
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Implementation and Evaluation of an Information-

Centric Network

George Parisis and Dirk Trossen

Computer Laboratory, University of Cambridge

Cambridge, UK

firstname.lastname@cl.cam.ac.uk

Dimitris Syrivelis

CERTH-ITI

Volos, Greece

jsyr@inf.uth.gr

Abstract—Information-centric networking (ICN) has been

touted as an alternative to the current Internet architecture by

several research groups. So far little has been done towards the

implementation of ICN network stacks and their evaluation in

realistic ICN deployments. In this paper we describe Blackadder,

a sophisticated prototype of our ICN architecture, and we

present an extended experimental evaluation in high-

performance and wide-area testbeds. Our evaluation shows the

feasibility of the design and the performance of our prototype in

test bed setups. In addition, we contrast our implementation

against CCNx.

Index Terms—Information-centric networking, Node

Implementation, Click router, Performance evaluation

I. INTRODUCTION

Information-Centric Networking (ICN) is increasingly

attracting attention in the networking community. Several

technological solutions within a range of architectures have

been proposed, such as in [1][2][5][8], with subtle differences

but also commonalities that stretch across the approaches.

However, so far, little has been shown about the feasibility

and performance of the ICN paradigm. In most cases

simulation results or “toy” deployments of simplistic

implementations are presented to provide indications about the

feasibility and performance of the proposed architectures. We

argue that the ICN research field is getting more and more

mature; therefore we identify the necessity to design and

implement real network stacks that can run in parallel with

existing host-centric communication protocols, rather than

showcasing ICN characteristics with overlay implementations

and deployments running as user-space processes. We strongly

believe that along with the evolution of ICN technological

solutions, there must exist implementations that can support

real deployments and experimentation.

In this paper we present Blackadder, a network node

implementation of an ICN network stack that leaves nothing

untouched with respect to the IP legacy. Our architectural

starting point is the one presented in [1] and elaborated in [2]

and [3]. Based on this architectural starting point, our

contribution is a network node implementation for an ICN

internetworking architecture that could run in parallel with

TCP/IP, support backward compatibility for legacy

applications and be deployed in large networks. We show the

feasibility of our approach in a high-speed network as well as

in PlanetLab. Specifically, our evaluation shows our prototype

performing in line-speed in a Gigabit Ethernet testbed while

providing acceptable performance in a PlanetLab setup of ~100

nodes with 36.500 subscribers.

We contribute an open framework for further

experimentation in real deployments as well as in simulated

environments. We have released Blackadder under the GPL2

license [12] and built it on top of the Click router [7].

Blackadder supports user and kernel space deployments using

the same source code. It is ported to the Android OS and

OpenWrt and is integrated with the NS3 simulator. Finally, we

contrast our work against a similarly ambitious implementation

effort, that of the Content-Centric Networking (CCN) [5].

The work presented in [1][2] argues and lays the ground for

an information-centric architecture in which information is the

primary principle. Individual information items are identified

through labels, which can in turn be organized through scopes.

This allows for building directed-acyclic graphs of information,

manipulated via a publish/subscribe service model. This service

model is realized through three core network functions. The

first one, rendezvous, matches supply of information to demand

for it. This process results in some form of information that is

used for binding the information delivery to a network location

by the second function, topology management and formation,

to determine a suitable delivery relationship for the information

transfer. This transfer is finally executed by the forwarding

function. With this separation of functions, the traditional

operations of routing and forwarding are decoupled, enabling

to trade off options in state management between the various

network components. For example, Blackadder allows for

removing flow-dependent state from forwarding nodes in favor

of route computation during topology formation, inserting the

forwarding state into the packet header. It also allows for

scoping the realization of these core functions through the

notion of dissemination strategies, embedded into the

information structures over which the service model operates.

In Section II we present research related to our work.

Section III describes how information is managed and

disseminated in our ICN approach for different communication

scenarios. In Section IV we elaborate on the implementation of

Blackadder and in Section V we present an experimental

Networking 2013 1569702861

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

evaluation of our network node, also in comparison with

CCNx. Section VI concludes our paper.

II. RELATED WORK

In the area of content-centric architectures, Haggle [4] and

CCN [5] stand out. CCN extends the IP node design with a

forwarding information database for a hierarchical naming

system (based on the DNS). It also introduces a forwarding

function that can be configured based on some strategy for

selecting particular interfaces for given named data. However,

the function of routing, i.e. the population of the forwarding

table based on availability of named data in different domains,

is currently undefined. Only a broadcast strategy has been

presented so far which is not suitable for most communication

scenarios. Haggle provides manipulations of a linked

information graph based on publish/subscribe operations. The

Haggle component wheel logically separates core functions for

information dissemination in a plug-and-play manner. Contrary

to our approach, Haggle does not provide a layering structure

but resides between the application and the network in a rather

monolithic form. The Network of Information (NetInf) [10]

operates as an overlay, using application-level event and

resolution services. It provides higher-level services to

application, which are built on top of IP or even HTTP. Our

approach, on the other hand, envisions a parallel network stack

that operates independently of IP or on top of it only when this

is unavoidable. Other information-centric approaches like in [8]

and [11] utilize flat labels to route information in the network.

