r.t. the positive externality effects of his security investments
made. A µ value of 1 indicates that the user is influenced by all his
neighbors but does not influence any one of them, whereas a µ value
of zero indicates the opposite. Each point in the plot is the average
of the 50 P0

P1
values obtained per value of µ. Our plot results show
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that the provable profit ratio bounds are quite tight and are less than
18, implying the fact that an SV does not do that badly in terms of
profit when it is not informed about consumer externality values and
their network location properties, compared to the case when it does
have full information.
Theorem Intuition and Implications: As observed from the plot in
Figure 1, the profits to the SV are greater when it accounts for
externalities than when it does not, and an SV could make up to
25% extra profits with complete information. This is intuitive in the
sense that the SV has more user information when knowing about the
externalities and can price optimally to increase its profits. However,
in reality it is difficult to measure/observe the externalities. Thus, in
spite of getting topological information from the insurer, an SV might
have to price its products without taking externalities into account.
The profits for the non price discrimination scenario is encapsulated
as a special case of P1 when G has all entries equal except the zero
diagonal entries. We also emphasize here that even in the absence of
complete information, partial information will boost SV profits in a
proportional manner.
General Remarks: In practice, it is really difficult to compute the
hij values. One can at best approximate or stochastically estimate it.
The Bonacich centrality measure can however be exactly computed
given the social network structure of consumers. As mentioned
before, even partial information on consumer investments and related
externalities will improve profit margins for SVs. In the case a
logical network consists of disjoint large subnetworks or sparsely
overlapping networks, insurance sellers (SVs) would segment the
market at equilibrium and exercise monopoly pricing power in their
respective localities. When networks are considerably overlapping it
would be difficult for any SV to exercise monopoly pricing of its
products. However, in reality there is some heterogeneity between
product types of sellers which leads to one being more popular than
others, and as a result sellers could have a slight pricing power over
their consumers.
The case for two prices (binary pricing): In reality, charging
multiple different prices to various consumers may not be very
practical to implement. To make things simpler, a SV can opt to
charge two types of prices for two different classes of consumers: (i)
a discounted price, pdsc, for consumers who have significant positive
influence on the security of a network based on their network location
and the amount of investments made, (ii) and a regular price, preg
for the other consumers. Thus, the first goal of an SV is to determine
the subset of consumers that should be offered the discounted price
so as to maximize its own profits.

Given that preg and pdsc are exogenously specified, the profit
optimization problem for an SV is given by

Maximize (−→p − c−→1 )T (Q−G)−1(−→α −−→p )

s.t. pi ε {preg, pdsc}, ∀i εN.

Note here that the expression, (Q−G)−1(−→α −−→p ), in the objective
function is the NE investment amount of users in self-defense
mechanisms. Thus, we have a combinatorial optimization problem for
maximizing the profits of an SV. In order to investigate the tractability
of the problem, we formulate it in the following manner:

OPT : Maximize (δ−→y + c′
−→
1 )T (Q−G)−1(

−→
α′ − δ−→y )

s.t. yi ε {−1, 1}, ∀i εN.

Here δ = preg − pT , where pT =
preg+pdsc

2
,
−→
a′ = −→a − pT , and

c′ = pT − c ≥ δ. Note that using these variables, the feasible price
allocation can be expressed as −→p = δ−→y + pT . Our next result
comments on the intractability of solving OPT. The proof of the

8Here ‘1’ is the trivial upper bound.

result which is in the Appendix, is based on the reduction of OPT
from the well-known MAX-CUT problem [5].

Theorem 4. Given that preg and pdsc are exogenously specified in
the binary pricing case, an SV’s profit optimization problem, OPT, is
NP-Hard.

We plan to design approximation schemes to the optimal solution
as part of future work.

IV. DYNAMIC PRICING STRATEGY

In the previous section, we analyzed the case when there is just
one round of pricing game played between the consumers and the
SV. In this section we propose a sequential dynamic pricing strategy
for a security vendor, where the consumers and the SV interact in
multiple rounds. The motivation for considering multiple rounds is
that security products often have different versions coming out at
periodic time intervals, and given our framework, the consumers
would want take into account past actions of themselves and others
in the network, i.e., investment amounts, and modify their actions
in the present. Likewise the SV would want to optimally price its
product accounting for its consumers’ present behaviors. Our goal
is to study whether playing multiple rounds of the two-stage pricing
game results in more profits for an SV.

