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Abstract—Information-centric networking (ICN) has been 

touted as an alternative to the current Internet architecture by 

several research groups. So far little has been done towards the 

implementation of ICN network stacks and their evaluation in 

realistic ICN deployments. In this paper we describe Blackadder, 

a sophisticated prototype of our ICN architecture, and we 

present an extended experimental evaluation in high-

performance and wide-area testbeds. Our evaluation shows the 

feasibility of the design and the performance of our prototype in 

test bed setups. In addition, we contrast our implementation 

against CCNx. 

Index Terms—Information-centric networking, Node 

Implementation, Click router, Performance evaluation 

I. INTRODUCTION 

Information-Centric Networking (ICN) is increasingly 

attracting attention in the networking community. Several 

technological solutions within a range of architectures have 

been proposed, such as in [1][2][5][8], with subtle differences 

but also commonalities that stretch across the approaches. 

However, so far, little has been shown about the feasibility 

and performance of the ICN paradigm. In most cases 

simulation results or “toy” deployments of simplistic 

implementations are presented to provide indications about the 

feasibility and performance of the proposed architectures. We 

argue that the ICN research field is getting more and more 

mature; therefore we identify the necessity to design and 

implement real network stacks that can run in parallel with 

existing host-centric communication protocols, rather than 

showcasing ICN characteristics with overlay implementations 

and deployments running as user-space processes. We strongly 

believe that along with the evolution of ICN technological 

solutions, there must exist implementations that can support 

real deployments and experimentation. 

In this paper we present Blackadder, a network node 

implementation of an ICN network stack that leaves nothing 

untouched with respect to the IP legacy. Our architectural 

starting point is the one presented in [1] and elaborated in [2] 

and [3]. Based on this architectural starting point, our 

contribution is a network node implementation for an ICN 

internetworking architecture that could run in parallel with 

TCP/IP, support backward compatibility for legacy 

applications and be deployed in large networks. We show the 

feasibility of our approach in a high-speed network as well as 

in PlanetLab. Specifically, our evaluation shows our prototype 

performing in line-speed in a Gigabit Ethernet testbed while 

providing acceptable performance in a PlanetLab setup of ~100 

nodes with 36.500 subscribers.  

We contribute an open framework for further 

experimentation in real deployments as well as in simulated 

environments. We have released Blackadder under the GPL2 

license [12] and built it on top of the Click router [7]. 

Blackadder supports user and kernel space deployments using 

the same source code. It is ported to the Android OS and 

OpenWrt and is integrated with the NS3 simulator. Finally, we 

contrast our work against a similarly ambitious implementation 

effort, that of the Content-Centric Networking (CCN) [5]. 

The work presented in [1][2] argues and lays the ground for 

an information-centric architecture in which information is the 

primary principle. Individual information items are identified 

through labels, which can in turn be organized through scopes. 

This allows for building directed-acyclic graphs of information, 

manipulated via a publish/subscribe service model. This service 

model is realized through three core network functions. The 

first one, rendezvous, matches supply of information to demand 

for it. This process results in some form of information that is 

used for binding the information delivery to a network location 

by the second function, topology management and formation, 

to determine a suitable delivery relationship for the information 

transfer. This transfer is finally executed by the forwarding 

function. With this separation of functions, the traditional 

operations of routing and forwarding are decoupled, enabling 

to trade off options in state management between the various 

network components. For example, Blackadder allows for 

removing flow-dependent state from forwarding nodes in favor 

of route computation during topology formation, inserting the 

forwarding state into the packet header. It also allows for 

scoping the realization of these core functions through the 

notion of dissemination strategies, embedded into the 

information structures over which the service model operates. 

In Section II we present research related to our work. 

Section III describes how information is managed and 

disseminated in our ICN approach for different communication 

scenarios. In Section IV we elaborate on the implementation of 

Blackadder and in Section V we present an experimental 
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evaluation of our network node, also in comparison with 

CCNx. Section VI concludes our paper.  

II. RELATED WORK 

In the area of content-centric architectures, Haggle [4] and 

CCN [5] stand out. CCN extends the IP node design with a 

forwarding information database for a hierarchical naming 

system (based on the DNS). It also introduces a forwarding 

function that can be configured based on some strategy for 

selecting particular interfaces for given named data. However, 

the function of routing, i.e. the population of the forwarding 

table based on availability of named data in different domains, 

is currently undefined. Only a broadcast strategy has been 

presented so far which is not suitable for most communication 

scenarios. Haggle provides manipulations of a linked 

information graph based on publish/subscribe operations. The 

Haggle component wheel logically separates core functions for 

information dissemination in a plug-and-play manner. Contrary 

to our approach, Haggle does not provide a layering structure 

but resides between the application and the network in a rather 

monolithic form. The Network of Information (NetInf) [10] 

operates as an overlay, using application-level event and 

resolution services. It provides higher-level services to 

application, which are built on top of IP or even HTTP. Our 

approach, on the other hand, envisions a parallel network stack 

that operates independently of IP or on top of it only when this 

is unavoidable. Other information-centric approaches like in [8] 

and [11] utilize flat labels to route information in the network. 