However, no implementations were ever publicly available for

any of them. The authors in [9] argue for HTTP and the DNS

as the effective waist of the future Internet. This lifts the

current IP node design onto the level of efforts like CCN,

providing manipulations of hierarchically named data.

Finally, vast research has been done in the field of

publish/subscribe notification systems, such as [14] and [15].

However, all of these systems were designed to run as overlays

on top of the existing IP network stack contrary to our

implementation and the respective network architecture, which

can run natively in the network and in parallel with the IP. For

that reason we will not elaborate more on systems like these,

nor will include them in our experimental evaluation.

III. INFORMATION MANAGEMENT AND DISSEMINATION

Information lies at the core of our network architecture. In

this section, we describe major aspects related to the

information-centric nature of our node implementation. We

discuss how information is managed by the rendezvous

network function and what information semantics are

supported by our architecture. Finally, we elaborate on the

currently implemented dissemination strategies; i.e. realizations

of the core network functions that provide ways for

disseminating information.

1) Information Management

Information management is a very important task that is

undertaken by the rendezvous network function, as mentioned

in Section I. Depending on the used dissemination strategy, the

rendezvous function can be implemented: locally to a network

node to manage information visible to a single node,

centralized in a network node for small domains, or in a

distributed, potentially hierarchical, fashion for managing large

information spaces across one or more network domains [13].

Information items and scopes are identified using statistically

unique labels, 8 bytes long. These labels carry no semantics.

Any meaning can be assigned by the entities that produce them

as well as by other network entities that utilize the particular

information structure for their purposes. Although information

can be identified in the context of a scope using a fixed size

label, the absolute path from a root of the graph (more than one

such path may exist) must be used when accessing the service

model exported by Blackadder.

0000

0000

0001

1111 2222

3333

000A

0000

Fig. 1. An example Information Structure

Figure 1 depicts an information graph managed by the

rendezvous function. Note that labels in the figure are shorter

than in the actual implementation and are shown with their

hexadecimal form in order to maintain text’s readability. An

information item can be published under multiple scopes.

Scopes and information items are identified using one or more

full identifiers starting from a root scope. With that, the item

with label 000A can be identified using the identifiers:

/0000/2222/3333/000A, /0001/3333/000A and /0001/000A

(slashes are added to improve readability). A publisher or

subscriber can use any of these identifiers, depending on its

(potentially) partial knowledge of the information structure, to

advertise or subscribe to this information item. Global

uniqueness of scope and information labels is not enforced. For

example, the information item with identifier /0000/1111/0000

has the same label as the root scope /0000 and scope

/0000/0000. As long as the full identifiers of a scope or

information item are unique, everything is legitimate.

2) Information Semantics

Blackadder is agnostic to any information semantics.

Immutable information items can be identified with a

statistically unique label under a given scope. As an example,

we could assume each version of a document being labelled

individually, therefore being individually identifiable within

the network. For the application, there needs to be an additional

information exchange that disseminates the version identifiers;

this is left to the application itself. Mutable information items

represent information that can change through time. Hence, the

application needs to take care of any issues arising from this

mutability. Mutable items are important when realizing, e.g.

live video delivery, in which video chunks are published using

the same identifier representing a unidirectional multicast

channel. Finally, determining the identifiers through an

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

algorithmic function represents a hybrid of the previous

approaches. This function forms a channel-like relation

between the publisher and subscriber, with items still

individually identified through the algorithmic function.

Assuming that communicating parties are aware of this

relation, the seemingly random identifiers can be associated

with each other as they are being received.

3) Information Dissemination

A fundamental principle of our ICN approach is

information scoping. Scopes can also differentiate functionally

the way information is disseminated among publishers and

subscribers. A dissemination strategy can be assigned to a

scope and the sub-graph under that scope, defining the way the

three core network functions are implemented. Below we

describe the currently implemented dissemination strategies

and the realization of the core functions for each one of them.

Intra-Node strategy. Here, information is disseminated

within the boundaries of a single node providing an

information-centric, inter-process communication mechanism.

The rendezvous function maintains the information graph,

which is visible and accessible only to applications running

within a single node. The topology management and formation

as well as the forwarding network functions are minimal since

they merely dispatch information to the right applications.

Link and Broadcast strategies. These strategies allow a

node to disseminate information to its physical neighbours.

There is no rendezvous for this strategy; instead, subscribers

implicitly subscribe to specific information items, locally to

their network stack. A publisher can publish information to a

specific link (link) or to all links (broadcast) whenever it wants.

If a subscriber exists on the other side of a link, the information

is pushed to it. The topology management and formation

function is again minimal, since it only needs to find the

appropriate network link. The forwarding element stores this

information and forwards data to one or more links.

Intra-Domain strategy. In the intra-domain strategy, all

core network functions are fully realized. One or more nodes

act as rendezvous nodes of the domain and one or more nodes

run the Topology Management and Formation function.