A. Pricing Model
We assume that the SV adopts a discrete-time sequential pricing

strategy where the price vector is changed once every round. The SV
approaches each consumer in a particular order per round. Formally,
let φk := {φk1 , ......., φkn=|N|} be the adopted order of approaching
consumers in round k for the SV. Here φki εN , and φki 6= φkj for any
i 6= j. Let pki be price charged by the SV to consumer i in round
k, and xki be the security good consumption by user (consumer) i in
round k.

Regarding a consumer’s information on other consumer invest-
ments prior to round k, we simplistically assume he has accurate
knowledge of the quantities consumed by other users in the network
prior to his own purchase in round k. Let Iki be the information avail-
able to user (consumer) i in round k. Then we could mathematically
represent it as

Iki =

„−−−−−→
x

(1:k−1)
i ,

−−−−−→
p
(1:k−1)
i ,Xij ,

−→
xkj |j εNk

i

«
,

where Nk
i ⊂ N is the set of consumers that purchase self-defense

mechanisms before consumer i in round k,
−−−−−→
x

(1:k−1)
i is the k − 1

dimensional vector of investments of consumer i from rounds 1 to
k−1,

−−−−−→
p
(1:k−1)
i is the k−1 dimensional vector of per unit of investment

prices charged to consumer i from rounds 1 to k − 1, Xij is a 2-
dimensional matrix storing the investments of each of N users from
rounds 1 to k− 1, and xkj is the investment made by consumer j in
round k. Let yki =

Pk
j=1 x

k
i be the cumulative self-defense quantity

consumed by user i up to round k. The utility function of consumer
i in round k is then given by

ui(x
k
i , I

k
i , p

k
i ) = A−B + C +D − E, (9)

where
A = αi

“
yk−1
i + xki

”
,

B = βi
“
yk−1
i + xki

”2

,

C =
“
yk−1
i + xki

”X
j εN

hijy
k−1
j ,

D =
“
yk−1
i + xki

” X
j εNk

i

hijx
k−1
j ,

5
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and

E =

kX
j=1

pjix
j
i ,

The terms A,B,C,D, and E have the same interpretation as
the corresponding terms of Equation 1, except that now we are
considering cumulative investments up to round k, instead of just
investments in one round, as that in Equation 1. For each round k,
consumer i will look to maximize ui(xki , I

k
i , p

k
i ), whereas the SV

will choose {pki } to maximize
P
i εN p

k
i x

k
i − cxki . We thus have

the following optimization problem, the solution to which gives the
optimal ordering that maximizes the SV profits in round k.

argmaxγk ε Perm(φk)P
k(γk)

where Perm(φk) is the set of all permutations of the elements of
φk, i.e., the set of all possible orderings of consumers in round k, and
γk := {γk1 , ......., γkn} be the adopted optimal order of approaching
consumers in round k that maximizes the objective function. Note that
P k(·) stands for the optimal solution to the SV profits in round k
given any particular order. It is the solution to another optimization
problem in itself, where we are required to find the optimal user
investment amounts that maximize SV profits given any particular
order, φk. We formulate the optimization problem as follows:

P k(φk) = max

nX
i=1

pkφk
i
xkφk

i
− cxki

s.t. xkφk
i

= argmaxz≥0uφk
i

“
z, Ĩkφk

i
, pkφk

i

”
, ∀i,

where Ĩki =

„−−−−−→
x̃

(1:k−1)
i ,

−−−−−→
p̃
(1:k−1)
i , X̃ij ,

−→
x̃kj |j εNk

i

«
is the information

available to consumer φki in round k. x̃ki and p̃ki are the optimal
consumed amount of security good and price of consumer i in round
k respectively.