However, no implementations were ever publicly available for 

any of them. The authors in [9] argue for HTTP and the DNS 

as the effective waist of the future Internet. This lifts the 

current IP node design onto the level of efforts like CCN, 

providing manipulations of hierarchically named data. 

Finally, vast research has been done in the field of 

publish/subscribe notification systems, such as [14] and [15]. 

However, all of these systems were designed to run as overlays 

on top of the existing IP network stack contrary to our 

implementation and the respective network architecture, which 

can run natively in the network and in parallel with the IP. For 

that reason we will not elaborate more on systems like these, 

nor will include them in our experimental evaluation. 

III. INFORMATION MANAGEMENT AND DISSEMINATION 

Information lies at the core of our network architecture. In 

this section, we describe major aspects related to the 

information-centric nature of our node implementation. We 

discuss how information is managed by the rendezvous 

network function and what information semantics are 

supported by our architecture. Finally, we elaborate on the 

currently implemented dissemination strategies; i.e. realizations 

of the core network functions that provide ways for 

disseminating information. 

1) Information Management 

Information management is a very important task that is 

undertaken by the rendezvous network function, as mentioned 

in Section I. Depending on the used dissemination strategy, the 

rendezvous function can be implemented: locally to a network 

node to manage information visible to a single node, 

centralized in a network node for small domains, or in a 

distributed, potentially hierarchical, fashion for managing large 

information spaces across one or more network domains [13]. 

Information items and scopes are identified using statistically 

unique labels, 8 bytes long. These labels carry no semantics. 

Any meaning can be assigned by the entities that produce them 

as well as by other network entities that utilize the particular 

information structure for their purposes. Although information 

can be identified in the context of a scope using a fixed size 

label, the absolute path from a root of the graph (more than one 

such path may exist) must be used when accessing the service 

model exported by Blackadder. 

0000

0000

0001

1111 2222

3333

000A

0000

 

Fig. 1.  An example Information Structure 

Figure 1 depicts an information graph managed by the 

rendezvous function. Note that labels in the figure are shorter 

than in the actual implementation and are shown with their 

hexadecimal form in order to maintain text’s readability. An 

information item can be published under multiple scopes. 

Scopes and information items are identified using one or more 

full identifiers starting from a root scope. With that, the item 

with label 000A can be identified using the identifiers: 

/0000/2222/3333/000A, /0001/3333/000A and /0001/000A 

(slashes are added to improve readability). A publisher or 

subscriber can use any of these identifiers, depending on its 

(potentially) partial knowledge of the information structure, to 

advertise or subscribe to this information item. Global 

uniqueness of scope and information labels is not enforced. For 

example, the information item with identifier /0000/1111/0000 

has the same label as the root scope /0000 and scope 

/0000/0000. As long as the full identifiers of a scope or 

information item are unique, everything is legitimate. 

2) Information Semantics 

Blackadder is agnostic to any information semantics. 

Immutable information items can be identified with a 

statistically unique label under a given scope. As an example, 

we could assume each version of a document being labelled 

individually, therefore being individually identifiable within 

the network. For the application, there needs to be an additional 

information exchange that disseminates the version identifiers; 

this is left to the application itself. Mutable information items 

represent information that can change through time. Hence, the 

application needs to take care of any issues arising from this 

mutability. Mutable items are important when realizing, e.g. 

live video delivery, in which video chunks are published using 

the same identifier representing a unidirectional multicast 

channel. Finally, determining the identifiers through an 
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algorithmic function represents a hybrid of the previous 

approaches. This function forms a channel-like relation 

between the publisher and subscriber, with items still 

individually identified through the algorithmic function. 

Assuming that communicating parties are aware of this 

relation, the seemingly random identifiers can be associated 

with each other as they are being received. 

3) Information Dissemination 

A fundamental principle of our ICN approach is 

information scoping. Scopes can also differentiate functionally 

the way information is disseminated among publishers and 

subscribers. A dissemination strategy can be assigned to a 

scope and the sub-graph under that scope, defining the way the 

three core network functions are implemented. Below we 

describe the currently implemented dissemination strategies 

and the realization of the core functions for each one of them. 

Intra-Node strategy. Here, information is disseminated 

within the boundaries of a single node providing an 

information-centric, inter-process communication mechanism. 

The rendezvous function maintains the information graph, 

which is visible and accessible only to applications running 

within a single node. The topology management and formation 

as well as the forwarding network functions are minimal since 

they merely dispatch information to the right applications. 

Link and Broadcast strategies. These strategies allow a 

node to disseminate information to its physical neighbours. 

There is no rendezvous for this strategy; instead, subscribers 

implicitly subscribe to specific information items, locally to 

their network stack. A publisher can publish information to a 

specific link (link) or to all links (broadcast) whenever it wants. 