Topology Managers have a centralized view of the network and

create multicast forwarding trees from a set of publishers to a

set of subscribers using a shortest-path algorithm (this creation

is requested by a rendezvous element after a successful match

of publications and subscriptions). The multicast tree is formed

by computing source-based LIPSIN Bloom filters [6] from

individual link identifiers in each forwarding node along the

path. Based on this constant size identifier, the Forwarding

element efficiently forwards each packet through a simple

AND/CMP operation on the Bloom filter identifier, resulting in

efficient multicast support. Flow-dependent state is not

required in the Forwarding element because LIPSIN moves the

state into the header of each packet; only some link

information, which is assigned to each forwarding node during

bootstrapping, is required for the forwarding operation.

Figure 2 depicts a simple example of the intra-domain

dissemination strategy. We assume that subscribers S2, S3 and

S4 have already subscribed to an information item that is later

advertised by publisher 1 (message 1). The advertisement is

forwarded to one of the potentially many rendezvous (RV)

nodes running in the domain. As shown in the Figure, a

rendezvous node manages the information graph that is

accessible by the nodes residing in the same domain. All nodes

in the domain are assigned with at least one LIPSIN identifier

that is used to forward pub/sub requests to a RV node during

each node’s bootstrapping. The RV node, then, matches the

availability of information with the interest for it and publishes

a topology formation request to a Topology Manager (TM)

(message 2). Note that multiple TMs may control the topology

for a single domain running a link-state protocol for having a

centralized view of the domain’s topology. The TM creates a

LIPSIN identifier from P1 to S2, S3 and S4 (the last two

running in the same host) and publishes it to P1 (message 3).

P1’s network stack maps the received forwarding identifier to

the advertised information item and notifies the application

about the existence of subscribers. Finally, it is up to the

application to publish data with this information identifier

(message 4). For instance, in a live TV scenario, P1 can

constantly publish video chunks until no subscribers exist for

the information identifier (at this point a similar message

sequence causes P1’s network stack to notify the application

that no more subscribers exist).

4

3

2

1

FW

FW

FW

FW

FW

P1

FW

FW

FW

FW

FW
S2

S3

RV Node

TM

0000

0001 0002 0003

0004

0005 0006

0007

S4

Topology

Slow Path Fast Path

Fig. 2. Intra-domain information dissemination

In order to address scalability issues because of false

positives when using LIPSIN identifiers, the intra-domain

forwarding can be implemented using multi-stage Bloom filters

[16]. The topology manager utilizes its domain topology

information to concatenate Bloom filters, each of which

encodes only the membership of the edges residing at a given

hop-distance (stages) from the source.

Implicit rendezvous strategy. In this strategy, information

is disseminated across a network domain but no explicit

rendezvous takes place. Instead, subscribers declare their

interest for information to their local network stack. Publishers

publish data by also providing a LIPSIN identifier to the

destination node(s) or by linking an information item to another

one for which rendezvous has already taken place and a

forwarding identifier is available. This way, information is

directly disseminated to the network bypassing the slow-path

operations (i.e. rendezvous and topology management and

formation). Disseminating information without explicitly

requiring rendezvous is very important in many aspects of our

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

network’s operation. For example, all control messages

presented in Figure 2 (i.e. messages 1, 2 and 3), are actually

published as regular information, using special information

identifiers assigned to network entities during bootstrapping.

Nevertheless there is no explicit rendezvous that takes place for

any of these items. Instead, the implicit rendezvous strategy is

used to publish this data. For example, the initial advertisement

is published using a pre-configured LIPSIN identifier that

points to a RV node using an also pre-configured information

identifier. Moreover, the topology manager calculates the

LIPSIN identifier, which is used to publish the respective

notification to P1 (message 3).

Another very important use case for the implicit rendezvous

strategy is when utilizing algorithmic identifiers (see Section

III.2)). As an example, we describe a simple fragmentation

scenario where some static content, advertised as /A/B needs to

be published to a number of subscribers. Rendezvous takes

place once for /A/B and after the slow-path operation is over,

the publisher’s network stack holds a LIPSIN identifier for

/A/B. The publisher application can then publish fragments

using algorithmic identifiers /A/algID/A/B/algIDx and request

from the network stack to utilize the LIPSIN assigned to /A/B.

algIDx is an identifier produced for fragment x, while algID/A/B

is a scope identifier produced from the identifier /A/B.

Respectively, subscribers subscribe to the scope /A/algID/A/B

locally to their network stack. This way a publisher can send

more than one MTU-sized publications to one or more

subscribers without rendezvous being required for every

published item, minimizing the slow-path overhead. Note that

all these items have different identifiers and, thus, can be

cached in the network. The only requirement here is an

agreement between the communicating entities about the

utilized algorithm that produces the respective identifiers.

Inter-domain strategy. This strategy is utilized when

information must be disseminated across multiple network

domains. We are currently working on extending the multi-

stage Bloom filter-based forwarding [16] towards an inter-

domain, policy-friendly forwarding solution. Each domain is

represented as a single stage, with each domain internally

forwarding information according to its internal policies, which

are not visible outside the domain nor represented in the inter-

domain Bloom filter. Topology managers running in different

domains cooperate to produce multi-stage Bloom filters by

disseminate BGP-like inter-domain information to

neighbouring domains. Finally, a distributed rendezvous

solution, like the one presented in [13], can be used to match

information demand and supply. The integration of Blackadder

with the NS3 simulator makes it possible to evaluate such a

strategy in a simulated multi-domain network. Such evaluation

is left out of this paper.