B. Results
Note that in order to solve the profit maximization problem for the

SV, in each round we need to consider n! possible orderings to find
the optimal order, which makes the state space size intractable for
analysis. For tractability of analysis, we assume that the hij values
are symmetric and c = 0. We now state two results (theorems) on the
outcome of the pricing game played for multiple rounds. The proofs
of these theorems are in the Appendix.

Theorem 5. The optimal solution to
−−−−→
x̃k(φk) and the corresponding

P k(φk) value are unique, and independent of the ordering in φk.

The closed form of the optimal solution for
−−−−→
x̃k(φk) in each round k

is given by
−−−−→
x̃k(φk) = [2Q−G]−1[I − (Q−G)(2Q−G)−1]k−1−→α , (10)

where matrix Q takes values 2βi at location (i, j) if i = j and zero
otherwise.
The optimal per unit consumption prices charged by the SV to each
consumer i in round k is given by

p̃ki = αi − 2βiỹ
k−1
i +

X
j εN

hij ỹ
k−1
j − 2βix̃

k
i +

X
j<i

hjix̃
k
j . (11)

Theorem Intuition and Implications: The independence of the
optimal consumer investments with respect to consumer ordering
follows from the fact that hij values are symmetric. We also observe
that the optimal consumption amounts and the prices charged by
the SV do not depend on the centrality measures. This is again due
to the fact the h values are symmetric amongst users (consumers).
Externality effects rely on the topological structure - thus it is evident

that with symmetric externality effects, topology does not affect the
optimal consumption and price structure. However, in reality there
will be asymmetric externality effects, and we conjecture that the
optimal consumer consumption and SV prices will depend on the
location of network users.

We now have the following theorem related to the comparison of
SV profits between the static pricing strategy and the dynamic pricing
strategy cases.

Theorem 6. The profit obtained by an SV via our proposed dynamic
pricing strategy strictly dominates that obtained due to the static pric-
ing strategy (even if the strategy prices uniformly for all consumers).

Theorem Intuition and Implications: The theorem follows from
the fact that an SV has more information from consumer investment
history and prices its consumers accordingly to increase profits. In this
work we have assumed symmetric externality effects in the dynamic
pricing case, which is equivalent to having partial information about
consumer investments. We observe that in the absence of complete
information on consumer investment history, an SV can make im-
proved profits with partial information when compared to the static
pricing case. With more information on consumer investments, SVs
can only increase their profits, and accordingly allocate some profits
to its cyber-insurance business.

C. Consumer Fairness Through Dynamic Pricing
We have already shown in the dynamic pricing setting above that

the order in which a consumer is approached by a SV does not have
an impact on his optimal pricing strategy, under symmetric externality
effects. In this case we can explore this invariance of ordering
property to ensure fairness amongst the network users. By the term
‘fairness’ we mean distributing the net utility of all consumers in a
network in a fair manner over time. Fairness is an important parameter
from a consumer perspective. An SV could increase its reputation and
consumer popularity (and in turn sales) by ensuring fairness amongst
its network users. In this paper we consider the max-min fairness
allocation concept (not relevant for uniform consumer pricing). The
goal of the SV is to choose the consumer visit order in each round
so as to achieve the max-min fairness goal over time. We emphasize
again that irrespective of the visit order, the SV keeps its optimal
profits fixed.

Consider the dynamic pricing strategy where the SV approaches
its consumers in a same fixed order every round. Assume the order to
be {1, 2, ...., n = |N |}. The price in round k, charged to a consumer
i, he being the mth person visited by the SV, is given by

p̃ki = ak−1α(2β − (n−m)h)

4β − (n− 1)h
, ∀i εN, (12)

where a is given by

a =
2β

4β − (n− 1)h
< 1. (13)

Note that in case of a symmetric graph −→α = α, and
−→
β = β. It is

evident from the equation that prices charged to consumers increase
linearly in the order of visit. This generates a wide disparity in the
individual user utility with the nth visited consumer having the least
utility in all rounds. Thus we do not get a fair net utility allocation
amongst the consumers over time.