If a subscriber exists on the other side of a link, the information 

is pushed to it. The topology management and formation 

function is again minimal, since it only needs to find the 

appropriate network link. The forwarding element stores this 

information and forwards data to one or more links. 

Intra-Domain strategy. In the intra-domain strategy, all 

core network functions are fully realized. One or more nodes 

act as rendezvous nodes of the domain and one or more nodes 

run the Topology Management and Formation function. 

Topology Managers have a centralized view of the network and 

create multicast forwarding trees from a set of publishers to a 

set of subscribers using a shortest-path algorithm (this creation 

is requested by a rendezvous element after a successful match 

of publications and subscriptions). The multicast tree is formed 

by computing source-based LIPSIN Bloom filters [6] from 

individual link identifiers in each forwarding node along the 

path. Based on this constant size identifier, the Forwarding 

element efficiently forwards each packet through a simple 

AND/CMP operation on the Bloom filter identifier, resulting in 

efficient multicast support. Flow-dependent state is not 

required in the Forwarding element because LIPSIN moves the 

state into the header of each packet; only some link 

information, which is assigned to each forwarding node during 

bootstrapping, is required for the forwarding operation.  

Figure 2 depicts a simple example of the intra-domain 

dissemination strategy. We assume that subscribers S2, S3 and 

S4 have already subscribed to an information item that is later 

advertised by publisher 1 (message 1). The advertisement is 

forwarded to one of the potentially many rendezvous (RV) 

nodes running in the domain. As shown in the Figure, a 

rendezvous node manages the information graph that is 

accessible by the nodes residing in the same domain. All nodes 

in the domain are assigned with at least one LIPSIN identifier 

that is used to forward pub/sub requests to a RV node during 

each node’s bootstrapping. The RV node, then, matches the 

availability of information with the interest for it and publishes 

a topology formation request to a Topology Manager (TM) 

(message 2). Note that multiple TMs may control the topology 

for a single domain running a link-state protocol for having a 

centralized view of the domain’s topology. The TM creates a 

LIPSIN identifier from P1 to S2, S3 and S4 (the last two 

running in the same host) and publishes it to P1 (message 3). 

P1’s network stack maps the received forwarding identifier to 

the advertised information item and notifies the application 

about the existence of subscribers. Finally, it is up to the 

application to publish data with this information identifier 

(message 4). For instance, in a live TV scenario, P1 can 

constantly publish video chunks until no subscribers exist for 

the information identifier (at this point a similar message 

sequence causes P1’s network stack to notify the application 

that no more subscribers exist). 
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Fig. 2.  Intra-domain information dissemination 

In order to address scalability issues because of false 

positives when using LIPSIN identifiers, the intra-domain 

forwarding can be implemented using multi-stage Bloom filters 

[16]. The topology manager utilizes its domain topology 

information to concatenate Bloom filters, each of which 

encodes only the membership of the edges residing at a given 

hop-distance (stages) from the source.  

Implicit rendezvous strategy. In this strategy, information 

is disseminated across a network domain but no explicit 

rendezvous takes place. Instead, subscribers declare their 

interest for information to their local network stack. Publishers 

publish data by also providing a LIPSIN identifier to the 

destination node(s) or by linking an information item to another 

one for which rendezvous has already taken place and a 

forwarding identifier is available. This way, information is 

directly disseminated to the network bypassing the slow-path 

operations (i.e. rendezvous and topology management and 

formation). Disseminating information without explicitly 

requiring rendezvous is very important in many aspects of our 
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network’s operation. For example, all control messages 

presented in Figure 2 (i.e. messages 1, 2 and 3), are actually 

published as regular information, using special information 

identifiers assigned to network entities during bootstrapping. 

Nevertheless there is no explicit rendezvous that takes place for 

any of these items. Instead, the implicit rendezvous strategy is 

used to publish this data. For example, the initial advertisement 

is published using a pre-configured LIPSIN identifier that 

points to a RV node using an also pre-configured information 

identifier. Moreover, the topology manager calculates the 

LIPSIN identifier, which is used to publish the respective 

notification to P1 (message 3). 

Another very important use case for the implicit rendezvous 

strategy is when utilizing algorithmic identifiers (see Section 

III.2)). As an example, we describe a simple fragmentation 

scenario where some static content, advertised as /A/B needs to 

be published to a number of subscribers.  Rendezvous takes 

place once for /A/B and after the slow-path operation is over, 

the publisher’s network stack holds a LIPSIN identifier for 

/A/B. The publisher application can then publish fragments 

using algorithmic identifiers /A/algID/A/B/algIDx and request 

from the network stack to utilize the LIPSIN assigned to /A/B. 

algIDx is an identifier produced for fragment x, while algID/A/B 

is a scope identifier produced from the identifier /A/B. 