IV. NODE IMPLEMENTATION

Blackadder preserves the functional modularity of the

underlying network architecture. This allows for separately

optimizing functions throughout the lifetime of the prototype.

Separate optimization is not only likely due to the specificity of

each function but also due to the potential different ‘ownership’

of each function in certain deployment situations. Hence, the

functions are separately implemented along clearly defined

modular boundaries laid out by the underlying architectural

core functions. This aids the extensibility and support for

parallel realizations of a network core function (e.g. for

different dissemination strategies). One of the major objectives

of our implementation efforts is to provide a development

framework for implementing and experimenting with ICN

functionality. Thus, platform and deployment flexibility is

crucial so that with no changes in the implemented

functionality, one can experiment with high-performance and

wide-area network deployments, as well as with simulated or

emulated environments.

The implementation of Blackadder is based on the Click

modular router [7] platform. The choice of Click as the

framework to implement our node is ideal for meeting the

objectives described above. Click allows for building and

connecting modules providing a perfect framework for cleanly

separating functionality within the network node. Each module

in Blackadder (implemented as a Click Element) provides a

clean interface to other elements. Its communication elements

support a variety of transport mediums, which is ideal for

experimenting in parallel to IP deployments as well as by

overlaying on top of IP. The notion of Click elements enables

the development of our main functions in a way that eases

portability between kernel and user space as well as across

operating systems. Currently, we run our prototype in Linux,

FreeBSD, Mac OS X, Android, OpenWrt and integrated into

NS3. A user space deployment supports quick prototyping of

functionality as well as experimenting in environments where

throughput is not the primary metric. A kernel space

deployment is more efficient in terms of performance. The

integration with NS3 allows for moving between real

deployments and emulations or even simulations of the same

functionality with virtually no programming overhead.

Application Interface

Network Interface

App1 App2 App3 App4 AppN………………...………………...

Rendezvous

Forwarding

Dispatcher

Topology
Manager

Element X

Communication Elements

Service Model

N
e

tw
o

rk
 N

o
d

e

Fig. 3. Blackadder Node Overview

As shown in Figure 3, the core network functions are

implemented as separate Click Elements. Blackadder exports a

publish/subscribe API, described in [2], to applications as well

as the topology manager and rendezvous elements. Other

auxiliary, in-Click elements access the exported functionality

using the same service model, as depicted in Figure 3.

A. Application Interface Element

The Application Interface Element interfaces our network

stack to applications. Usually, applications interact with the

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

networking software of an operating system via system calls. In

modern Linux kernels, adding system calls requires kernel

recompilation, hindering quick experimentation. For that

reason, we choose Netlink sockets to interact with applications.

Applications can open a Netlink socket and then interact with

the network stack using existing system calls. Additionally,

using Netlink sockets, applications access the same API

regardless of the mode in which Blackadder runs (i.e. user or

kernel space). In kernel space, Netlink sockets receive socket

buffers from applications that are, then, wrapped into Click

packets with no extra memory cost.

B. Dispatcher Element

The Dispatcher Element is at the heart of Blackadder. It

receives publish/subscribe requests from applications and other

Click elements as well as from the network via the Forwarding

element and it provides a proxy function to all publishers and

subscribers. Rendezvous nodes (even the one running in the

same node) are not aware of individual applications. Instead, a

statistically unique label, which identifies a network node, is

(self-) assigned by the Dispatcher.

Whenever the Dispatcher element receives an ‘advertise’ or

‘subscribe’ request from an application or a Click element that

can access the exported service model (as shown in Figure 3), it

creates a publication with the initial request as the payload.

Then, according to the dissemination strategy, it publishes the

data to a rendezvous node (e.g. locally to the rendezvous

element for the intra-node strategy or to one of the domain’s

rendezvous nodes for the intra-domain one). As mentioned in

Section III.3), it publishes the request using the implicit

rendezvous strategy, a pre-configured LIPSIN identifier that

points to a rendezvous node and a well-known information

identifier to which rendezvous nodes are locally subscribed.

Thus, all these publications finally reach the rendezvous

element of the node that is a rendezvous node for this

publish/subscribe request. This publication, just like all

publications, is dispatched to the subscribed entity, i.e. the

rendezvous element running at that node.

The Dispatcher publishes data for an information item if

requested by an application or a Click element in one of the

following cases: if rendezvous has previously taken place for

this information item or if the item is published using the

implicit rendezvous strategy. In the first case, there is already a

LIPSIN identifier mapped to the information item. In the

second case, a user-provided LIPSIN identifier or one assigned

for another information item, for which rendezvous has

previously taken place, will be used.

Finally, network publications that are pushed by the

forwarding element are simply dispatched to applications or

Click elements that previously subscribed to the identifier of

the publication or its father scope. A special case is when

publish/subscribe notifications are published by the topology

management core function (message 4 in Figure 2). These

notifications are published using a pre-configured information

identifier. In their payload they contain the identifier of the

information to which the notification refers. Only the

dispatcher itself is interested in these notifications. Upon

receiving such notifications, it dispatches a notification to start

or stop publishing data for the item referred in the payload to

any applications that have previously advertised the item.