To alleviate the fairness issue, we make the following simple
change in the dynamic pricing protocol: the SV chooses any arbitrary
ordering (assume {1, 2, ..., .n}) in the first round, but uses a max-
min fairness criteria to find the order in subsequent rounds. For
a symmetric graph, for each k > 1, we choose the ordering
φk = {φk1 , ......, φkn} such that the following holds.

φki = argmini εN−{φk
1 ,....,φ

k
i−1}

ui(x
k
i , I

k
i , p

k
i )
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We then obtain the net utility of a consumer visited in the mth
position in any round k as

um(xkm, I
k
m, p

k
m) =

a2α2

4β2

„
(2β − (n−m)h) +

(2β −mh)a2

1− a2

«
.

(14)
This equation implies that any other order in round k > 1 in which
consumer n is not scheduled in the beginning will lead to him having
a lower net utility compared to the orderings in which he is scheduled
in the beginning. Thus, we achieve a max-min fairness over time, in
regard to allocating net utility of consumers.

V. CONCLUSION AND FUTURE WORK

Cyber-insurance markets, be it monopolistic, competitive, or
oligopolistic might not turn out to be very profitable for cyber-
insurer/s. This is more so the case because these markets are
applicable to interdependent and correlated risk environments. In
such environments, insurers in the worst case could go bankrupt,
and generally might make zero or non-negative expected profits even
under client contract discrimination, in the process of sustaining a
certain level of social welfare requirement from a regulatory agency
such as the government. To alleviate this problem a security vendor
can be a part of the cyber-insurance driven security ecosystem by
being the insurer itself and channeling the extra profits obtained
from its security product business to its cyber-insurance business.
Strict positive profits at all times for a cyber-insurer will satisfy its
interest in an insurance-driven security ecosystem and result in more
than moderate success of cyber-insurance markets. The channeling
process can be made possible by SVs by getting client information
on their logical network location as well as the amount of externalities
caused due to their security investments. According to basic micro-
economic theory, pricing techniques based on such additional client
information (be it perfect or imperfect) generates extra profits for
SVs compared to their traditional pricing methods. In the process, an
SV could also ensure a lock-in effect amongst its insurance clients
by enforcing the latter to buy security products only from his SV,
in turn increase SV demand for security products. In this paper we
have shown that (i) price discriminating consumers in proportion to
the Bonacich centrality of individual users results in maximum profits
for an SV, (ii) an SV could make up to 25% additional profits with
perfect client information, (iii) the problem of price discriminating
consumers in order to maximize SV profits when there are only two
price categories, i.e., regular and discounted, is NP-Hard. We have
also showed that a pricing game played between consumers and an
SV for multiple rounds can result in greater maximum profits for
both, the SV and an insurer when compared to the outcome of the
pricing game played for just one round. Finally, for the dynamic
pricing game, we showed that for a given optimal pricing strategy
that is invariant of the order in which the SV visits its consumers,
it is possible for the SV to allocate the latters’ net utility in a max-
min fair manner over time by changing the order of visits in each
round. Maintaining the same order of consumer visits would result in
optimal profits for the SV but would not be fair to certain users who
would always (in every round) be visited near the end and accrue
lower utilities than their counterparts who were visited earlier.

As part of future work we plan to design an approximation
algorithm that provides a nice approximation guarantee to the binary
pricing problem. Note that in this paper, we assumed the binary prices
preg and pdsc to be exogenously specified for the binary pricing
problem. In this regard, we also aim to compute the optimal binary
prices that maximizes SV profits when they are not exogenously
specified. We also aim to extend our dynamic pricing strategy to
account for asymmetric externality effects of consumer investments.
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VII. APPENDIX

In this section, we prove Theorems 1-6.

Proof of Theorem 1. The proof relies on the results on the
following lemmas. We first state and prove the relevant lemmas
required for the proof of Theorem 1 and follow it up with the proof
of the main theorem.
Lemma 1. The game Gsub is supermodular9.
Proof. The payoff/utility functions are continuous, the strategy sets
are compact subsets of real space, and for any two consumers
i, j εN , ∂2ui

∂xi∂xj
≥ 0. Hence Gsub is supermodular. �

Lemma 2. The spectral radius of Q−1G is smaller than 1, and the
matrix I −Q−1G is invertible.
Proof. Let −→v be an eigenvector of Q−1G with λ being the
corresponding eigenvalue, with |vi| > |vj | for all j εN . We have
the following equation due to the fact that (Q−1G)−→v = λ−→v .

|λvi| = |(Q−1Gi)
−→v | ≤

X
j εN

(Q−1G)ij |vj | ≤
1

2βi
|vi|

X
j εN

hij <
vi
2
.