Respectively, subscribers subscribe to the scope /A/algID/A/B 

locally to their network stack. This way a publisher can send 

more than one MTU-sized publications to one or more 

subscribers without rendezvous being required for every 

published item, minimizing the slow-path overhead. Note that 

all these items have different identifiers and, thus, can be 

cached in the network. The only requirement here is an 

agreement between the communicating entities about the 

utilized algorithm that produces the respective identifiers. 

Inter-domain strategy. This strategy is utilized when 

information must be disseminated across multiple network 

domains. We are currently working on extending the multi-

stage Bloom filter-based forwarding [16] towards an inter-

domain, policy-friendly forwarding solution. Each domain is 

represented as a single stage, with each domain internally 

forwarding information according to its internal policies, which 

are not visible outside the domain nor represented in the inter-

domain Bloom filter. Topology managers running in different 

domains cooperate to produce multi-stage Bloom filters by 

disseminate BGP-like inter-domain information to 

neighbouring domains. Finally, a distributed rendezvous 

solution, like the one presented in [13], can be used to match 

information demand and supply. The integration of Blackadder 

with the NS3 simulator makes it possible to evaluate such a 

strategy in a simulated multi-domain network. Such evaluation 

is left out of this paper. 

IV. NODE IMPLEMENTATION 

Blackadder preserves the functional modularity of the 

underlying network architecture. This allows for separately 

optimizing functions throughout the lifetime of the prototype. 

Separate optimization is not only likely due to the specificity of 

each function but also due to the potential different ‘ownership’ 

of each function in certain deployment situations. Hence, the 

functions are separately implemented along clearly defined 

modular boundaries laid out by the underlying architectural 

core functions. This aids the extensibility and support for 

parallel realizations of a network core function (e.g. for 

different dissemination strategies). One of the major objectives 

of our implementation efforts is to provide a development 

framework for implementing and experimenting with ICN 

functionality. Thus, platform and deployment flexibility is 

crucial so that with no changes in the implemented 

functionality, one can experiment with high-performance and 

wide-area network deployments, as well as with simulated or 

emulated environments. 

The implementation of Blackadder is based on the Click 

modular router [7] platform. The choice of Click as the 

framework to implement our node is ideal for meeting the 

objectives described above. Click allows for building and 

connecting modules providing a perfect framework for cleanly 

separating functionality within the network node. Each module 

in Blackadder (implemented as a Click Element) provides a 

clean interface to other elements. Its communication elements 

support a variety of transport mediums, which is ideal for 

experimenting in parallel to IP deployments as well as by 

overlaying on top of IP. The notion of Click elements enables 

the development of our main functions in a way that eases 

portability between kernel and user space as well as across 

operating systems. Currently, we run our prototype in Linux, 

FreeBSD, Mac OS X, Android, OpenWrt and integrated into 

NS3. A user space deployment supports quick prototyping of 

functionality as well as experimenting in environments where 

throughput is not the primary metric. A kernel space 

deployment is more efficient in terms of performance. The 

integration with NS3 allows for moving between real 

deployments and emulations or even simulations of the same 

functionality with virtually no programming overhead. 

Application Interface

Network Interface

App1 App2 App3 App4 AppN………………...………………...

Rendezvous
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Topology 
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Communication Elements
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Fig. 3.  Blackadder Node Overview 

As shown in Figure 3, the core network functions are 

implemented as separate Click Elements. Blackadder exports a 

publish/subscribe API, described in [2], to applications as well 

as the topology manager and rendezvous elements. Other 

auxiliary, in-Click elements access the exported functionality 

using the same service model, as depicted in Figure 3. 

A. Application Interface Element 

The Application Interface Element interfaces our network 

stack to applications. Usually, applications interact with the 
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networking software of an operating system via system calls. In 

modern Linux kernels, adding system calls requires kernel 

recompilation, hindering quick experimentation. For that 

reason, we choose Netlink sockets to interact with applications. 

Applications can open a Netlink socket and then interact with 

the network stack using existing system calls. Additionally, 

using Netlink sockets, applications access the same API 

regardless of the mode in which Blackadder runs (i.e. user or 

kernel space). In kernel space, Netlink sockets receive socket 

buffers from applications that are, then, wrapped into Click 

packets with no extra memory cost. 

B. Dispatcher Element 

The Dispatcher Element is at the heart of Blackadder. It 

receives publish/subscribe requests from applications and other 

Click elements as well as from the network via the Forwarding 

element and it provides a proxy function to all publishers and 

subscribers. Rendezvous nodes (even the one running in the 

same node) are not aware of individual applications. Instead, a 

statistically unique label, which identifies a network node, is 

(self-) assigned by the Dispatcher. 

Whenever the Dispatcher element receives an ‘advertise’ or 

‘subscribe’ request from an application or a Click element that 

can access the exported service model (as shown in Figure 3), it 

creates a publication with the initial request as the payload. 