C. Network Core Functions’ Elements

The Rendezvous, Topology Manager and Forwarding

Elements implement the core functions of our ICN. Their

functionality depends on the dissemination strategy of the

information and was described in Section III.3). The

Forwarding Element currently implements the LIPSIN

mechanism [6] for intra-domain information dissemination. For

this, it maintains a forwarding table that maps link identifiers

(LIDs) to Click ports that point to a Click element that can

access the network. Another LID is used to “connect'' the

Forwarding with the Dispatcher element. If such a LID is

included in a LIPSIN identifier, the forwarding element will

push the packet to its Dispatcher element. This way a network

node is instructed to process a network publication rather than

merely forwarding it. The Rendezvous Element implements an

in-memory index where the information graph along with the

set of publishers and subscribers is stored for the intra-node and

intra-domain dissemination strategies. It subscribes locally to a

pre-configured scope under which all publish/subscribe

requests are published. The Topology Manager utilizes the

service model to subscribe to a scope to receive topology

formation requests by rendezvous nodes and publishes the

response to one or more publishers of an information item.

D. Communication elements

We utilize Click elements for communicating with other

network nodes, supporting Ethernet communication as well as

communication over raw IP sockets. The former can be used

when experimenting in a LAN or VPN, while the latter is

appropriate when overlaying on top of IP. Blackadder nodes

may have multiple instantiations of the aforementioned

elements even in a mixed mode where a node may bridge two

or more LANs over an IP network, with individual LANs

running the network stack over Ethernet, enabling complex

deployments where transit links running over the Internet

connect network domains that natively support our ICN.

V. EXPERIMENTAL EVALUATION

A. Testbed Deployments

Blackadder allows for transparently supporting different

operating systems as well as native, overlaid or mixed

deployments in high-speed or wide-area networks. We have

deployed Blackadder in three different testbeds: a high

performance Gigabit Ethernet testbed consisting of 15 identical

hosts
1
, where network nodes run in the Linux kernel natively

on top of the network, in a PlanetLab slice consisting of 106

slivers, where nodes run in user-space on top of IP, and in an

international testbed that interconnects 10 major universities

and institutions worldwide (~40 machines in total). All sites are

connected via OpenVPN, which exports a virtual Ethernet

device to all machines in the testbed. We are working on

1
 More information about the testbed can be found at

http://nitlab.inf.uth.gr/

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

creating a multi-domain testbed where islands of native ICN

networks each one running its own rendezvous and topology

management nodes will be interconnected via the Internet.

B. Evaluation

An ICN network node needs to process and forward

information at line-speed without requiring much state to do so.

Moreover, slow-path functions must scale as the number of

nodes and content increases; i.e. if the required state is easily

shareable among nodes undertaking the same network function

and if the processing overhead for doing so is low. The focus of

the evaluation is to assess the performance of various aspects in

our ICN as this is realized by Blackadder. We measure the rate

at which Blackadder processes and dispatches publications to

interested applications, we show the efficiency of the

forwarding mechanism in an intra-domain deployment and we

provide indications about the scalability of the slow-path

functionality in a much larger deployment. Finally, we measure

the performance of a basic socket emulation implementation on

top of Blackadder that could support legacy applications

requiring end-host based communication. As mentioned in

Section III, ns-3 emulation based evaluations, e.g. for the inter-

domain strategy, are left out of this paper for space reasons.

1) Intra-node performance

We test the implementation of our intra-node dissemination

strategy when dealing with a heavy load of publications,

emulating an IPC-like communication scenario. We use a

single publisher that advertises an information item under a

root scope. We measure the application throughput for a set of

subscribers, ranging from 1 to 10, subscribing to the advertised

information. After rendezvous takes place (this happens only

once, minimizing the overhead posed by the slow path

functions), the publisher publishes 100,000 items using the

same information identifier. We repeat the experiment for

different payload sizes. The upper limit of the payload size is

bound by the Netlink socket buffer size (~100KBs).

Fig. 4. Intra-node performance

In Figure 4, we observe that for large payloads and few

subscribers the average throughput is more than 1 GB/sec. The

performance degrades when more subscribers exist due to

multiple publication copies. For 10 subscribers, the throughput

is between 40-100 MB/sec. We point out that for the current

node-local dissemination strategy, the Dispatcher element

creates the necessary number of copies for each publication and

then dispatches them to interested applications. This local

memory management could be replaced with different

strategies (e.g. a blackboard) that eliminate unnecessary copies.

Overall the measured performance is more than acceptable

since it is close to the TCP/IP based IPC which has been

heavily optimized over the past decades.

2) Fast path performance

We now extend towards an intra-domain strategy with an

ICN topology of 15 nodes connected in a chain, in order to

measure the efficiency of the forwarding function. All

published items have an MTU size of 1500 bytes, including the

Ethernet header. The first node in the chain runs the RV node

and TM. The second node is the publisher that behaves as in

the previous experiments. The rest of the nodes run 1, 3, and 6

subscribers (depicted as (1), (3) and (6), respectively).