(15)
Here (Q−1G)i denotes the i−th row of (Q−1G). Since the equation
holds for any eigenvalue-eigenvector pair, the spectral radius of
(Q−1G) is strictly smaller than 1. Now observe that each eigenvalue
of I − Q−1G can be written as 1 − λ. Since the spectral radius of
Q−1G is strictly smaller than 1, none of the eigenvalues of I−Q1G
is zero, and thus the matrix is invertible. �
Now we continue with the proof of Theorem 1. Since Gsub is
a supermodular game, the equilibrium set has a minimum and
a maximum element [13]. Let −→x denote the maximum of the
equilibrium set and let S be such that xi > 0 only if i ε S. If
S = φ there cannot be another equilibrium point, since −→x = 0
is the maximum of the equilibrium set. Assume for a contradictory
purpose that S 6= φ and there is another equilibrium

−→̃
x , of the game.

By the supermodularity property of Gsub, xi ≥ x̃i, ∀i εN . Allow k

to equal argmaxi εNxi−x̃i. Since −→x and
−→̃
x are not equal, we have

9In supermodular games, the marginal utility of increasing a player’s
strategy increases with the increases in the other players’ strategies.
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xk − x̃k > 0. Since at NE no consumer has an incentive to increase
or decrease his consumption, we have

xk − x̃k ≤
1

2βk
Gk(−→x −−→̃x ) =

1

2βk

X
j

hkj(xj − x̃j), (16)

where Gk is the k − th row of G. But we have
1

2βk

X
j

hkj(xj − x̃j) ≤
xk − x̃k

2βk

X
j

hkj < xk − x̃k (17)

Thus, we reach a contradiction and Gsub has a unique Nash
equilibrium. �

Proof of Theorem 2. We have from Lemma 2 that Q − G is
non-singular and as a result the following equation holds.

−→p = −→α − (Q−G)

„
Q−G− GT −G

2

«−1 −→α − c · −→1
2

(18)

Equation 18 can we rewritten as

−→p = −→α −
„
I − GT −G

2
(Q−G)−1

«−1 −→α − c · −→1
2

(19)

By the matrix inversion lemma [9], we have„
I − GT −G

2
(Q−G)−1

«−1

= I+
GT −G

2

„
Q− GT +G

2

«−1

(20)
Thus, from Equation 19 it follows that

−→p =
α+ c

−→
1

2
− GT −G

2

„
Q− GT +G

2

«−1 −→α − c−→1
2

(21)

Applying Equation 21 and using the definition of weighted Bonacich
centrality, we get

−→p =
−→α + c · −→1

2
+GQ−1B(G′, Q−1,

−→
w′)−GTQ−1B(G′, Q−1,

−→
w′)

and thus prove Theorem 2. �

Proof of Theorem 3. The optimal price vector of the SV without
and with the consideration of externality effects are given by the
following equations.

−→p0 =
−→α + c · −→1

2
. (22)

and

−→p1 = −→α − (Q−G)

„
Q− G+GT

2

«−1
α− c · −→1

2
. (23)

The corresponding consumption vectors are given by

−→x0 = (Q−G)−1
−→α − c · −→1

2
. (24)

and
−→x1 = (Q−G′)−1

−→α − c · −→1
2

. (25)

It then follows that

P0 = (−→p0 − c ·
−→
1 )T−→x0 =

−→α − c · −→1
2

(Q−G)−1
−→α − c · −→1

2
. (26)

and
P1 = (−→p1 − c ·

−→
1 )T−→x1, (27)

P1 can be re-written as

P1 = X − Y,

where

X = 2

 −→α − c · −→1
2

!T „
R+RT

2

«−1
 −→α − c · −→1

2

!
,

and

Y =

 −→α − c · −→1
2

!T „
R+RT

2

«−1
 −→α − c · −→1

2

!
.