Then, according to the dissemination strategy, it publishes the 

data to a rendezvous node (e.g. locally to the rendezvous 

element for the intra-node strategy or to one of the domain’s 

rendezvous nodes for the intra-domain one). As mentioned in 

Section III.3), it publishes the request using the implicit 

rendezvous strategy, a pre-configured LIPSIN identifier that 

points to a rendezvous node and a well-known information 

identifier to which rendezvous nodes are locally subscribed. 

Thus, all these publications finally reach the rendezvous 

element of the node that is a rendezvous node for this 

publish/subscribe request. This publication, just like all 

publications, is dispatched to the subscribed entity, i.e. the 

rendezvous element running at that node. 

The Dispatcher publishes data for an information item if 

requested by an application or a Click element in one of the 

following cases: if rendezvous has previously taken place for 

this information item or if the item is published using the 

implicit rendezvous strategy. In the first case, there is already a 

LIPSIN identifier mapped to the information item. In the 

second case, a user-provided LIPSIN identifier or one assigned 

for another information item, for which rendezvous has 

previously taken place, will be used. 

Finally, network publications that are pushed by the 

forwarding element are simply dispatched to applications or 

Click elements that previously subscribed to the identifier of 

the publication or its father scope. A special case is when 

publish/subscribe notifications are published by the topology 

management core function (message 4 in Figure 2). These 

notifications are published using a pre-configured information 

identifier. In their payload they contain the identifier of the 

information to which the notification refers. Only the 

dispatcher itself is interested in these notifications. Upon 

receiving such notifications, it dispatches a notification to start 

or stop publishing data for the item referred in the payload to 

any applications that have previously advertised the item. 

C. Network Core Functions’ Elements 

The Rendezvous, Topology Manager and Forwarding 

Elements implement the core functions of our ICN. Their 

functionality depends on the dissemination strategy of the 

information and was described in Section III.3). The 

Forwarding Element currently implements the LIPSIN 

mechanism [6] for intra-domain information dissemination. For 

this, it maintains a forwarding table that maps link identifiers 

(LIDs) to Click ports that point to a Click element that can 

access the network. Another LID is used to “connect'' the 

Forwarding with the Dispatcher element. If such a LID is 

included in a LIPSIN identifier, the forwarding element will 

push the packet to its Dispatcher element. This way a network 

node is instructed to process a network publication rather than 

merely forwarding it. The Rendezvous Element implements an 

in-memory index where the information graph along with the 

set of publishers and subscribers is stored for the intra-node and 

intra-domain dissemination strategies. It subscribes locally to a 

pre-configured scope under which all publish/subscribe 

requests are published. The Topology Manager utilizes the 

service model to subscribe to a scope to receive topology 

formation requests by rendezvous nodes and publishes the 

response to one or more publishers of an information item. 

D. Communication elements 

We utilize Click elements for communicating with other 

network nodes, supporting Ethernet communication as well as 

communication over raw IP sockets. The former can be used 

when experimenting in a LAN or VPN, while the latter is 

appropriate when overlaying on top of IP. Blackadder nodes 

may have multiple instantiations of the aforementioned 

elements even in a mixed mode where a node may bridge two 

or more LANs over an IP network, with individual LANs 

running the network stack over Ethernet, enabling complex 

deployments where transit links running over the Internet 

connect network domains that natively support our ICN. 

V. EXPERIMENTAL EVALUATION 

A. Testbed Deployments 

Blackadder allows for transparently supporting different 

operating systems as well as native, overlaid or mixed 

deployments in high-speed or wide-area networks. We have 

deployed Blackadder in three different testbeds: a high 

performance Gigabit Ethernet testbed consisting of 15 identical 

hosts 
1
, where network nodes run in the Linux kernel natively 

on top of the network, in a PlanetLab slice consisting of 106 

slivers, where nodes run in user-space on top of IP, and in an 

international testbed that interconnects 10 major universities 

and institutions worldwide (~40 machines in total). All sites are 

connected via OpenVPN, which exports a virtual Ethernet 

device to all machines in the testbed. We are working on 

                                                           
1
 More information about the testbed can be found at 

http://nitlab.inf.uth.gr/ 
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creating a  multi-domain testbed where islands of native ICN 

networks each one running its own rendezvous and topology 

management nodes will be interconnected via the Internet.  

B. Evaluation 

An ICN network node needs to process and forward 

information at line-speed without requiring much state to do so. 

Moreover, slow-path functions must scale as the number of 

nodes and content increases; i.e. if the required state is easily 

shareable among nodes undertaking the same network function 

and if the processing overhead for doing so is low. The focus of 

the evaluation is to assess the performance of various aspects in 

our ICN as this is realized by Blackadder. We measure the rate 

at which Blackadder processes and dispatches publications to 

interested applications, we show the efficiency of the 

forwarding mechanism in an intra-domain deployment and we 

provide indications about the scalability of the slow-path 

functionality in a much larger deployment. Finally, we measure 

the performance of a basic socket emulation implementation on 

top of Blackadder that could support legacy applications 

requiring end-host based communication. As mentioned in 

Section III, ns-3 emulation based evaluations, e.g. for the inter-

domain strategy, are left out of this paper for space reasons. 