Fig. 5. Forwarding Efficiency

In Figure 5, we observe that when a single subscriber runs

in each node, all subscribers receive data at line speed even

when 13 subscribers exist. In this case, each forwarding node

forwards all publications to its next hop and pushes the data to

the local subscriber. Only for 6 subscribers per node, the

performance degrades for a chain larger than 3 nodes. For all

cases, the packet loss is less than 5%. Note that the only direct

comparison to a TCP/IP-based performance is that of 1

subscriber in one node since all other transfers exploit the

multicast support of the LIPSIN mechanism, while a TCP/IP

solution would result in halving the effective throughput for

each point-to-point transfer.

The presented performance is exceptional. Blackadder can

forward information at Gigabit speed with minimal packet

losses while the required state in each forwarding node is

minimal; i.e. only a 256 bit forwarding identifier, which is

known by the topology managers, per provided network link.

The observed performance degradation when running 6

subscribers per node is natural and expected since 6 copies of

each publication are created and dispatched as the original

publication is forwarded to the next hop. Only a blackboard-

based local dissemination strategy could minimize this

overhead, as mentioned in the previous sub-section.

3) Slow path performance

We now turn our attention to the sequence of rendezvous as

well as topology management and formation that needs to take

place before executing the fast path forwarding. In the previous

experiments, these functions’ overhead was minimized because

a single information item was used to publish data, effectively

creating an information channel.

We first focus on the rendezvous process by utilizing the

intra-node strategy, which requires no explicit topology

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

formation. A single publisher creates a scope and then

advertises 100,000 information items under that scope. Then,

subscribers are synchronized to start subscribing to items in the

advertised range. Each subscriber iterates 500 times and each

time it subscribes to an item using a randomly generated

identifier, waits until it has received the data and then

subscribes to another one. For each subscription, rendezvous

takes place and the publisher is notified to publish the payload

(the information here is a minimum Ethernet frame in order to

reduce the forwarding overhead) that corresponds to this

advertisement. We then measure the time between each

subscription and the receipt of the data at the subscriber. We

call this the response time. We underline that the granularity of

resolved information items will usually be on a per-content

(using algorithmic identifiers) or per-channel basis (like in the

previous sub-section), therefore the presented experiments

constitute the absolute worst case where rendezvous and

topology formation must take place each time a few bytes must

be transferred. Figure 6 shows the response time when up to

500 subscribers subscribe simultaneously to information items

in the advertised range. In the node-local case, the average

response time for 200 subscribers is 20 ms, increasing to 54 ms

for 500 subscribers.

Fig. 6. Slow Path Performance: Node-Local, Domain-Local in LAN,

Domain-Local in PlanetLab

To add the topology formation overhead in the response

time, we extend the experiment using the intra-domain strategy

in a star topology of 15 nodes in our Gigabit LAN testbed. The

star topology provides a constant forwarding delay for all

subscribers since the rendezvous node and TM run in the

central node and the publisher runs in one of the satellite nodes.

In this strategy, the entire slow path, from rendezvous to the

topology management and formation, is involved. In Figure 6,

we observe that the response time increases with the number of

subscribers (up to 500 per node). Compared to the intra-node

experiment, the response time is higher due to the network

delays. Another factor is that each of the 14 nodes runs the

number of subscribers depicted in the x-axis, resulting in a

response time of 388 ms for a total of 7000 subscribers.

As an example of an overlay deployment, we present the

slow-path performance results in a PlanetLab deployment. For

this, we create a slice that consists of 106 slivers forming a

(randomly generated) graph with 73 edge nodes. The

rendezvous node and TM run in a dedicated machine together

with the publisher. The results for this experiment are also

included in Figure 6. For 200 subscribers per node (totalling

14,600 subscribers), the average response time is 373 ms,

which increases to 680 ms for 500 subscribers per node (i.e.

36,500 subscribers). Note that 500 subscribers running in the

same node is not a realistic application example. Nevertheless,

this is the only way to scale up our evaluation to realistic

conditions in terms of processing requirements.

The presented results are very promising. From the intra-

node scenario we see that the processing overhead for

performing rendezvous scales well as the number of

publish/subscribe requests increases. For the intra-domain case

where both rendezvous and topology formation take place we

see that that a single RV and TM running in the same machine

can cope with thousands of simultaneous requests. Although

the response times, which include propagation delays, increase,

we argue that the required state for performing these functions

can be easily shared among multiple machines in a load-

balancing or cooperative mode, achieving scalability within a

single domain. For instance, multiple TMs implementing a

link-state protocol can share the network load for topology

formation. Respectively, distributed rendezvous solutions, such

as in [13], can efficiently cope with the required load. Finally,

given that the presented communication scenarios are extreme

cases where measurements were taken while rendezvous and

topology formation take place for each packet, we expect that

slow-path functionality will be required on a much coarser

granularity (per-content or per-(large) chunk of content).

4) Legacy Application Support

An open question for all ICN architectures is whether they

can support legacy applications as well as what is the price to

pay for supporting such applications in terms of performance.