Thus, we have

P1 =

8<:
 −→α − c · −→1

2

!T
(Q−G′)−1

 −→α − c · −→1
2

!9=; ,

and we prove our theorem. �.

Proof of Theorem 4. The well known MAX-CUT problem [5]
is as follows:

max
X

(i,j) εE

Wij(1− xixj)

s.t. xi ε {−1,+1}, ∀i ε V,

where W denotes a matrix of binary weights consisting of 0s and 1s.
The solution to this problem corresponds to a cut as follows: let S be
the agents who were assigned value 1 in the optimal solution. Then
it is straightforward to see that the value of the objective function
corresponds to the size of the cut defined by S and V − S. The
problem can also be re-wriiten as

P0 : min−→x TW−→x

s.t. xi ε {−1,+1}, ∀i ε V.

Now consider the following related problem:

P1 : min−→x TW−→x

s.t. xi ε {−1,+1}, ∀i ε V,

where W is a symmetric matrix with rational entries that satisfy
0 < WT = W < 1. In the proof of Theorem 4, we will first
show that P1 is NP-Hard by reducing from MAX-CUT. We will
then reduce P1 to OPT to claim the correctness of our theorem.
Lemma 3. P1 is NP-Hard.
Proof. We prove our claim by reducing P1 from P0. Let W be the
weight matrix in an instance of P0. Let Wε = 1

2
(ε + W ), where ε

is a rational number between 0 and 1
2n2 and |V | = n. Observe that

for any feasible −→x in P0 or P1, it follows that

2−→x TWε(
−→x )− n2ε ≤ −→x TW−→x ≤ 2−→x TWε(

−→x ) + n2ε.

Because the objective of P0 is always an integer and n2ε < 1
2

, the
cost of P0 for any feasible vector −→x can be obtained from the cost
of P1 by scaling and rounding. Therefore, since P0 is NP-Hard, it
follows that P1 is also NP-Hard. �.
Having proved P1 to be NP-Hard, we now prove Theorem 4 by
reducing OPT from P1. We consider special instances of OPT where
G = GT , c = 0, and −→α = [α, ....., α], and α = preg + pdsc. OPT
can then be re-casted as

OPT2 : min−→x T (Q−G)−→x

s.t. xi ε {−1,+1}, ∀i εN.

Now consider an instance of P1 with W > 0. Note that because
x2
i = 1, P1 is equivalent to

min−→x T (W + γI)−→x

s.t. xi ε {−1,+1}, ∀i ε V,

8
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where we choose γ as an integer such that

γ > 4 ·max{ρ(W ),
X
i,j

Wi,j

mini,jWij
}

and ρ(·) is the spectral radius of its argument. The definition of γ
implies that the spectral radius of W

γ
is less than 1. Therefore we

have

(W + γI)−1 =
1

γ

„
I − 1

γ
(W − W 2

γ
)− W 2

γ3
(W − W 2

γ
).....

«
.

(28)
Since all entries of W and

“
W − (W

2

γ
)
”

are positive, the above
equality implies that the off-diagonal entries of (W + γI)−1 are
negative. Therefore (W + γI)−1 = (Q − G) for some diagonal
matrix Q and some G ≥ 0. Thus, it follows that

((Q−G)
−→
1 )k =

„
1

γ

„
I − W

γ
+
W 2

γ2
....

«
−→
1

«
k

. (29)

Since W > 0, we have

((Q−G)
−→
1 )k ≥

1

γ

 
1 +

 
−W
−→
1

γ
)− W 2−→1

γ2
....

!
k

−→
1

!
.

From the definition of γ it follows that W
−→
1
γ
≤ (

(
P

i.j Wij)

γ
)
−→
1 ≤

1
4

−→
1 . The above inequality implies that

((Q−G)
−→
1 )k ≥

1

γ

 
1− 1

4

 
∞X
l=0

„
1

4

«l!!
=

1

γ

„
2

3

«
> 0. (30)

Thus, P1 can be reduced to an instance of OPT2 by defining Q and
G according to (W + γI)−1 = (Q − G). Therefore it follows that
OPT2, and hence OPT, are NP-Hard. �.