1) Intra-node performance 

We test the implementation of our intra-node dissemination 

strategy when dealing with a heavy load of publications, 

emulating an IPC-like communication scenario. We use a 

single publisher that advertises an information item under a 

root scope. We measure the application throughput for a set of 

subscribers, ranging from 1 to 10, subscribing to the advertised 

information. After rendezvous takes place (this happens only 

once, minimizing the overhead posed by the slow path 

functions), the publisher publishes 100,000 items using the 

same information identifier. We repeat the experiment for 

different payload sizes. The upper limit of the payload size is 

bound by the Netlink socket buffer size (~100KBs). 

 

Fig. 4.  Intra-node performance 

In Figure 4, we observe that for large payloads and few 

subscribers the average throughput is more than 1 GB/sec. The 

performance degrades when more subscribers exist due to 

multiple publication copies. For 10 subscribers, the throughput 

is between 40-100 MB/sec. We point out that for the current 

node-local dissemination strategy, the Dispatcher element 

creates the necessary number of copies for each publication and 

then dispatches them to interested applications. This local 

memory management could be replaced with different 

strategies (e.g. a blackboard) that eliminate unnecessary copies. 

Overall the measured performance is more than acceptable 

since it is close to the TCP/IP based IPC which has been 

heavily optimized over the past decades. 

2) Fast path performance 

We now extend towards an intra-domain strategy with an 

ICN topology of 15 nodes connected in a chain, in order to 

measure the efficiency of the forwarding function. All 

published items have an MTU size of 1500 bytes, including the 

Ethernet header. The first node in the chain runs the RV node 

and TM. The second node is the publisher that behaves as in 

the previous experiments. The rest of the nodes run 1, 3, and 6 

subscribers (depicted as (1), (3) and (6), respectively). 

 

Fig. 5.  Forwarding Efficiency 

In Figure 5, we observe that when a single subscriber runs 

in each node, all subscribers receive data at line speed even 

when 13 subscribers exist. In this case, each forwarding node 

forwards all publications to its next hop and pushes the data to 

the local subscriber. Only for 6 subscribers per node, the 

performance degrades for a chain larger than 3 nodes. For all 

cases, the packet loss is less than 5%. Note that the only direct 

comparison to a TCP/IP-based performance is that of 1 

subscriber in one node since all other transfers exploit the 

multicast support of the LIPSIN mechanism, while a TCP/IP 

solution would result in halving the effective throughput for 

each point-to-point transfer. 

The presented performance is exceptional. Blackadder can 

forward information at Gigabit speed with minimal packet 

losses while the required state in each forwarding node is 

minimal; i.e. only a 256 bit forwarding identifier, which is 

known by the topology managers, per provided network link. 

The observed performance degradation when running 6 

subscribers per node is natural and expected since 6 copies of 

each publication are created and dispatched as the original 

publication is forwarded to the next hop. Only a blackboard-

based local dissemination strategy could minimize this 

overhead, as mentioned in the previous sub-section. 

3) Slow path performance 

We now turn our attention to the sequence of rendezvous as 

well as topology management and formation that needs to take 

place before executing the fast path forwarding. In the previous 

experiments, these functions’ overhead was minimized because 

a single information item was used to publish data, effectively 

creating an information channel. 

We first focus on the rendezvous process by utilizing the 

intra-node strategy, which requires no explicit topology 
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formation. A single publisher creates a scope and then 

advertises 100,000 information items under that scope. Then, 

subscribers are synchronized to start subscribing to items in the 

advertised range. Each subscriber iterates 500 times and each 

time it subscribes to an item using a randomly generated 

identifier, waits until it has received the data and then 

subscribes to another one. For each subscription, rendezvous 

takes place and the publisher is notified to publish the payload 

(the information here is a minimum Ethernet frame in order to 

reduce the forwarding overhead) that corresponds to this 

advertisement. We then measure the time between each 

subscription and the receipt of the data at the subscriber. We 

call this the response time. We underline that the granularity of 

resolved information items will usually be on a per-content 

(using algorithmic identifiers) or per-channel basis (like in the 

previous sub-section), therefore the presented experiments 

constitute the absolute worst case where rendezvous and 

topology formation must take place each time a few bytes must 

be transferred. Figure 6 shows the response time when up to 

500 subscribers subscribe simultaneously to information items 

in the advertised range. In the node-local case, the average 

response time for 200 subscribers is 20 ms, increasing to 54 ms 

for 500 subscribers.  

 

Fig. 6.  Slow Path Performance: Node-Local, Domain-Local in LAN, 

Domain-Local in PlanetLab 

To add the topology formation overhead in the response 

time, we extend the experiment using the intra-domain strategy 

in a star topology of 15 nodes in our Gigabit LAN testbed. The 

star topology provides a constant forwarding delay for all 

subscribers since the rendezvous node and TM run in the 

central node and the publisher runs in one of the satellite nodes. 