Here we evaluate a simple application that emulates a bi-

directional, unreliable stream of packets, like the one provided

by the UDP protocol. For doing so, the server subscribes to a

well-known scope (e.g. /X). A client then advertises an

information item with a statistically unique label under the

well-known scope (e.g. /X/Y). As a result rendezvous takes

place and the topology formation function creates a LIPSIN

identifier that is published to the client, which, in turn,

algorithmically calculates a new information label (e.g. /X/Z),

issues a subscription to the respective information item and

publishes the label (as data) to the server, which advertises this

item to the rendezvous node. As a result, RV takes place and,

finally, the server acquires a forwarding identifier to the client.

On top of these unidirectional channels one can emulate the

basic socket operations; a sendmsg call from the client would

result in publishing data to for /X/Y, while a recvmsg call would

wait for data for the item /X/Z. The opposite identifiers would

be used by the server’s socket operations.

For this experiment we implemented a simple file transfer

protocol and we measure the application throughput when

multiple subscribers (clients) receive different files from the

publisher (server). Although the ICN network supports

multicasting using LIPSIN identifiers [6], in this example we

intentionally build bi-directional pipes to support legacy

functionality. In Figure 7 we show the total and average

application throughput that was measured when running a

simple file transfer protocol on top of Blackadder and on top of

UDP, for an increasing number of clients (shown in the x axis)

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

running in different machines. We see that the total application

throughput for both scenarios is bounded by the network’s

available bandwidth. The average application throughput

decreases as the number of clients running in different

machines increases because of the unicast nature of the

communication.

Fig. 7. Legacy Application Throughput

C. Comparison With CCNx

CCN separates its main functions into routing (building

forwarding information tables in each forwarding element),

forwarding (sending interest and data packets to producers and

consumers) and caching (storing interest and data packets for

improving delivery). Routing is currently neither fully specified

nor implemented. The only effort towards populating FIB

entries is OSPFN [17], an adaptation of OSPF using names

instead of connectivity information. However this mechanism

is not integrated with CCNx. Forwarding and caching consult

the local FIB and PIT to forward data as well as interest

packets for a given name, while the content store holds any

previously transferred packets.

Contrary to our approach, CCN supports only immutable

data; i.e. any new content carries a new name. While this is

reasonable for content delivery, it poses a burden on

conversational or sensor applications. Finally, CCN requires

the producer to sign content on a per-content or per-packet

basis, whereas data verification by forwarding nodes and

consumers is optional. This ties the feasibility of the CCN node

design to cryptographic advances. While mandatory signing is

reasonable for videos or news, it can pose a significant

overhead on end systems in sensor networks or mobile device

based content scenarios. Packet signing is not always necessary

when implementing simple conversational services on top of

CCN (e.g. for emulating a socket interface as the one presented

in the previous section). In Blackadder a similar approach [18]

is only optional and can be implemented on top of the node as a

separate layer. To make the comparison fairer, in our

experiments we try to avoid the signing overhead whenever

that is possible. Since CCNx only implements forwarding and

caching (with FIB entries being manually configured), we

focus our comparison on the information processing overhead

and fast path performance. All applications are written using

the C library provided in the latest CCNx distribution (v0.7.0).

Overall, our results show that the overhead posed by the

interest processing in CCN as well as the support for mutable

semantics and the flexibility of using stateless forwarding

mechanisms in Blackadder result in a performance advantage.

To evaluate the information processing in an IPC scenario,

we emulate an IPC-like pipeline between two applications. For

CCNx we implement an intra-node CCNx application that

expresses 10,000 interests in content, each piece being

individually labelled with its own name (e.g.

/content/segment_no).

Fig. 8. Intra-Node Performance Comparison

We place the individual content pieces into the local CCNx

cache to avoid the signing overhead when played out by the

application. For our prototype, we run the same application as

for the experiment in Section V.B.1). Figure 8 shows the

results for data sizes of 2 and 100 KBs. Even though the CCNx

prototype plays out data from the content store, the

performance is significantly lower compared to Blackadder.

Fig. 9. Throughput Comparison: Mutable Semantics

For our second experiment, we create a chain of 14 nodes

with the first one being the producer and the rest being the

consumers. At each node we run up to 6 such consumers with

each node being connected to our 1Gbps testbed. We

implement a window-based mechanism for sending interests to

the network stack. Also here, we experimented with a cached

and non-cached case in order to single out the signing

overhead. For our node design, we utilize the immutable as

well as the mutable semantics; i.e. the first scenario incurs

rendezvous overhead while the second is relevant when

mutability is handled by the application. For a fairer

comparison with the window mechanism used in the CCNx

case, we use the same window-based mechanism in our

immutable case. Figure 9 shows our measurements when

comparing Blackadder in mutable mode with CCNx, each with

1 and 6 subscribers. The graph omits the non-cached case since

the performance never exceeded 170kB/s. At one subscriber

per node in the chain, Blackadder sustains line speed

throughout the entire chain, while degrading down to 80MB/s

with 6 subscribers. We can confirm the CCNx performance

with one consumer being directly connected (CCNx-1 point for

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

1 node) with the results in [5] for a 100Mbit/s test bed. The

throughput reported is similar to the one we observe in our

experiments, namely ~10.4MB/s. However, the CCNx-1

performance continues to decrease along the chain of nodes,

down to ~0.4MB/s for 13 nodes, mainly because a separate

interest must be sent and processed by all network nodes in the

path for every packet. This problem has been also identified in

[19], where persistent interests are proposed. Overall, we see

that our domain-local forwarding mechanism outperforms the

PIB/FIT-based CCNx mechanism.