Proof of Theorem 5. Consider the first round. We fix and
order φ1 = {φ1

1, ......, φ
1
n}. The profit of the SV is given as

P 1(φ1,
−→
x1) =

X
i

pφ1
i
xφ1

i
=
X
i

(αφ1
i
−2βφ1

i
xφ1

i
+
X
j<i

hφ1
i ,φ

1
j
xφ1

j
)xφ1

j
.

(31)
Let
−→
x̃1 be the optimal consumption of user i in round 1. Then for

symmetric h values, we have

αi − 4βi
−→
x̃i

1 +
X
j

hij x̃
1
j = 0, (32)

which is independent of φ. Thus
−→
x̃1 = (2Q−G)−1−→α . The optimal

profit for the SV in round 1 is given by

P 1(φ1,
−→
x1) =

1

2
−→α T (2Q−G)−1−→α . (33)

The results for rounds 2 to k can be proved inductively. We have the
following equations for a particular round k

P k(φk,
−→
xk) =

X
i

Φxφk
j
. (34)

where

Φ = (αφk
i
−2βφk

i
ỹk−1

φk
i

+
X
j

hφk
i ,φ

k
j
ỹk−1

φk
j
−2βφk

i
xkφi

+
X
j<i

hφk
i ,φ

k
j
xφk

j
)

Now since the spectral radius of matrix [I − (Q − G)(2Q −
G)−1]k−1−→α ] is less than 1, we have

−→
αk = [I − (Q−G)(2Q−G)−1]k−1−→α , (35)

where −→
αk = αφk

i
− 2βφk

i
ỹk−1

φk
i

+
X
j

hφk
i ,φ

k
j
ỹk−1

φk
j
.

Thus, the optimal consumption amount of user i in round k is given
by

αki − 4βi
−→̃
xki +

X
j<i

hφk
i ,φ

k
j
x̃kφk

j
+
X
j>i

hφk
i ,φ

k
j
x̃k = 0, (36)

which is independent of order in φ. Thus, we have
−→̃
x = (2Q−G)−1[I − (Q−G)(2Q−G)−1]k−1−→α . (37)

The total consumption as the number of rounds goes to infinity is
given as

lim
k→∞

−→
ỹk =

∞X
k=1

(2Q−G)−1[I − (Q−G)(2Q−G)−1]k−1−→α . (38)

Simplifying, we get

lim
k→∞

−→
ỹk = (Q−G)−1−→α . (39)

Thus, we have proved Theorem 5. �

Proof of Theorem 6. The asymptotic profit, PD , obtained by
the SV via its dynamic pricing strategy is expressed as the following
sequence of equation

PD =

∞X
k=1

P k(φk,
−→
xk); (40)

PD =
1

2

∞X
k=1

−→α T [(2Q−G)−1Q]k−1(2Q−G)−1[Q(2Q−G)−1]k−1−→α ;

(41)

PD =
1

2

∞X
k=1

−→α TQ−1[Q(2Q−G)−1]2k−1−→α . (42)

Note that the sum 1
2

P∞
k=1
−→α TQ−1[Q(2Q−G)−1]2k−1−→α converges

due to the fact that the spectral radius of Q(2Q − G)−1]2k−1−→α is
less than 1. Thus, the optimal profit obtained by the SV is given as

PD =
1

2
−→α T (Q−G)−1(2I − (Q−G)(2Q−G)−1)−1−→α (43)

The optimal profit, PS , obtained by the SV in the static pricing case
is given as

PS =
1

4
−→α T (Q−G)−1−→α . (44)

Thus, the difference in profits of the SV between the dynamic pricing
and the static pricing cases is PD − PS , and is given by

PD − PS =
1

4
−→α T

„
3

2
Q−G

«−1
−→α . (45)

Since the entries in ( 3
2
Q−G) are non-negative, we have PD−PS >

0. Thus we have proved Theorem 6. �.
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