In this strategy, the entire slow path, from rendezvous to the 

topology management and formation, is involved. In Figure 6, 

we observe that the response time increases with the number of 

subscribers (up to 500 per node). Compared to the intra-node 

experiment, the response time is higher due to the network 

delays. Another factor is that each of the 14 nodes runs the 

number of subscribers depicted in the x-axis, resulting in a 

response time of 388 ms for a total of 7000 subscribers. 

As an example of an overlay deployment, we present the 

slow-path performance results in a PlanetLab deployment. For 

this, we create a slice that consists of 106 slivers forming a 

(randomly generated) graph with 73 edge nodes. The 

rendezvous node and TM run in a dedicated machine together 

with the publisher. The results for this experiment are also 

included in Figure 6. For 200 subscribers per node (totalling 

14,600 subscribers), the average response time is 373 ms, 

which increases to 680 ms for 500 subscribers per node (i.e. 

36,500 subscribers). Note that 500 subscribers running in the 

same node is not a realistic application example. Nevertheless, 

this is the only way to scale up our evaluation to realistic 

conditions in terms of processing requirements. 

The presented results are very promising. From the intra-

node scenario we see that the processing overhead for 

performing rendezvous scales well as the number of 

publish/subscribe requests increases. For the intra-domain case 

where both rendezvous and topology formation take place we 

see that that a single RV and TM running in the same machine 

can cope with thousands of simultaneous requests. Although 

the response times, which include propagation delays, increase, 

we argue that the required state for performing these functions 

can be easily shared among multiple machines in a load-

balancing or cooperative mode, achieving scalability within a 

single domain. For instance, multiple TMs implementing a 

link-state protocol can share the network load for topology 

formation. Respectively, distributed rendezvous solutions, such 

as in [13], can efficiently cope with the required load. Finally, 

given that the presented communication scenarios are extreme 

cases where measurements were taken while rendezvous and 

topology formation take place for each packet, we expect that 

slow-path functionality will be required on a much coarser 

granularity (per-content or per-(large) chunk of content). 

4) Legacy Application Support 

An open question for all ICN architectures is whether they 

can support legacy applications as well as what is the price to 

pay for supporting such applications in terms of performance. 

Here we evaluate a simple application that emulates a bi-

directional, unreliable stream of packets, like the one provided 

by the UDP protocol. For doing so, the server subscribes to a 

well-known scope (e.g. /X). A client then advertises an 

information item with a statistically unique label under the 

well-known scope (e.g. /X/Y). As a result rendezvous takes 

place and the topology formation function creates a LIPSIN 

identifier that is published to the client, which, in turn, 

algorithmically calculates a new information label (e.g. /X/Z), 

issues a subscription to the respective information item and 

publishes the label (as data) to the server, which advertises this 

item to the rendezvous node. As a result, RV takes place and, 

finally, the server acquires a forwarding identifier to the client. 

On top of these unidirectional channels one can emulate the 

basic socket operations; a sendmsg call from the client would 

result in publishing data to for /X/Y, while a recvmsg call would 

wait for data for the item /X/Z. The opposite identifiers would 

be used by the server’s socket operations.  

For this experiment we implemented a simple file transfer 

protocol and we measure the application throughput when 

multiple subscribers (clients) receive different files from the 

publisher (server). Although the ICN network supports 

multicasting using LIPSIN identifiers [6], in this example we 

intentionally build bi-directional pipes to support legacy 

functionality. In Figure 7 we show the total and average 

application throughput that was measured when running a 

simple file transfer protocol on top of Blackadder and on top of 

UDP, for an increasing number of clients (shown in the x axis) 

7



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

running in different machines. We see that the total application 

throughput for both scenarios is bounded by the network’s 

available bandwidth. The average application throughput 

decreases as the number of clients running in different 

machines increases because of the unicast nature of the 

communication. 

 

Fig. 7.  Legacy Application Throughput 

C. Comparison With CCNx 

CCN separates its main functions into routing (building 

forwarding information tables in each forwarding element), 

forwarding (sending interest and data packets to producers and 

consumers) and caching (storing interest and data packets for 

improving delivery). Routing is currently neither fully specified 

nor implemented. The only effort towards populating FIB 

entries is OSPFN [17], an adaptation of OSPF using names 

instead of connectivity information. However this mechanism 

is not integrated with CCNx. Forwarding and caching consult 

the local FIB and PIT to forward data as well as interest 

packets for a given name, while the content store holds any 

previously transferred packets. 