Fig. 10. Throughput Comparison: Immutable Semantics

Figure 10 compares the CCNx performance (in cached

mode) to our prototype with immutable semantics. Although

we see similar performance, for Blackadder the slow path

functions are invoked for every single packet, while we expect

rendezvous to take place on a per-content or per-chunk of data

in realistic application scenarios.

We do not include a performance comparison for a

conversational application, as the one presented in Section

V.B.4) for space reasons. However, the expected bottleneck for

CCNx is obvious from our previous experiments.

Implementing such an application on top of CCNx would

require signing all packets the moment they are created. In

many cases (e.g. voice or telent/ssh over CCNx) it is not

possible to pre-sign packets or content as a whole (e.g. by using

Merkle hash trees). As a result the throughput would be limited

by the signing rate, which, as mentioned above, was measured

about 170KB/sec in our setup.

VI. CONCLUSION

Increasing interest in ICN creates the need for a flexible and

extensible development platform to allow research in the area

to progress. We addressed this need, and made the following

contributions in this paper. We presented Blackadder, an open-

source ICN node implementation that allows for continuous

experimentation through its modular design than can easily

accommodate future developments. It runs in parallel with

TCP/IP or on top of it. It is also integrated with the NS3

simulator, easing the evaluation of our ICN in larger, simulated

network topologies. We described how information is

disseminated in various communication scenarios and how our

core network functions are implemented within Blackadder.

We also showed that this flexibility does not come at the price

of performance. Our experimental evaluation showed very

promising results for all three core network functions. Finally,

we presented a performance comparison with CCNx and

showed that our approach significantly outperforms CCNx.

ACKNOWLEDGEMENTS

The work reported in this paper was supported by the FP7

ICT project “Publish Subscribe Internet Technology”

(PURSUIT), under contract ICT-2010-257217. We thank

George Xylomenos for his helpful feedback to this article.

REFERENCES

[1] D. Trossen, M. Sarela, K. Sollins, “Arguments for an

Information-Centric Internetworking Architecture”, ACM

Computer Communication Review, April 2010.

[2] D. Trossen, G. Parisis, “Designing and realizing an information-

centric internet”, IEEE Communications Magazine 50(7): 60-67

(2012).

[3] G. Xylomenos, et al., Caching and mobility support in a publish-

subscribe internet architecture. IEEE Communications Magazine

50(7): 52-58 (2012).

[4] J. Scott, J. Crowcroft, P. Hui and C. Diot, “Haggle: a networking

architecture designed around mobile users”, Proc. of IFIP

WONS 2006.

[5] V. Jacobson, et al., “Networking named content”,

Communications of the ACM, Vol. 55, No. 1, 2012.

[6] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, P.

Nikander, “LIPSIN: line speed publish/subscribe inter-

networking”, In Proc of. SIGCOMM 2009.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, F. Kaashoek, “The

Click modular router”, ACM Trans. Comput. Syst. 18, 3, 263-

297.

[8] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S.

Shenker, Ion Stoica, “A data-oriented (and beyond) network

architecture”, in Proc. of SIGCOMM 2007.

[9] L. Popa, A. Ghodsi, I. Stoica, “HTTP as the narrow waist of the

future Internet”, in Proc. of Hotnets 2010.

[10] T. Biermann, C. Dannewitz, H. Karl, "FIT: Future Internet

Toolbox", in Proc. of TRIDENTCOM, 2010.

[11] M. Caesar et al., “ROFL: routing on flat labels”, in Proc of

SIGCOMM 2006.

[12] “Blackadder Node Implementation”, https://github.com/fp7-

pursuit/blackadder, accessed December 9. 2012.

[13] K. Katsaros et al., “On inter-domain name resolution for

information-centric networks”, Proc. of IFIP Networking 2012.

[14] A. Carzaniga, D. S. Rosenblum, A. L. Wolf, "Design and

evaluation of a wide-area event notification service," ACM

Transactions on Computer Systems, vol. 19, no. 3, 2001.

[15] A. Rowstron, A. Kermarrec, M. Castro, P. Druschel, “SCRIBE:

The Design of a Large-Scale Event Notification Infrastructure”,

Proc. Of NGC, 2001.

[16] J. Tapolcai, et al., “Stateless Multi-Stage Dissemination of

Information: Source Routing Revisited”, in Proc. of Globecom

2012.

[17] “NDN-Routing/OSPFN2.0”,https://github.com/NDN-

Routing/OSPFN2.0, accessed January 11. 2012.

[18] Dmitrij Lagutin, "Securing the Internet with digital signatures,"

Doctoral dissertation, Aalto University, Finland, Dec 2010.

[19] C. Tsilopoulos, G. Xylomenos, “Supporting Diverse Traffic

Types in Information Centric Networks”, in Proc. of SIGCOMM

workshop on ICN, 2011.

9