Contrary to our approach, CCN supports only immutable 

data; i.e. any new content carries a new name. While this is 

reasonable for content delivery, it poses a burden on 

conversational or sensor applications. Finally, CCN requires 

the producer to sign content on a per-content or per-packet 

basis, whereas data verification by forwarding nodes and 

consumers is optional. This ties the feasibility of the CCN node 

design to cryptographic advances. While mandatory signing is 

reasonable for videos or news, it can pose a significant 

overhead on end systems in sensor networks or mobile device 

based content scenarios. Packet signing is not always necessary 

when implementing simple conversational services on top of 

CCN (e.g. for emulating a socket interface as the one presented 

in the previous section). In Blackadder a similar approach [18] 

is only optional and can be implemented on top of the node as a 

separate layer. To make the comparison fairer, in our 

experiments we try to avoid the signing overhead whenever 

that is possible. Since CCNx only implements forwarding and 

caching (with FIB entries being manually configured), we 

focus our comparison on the information processing overhead 

and fast path performance. All applications are written using 

the C library provided in the latest CCNx distribution (v0.7.0). 

Overall, our results show that the overhead posed by the 

interest processing in CCN as well as the support for mutable 

semantics and the flexibility of using stateless forwarding 

mechanisms in Blackadder result in a performance advantage.  

To evaluate the information processing in an IPC scenario, 

we emulate an IPC-like pipeline between two applications. For 

CCNx we implement an intra-node CCNx application that 

expresses 10,000 interests in content, each piece being 

individually labelled with its own name (e.g. 

/content/segment_no). 

 

Fig. 8.  Intra-Node Performance Comparison  

We place the individual content pieces into the local CCNx 

cache to avoid the signing overhead when played out by the 

application. For our prototype, we run the same application as 

for the experiment in Section V.B.1). Figure 8 shows the 

results for data sizes of 2 and 100 KBs. Even though the CCNx 

prototype plays out data from the content store, the 

performance is significantly lower compared to Blackadder. 

 

Fig. 9.  Throughput Comparison: Mutable Semantics 

For our second experiment, we create a chain of 14 nodes 

with the first one being the producer and the rest being the 

consumers. At each node we run up to 6 such consumers with 

each node being connected to our 1Gbps testbed. We 

implement a window-based mechanism for sending interests to 

the network stack. Also here, we experimented with a cached 

and non-cached case in order to single out the signing 

overhead. For our node design, we utilize the immutable as 

well as the mutable semantics; i.e. the first scenario incurs 

rendezvous overhead while the second is relevant when 

mutability is handled by the application. For a fairer 

comparison with the window mechanism used in the CCNx 

case, we use the same window-based mechanism in our 

immutable case. Figure 9 shows our measurements when 

comparing Blackadder in mutable mode with CCNx, each with 

1 and 6 subscribers. The graph omits the non-cached case since 

the performance never exceeded 170kB/s. At one subscriber 

per node in the chain, Blackadder sustains line speed 

throughout the entire chain, while degrading down to 80MB/s 

with 6 subscribers. We can confirm the CCNx performance 

with one consumer being directly connected (CCNx-1 point for 
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1 node) with the results in [5] for a 100Mbit/s test bed. The 

throughput reported is similar to the one we observe in our 

experiments, namely ~10.4MB/s. However, the CCNx-1 

performance continues to decrease along the chain of nodes, 

down to ~0.4MB/s for 13 nodes, mainly because a separate 

interest must be sent and processed by all network nodes in the 

path for every packet. This problem has been also identified in 

[19], where persistent interests are proposed. Overall, we see 

that our domain-local forwarding mechanism outperforms the 

PIB/FIT-based CCNx mechanism. 

 

Fig. 10.  Throughput Comparison: Immutable Semantics 

Figure 10 compares the CCNx performance (in cached 

mode) to our prototype with immutable semantics. Although 

we see similar performance, for Blackadder the slow path 

functions are invoked for every single packet, while we expect 

rendezvous to take place on a per-content or per-chunk of data 

in realistic application scenarios. 

We do not include a performance comparison for a 

conversational application, as the one presented in Section 

V.B.4) for space reasons. However, the expected bottleneck for 

CCNx is obvious from our previous experiments. 

Implementing such an application on top of CCNx would 

require signing all packets the moment they are created. In 

many cases (e.g. voice or telent/ssh over CCNx) it is not 

possible to pre-sign packets or content as a whole (e.g. by using 

Merkle hash trees). As a result the throughput would be limited 

by the signing rate, which, as mentioned above, was measured 

about 170KB/sec in our setup. 

VI. CONCLUSION 

Increasing interest in ICN creates the need for a flexible and 

extensible development platform to allow research in the area 

to progress. We addressed this need, and made the following 

contributions in this paper. We presented Blackadder, an open-

source ICN node implementation that allows for continuous 

experimentation through its modular design than can easily 

accommodate future developments. It runs in parallel with 

TCP/IP or on top of it. It is also integrated with the NS3 

simulator, easing the evaluation of our ICN in larger, simulated 

network topologies. We described how information is 

disseminated in various communication scenarios and how our 

core network functions are implemented within Blackadder. 

We also showed that this flexibility does not come at the price 

of performance. Our experimental evaluation showed very 

promising results for all three core network functions. Finally, 

we presented a performance comparison with CCNx and 

showed that our approach significantly outperforms CCNx. 
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