
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

SamaritanCloud: Secure and Scalable Infrastructure

for enabling Location-based Services

Abhishek Samanta Fangfei Zhou Ravi Sundaram

Northeastern University

Boston, MA 02115

Email: {samanta, youyou, koods}@ccs.neu.edu

Abstract—With the maturation of online social networks
(OSNs), people have begun to form online communities and look
for assistance at a particular place and time from people they
only know virtually. However, seeking for such help on existing
OSN infrastructures has some disadvantages including loss of
privacy (in terms of both location as well as the nature of the
help sought) and high response times. In this paper we propose
SamaritanCloud, a scalable infrastructure that enables a group of
mobile and geographically-dispersed personal computing devices
to form a cloud for the purpose of privately sharing relevant
locality-specific information. From a technical standpoint our
main contribution is to show that only additive homorphic en-
cryption is sufficient to compute nearness in a cryptographically
secure and scalable way in a distributed setting. This allows us
to harness the benefit of linear match time while guaranteeing
the locational privacy of the clients. In terms of performance
our system compares favorably with simpler publish/subscribe
schemes that support only equality match. We demonstrate the
practical feasibility of SamaritanCloud with an experimental
evaluation.

Index Terms—location-based service, mobile devices, privacy,
homorphic encryption

I. INTRODUCTION

A. Motivation

People often have the need for assistance from strangers

in remote locations. Consider the following requests: please

tell the marathon runner with bib #123 I will wait at the

finish line; did I leave my keychain on campus? is there a

brown puppy roaming in the playground? In this paper we

propose, not just a new architecture, but, in fact, a new cloud

based service - SamaritanCloud - the goal is to provide a

way for people to connect with others (possibly strangers)

in a remote location and obtain (physical) help from them.

SamaritanCloud is deployed as cell phone application, users

submit their requests to the cloud which coordinates users’

requests and efficiently find possible candidates to respond

to the request. Such a service will require efficient technical

solutions to problems such as scalability, privacy, reputation

etc to overcome the social barriers of soliciting help from

strangers. We focus primarily on the technical aspects of

scalability and privacy (matching people with strangers in a

secure and private way) so that the need for help and the

ability/desire to assist are disclosed safely.

Since the emergence of online social networks (OSNs),

people have sought help from their social contacts. The most

common method to seek for help on social network sites,

e.g, Facebook, Twitter, or “strangers helping strangers” [1],

is post - an user posts his/her question or request on his/her

social network page or a relative group page and waits for

response, which is very similar to subscribing to an email list

and broadcast questions except exposing more privacy. This

method is simple but suffers from three major drawbacks.

1) High/unpredictable response latency: Popular OSNs,

e.g., Facebook, Twitter own worldwide users, who live in

different locations and have different schedules. A post on

a group page could not reach all the members in a short time

and may be overwhelmed by other posts soon.

2) Limited range of request subjects: Groups on OSNs

are typically centered around interests, occupations, genders,

ages. So, it is hard to elicit response for time-restricted and

location sensitive questions. Most online requests focus on

recommendation, suggestions and people do not make off-line

offer before they build trust on each other.

3) Privacy loss: Users requesting help on OSNs could end

up exposing themselves to a large group, including friends they

know in real life, as well as users, who are not willing/able to

offer help. Unnecessary privacy leak may affect user’s personal

life and should be avoided.

B. Related Work

Geosocial networking [2]–[5] offers location based services

(LBS) to users to interact relative to their locations. LBS

typically is an information or entertainment application that is

dependant on location of user. By these services users are of-

fered possibilities to find other people, machines and location-

sensitive resources. Some applications [6], [7] match users

with locations of interest. These services are used for finding

a physically proximal social contact or for crowd sourcing.

Many of such public LBS provide no privacy while some

offer limited protection on an opt-in or opt-out basis. Here

we briefly categorize the different approaches to providing

privacy, as well as the associated shortcomings.

1) Middleware: Geopriv [8] and LocServ [9] are policy-

based privacy management approaches for secure location

transfer that employ a trustworthy middleware mediating

between location-based applications and location tracking

servers. Geopriv [8] describes an approach to securely transfer-

ring location information and associated privacy data by creat-

ing “location objects” that encapsulate user location data and

associated privacy requirements. Once “location generator”

Networking 2013 1569696011

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2

(e.g. user device) creates an “location object”, it sends it to a

middle server which forwards the object to “location recipient”

based on different kinds of rules. LocServ [9] is a middle-

ware service that lies between location-based applications and

location tracking servers. It offers a general framework of

components that allows users to apply general policies to

control release of their location information. However, the

practicality of such systems have yet to be determined, as the

trustworthiness of middleware is hard to guarantee.

2) Dummies or Anonymity: Instead of sending out the exact

location, a client sends multiple different locations to the

server with only one of them being true [10]. The drawback

of such schemes is that over the long run the server is able to

figure out the client’s location by comparing the intersection

of uploaded locations. Some other schemes [11], [12] separate

location information from other identifying information and

report anonymous locations to the server. However, guaran-

teeing anonymous usage of location-based services requires

that the precise location information transmitted by a client

cannot be easily used to re-identify the subject.

3) Location hiding: Clients define sensitive locations where

they do not want to be tracked, and the location-based appli-

cation stops tracking when the user gets close to those areas

[13].

4) Location perturbation: These schemes “blur” the exact

location information to a spatial region [14]–[17] or send a

proxy landmark instead [18] and hence, are not suitable for

applications that require accurate locations.

The scheme presented in this paper uses client-specific, per-

sonalized and global blurs that are random elements in a finite

field to guarantee perfect accuracy and cryptographic security;

more on this in the sections to follow.

To complete our review of related work we briefly survey

the literature on homomorphic encryption. Homomorphic en-

cryption is a type of encryption scheme that provides ability

to perform arithmatic operation on cipher text and get the

encrypted result which is equivalent to the encryption of

the result by applying the same arithmatic operation on the

plaintext. The encryption systems of Goldwasser and Micali

[19], and El Gamal [20] are known to support either addition

or multiplication among encrypted cypher texts, but not both

operation at the same time. In a breakthrough work, Gentry

[21] constructed a fully homomorphic encryption scheme

(FHE) capable of an arbitrary number of addition and mul-

tiplication on encrypted data. Fully homorphic encryption

schemes are very powerful as it computes any function on an

encrypted ciphertext. But, Lauter et al [22] showed that fully

homomorphic encryption schemes till date are very resource

consuming and are impractical to be used for most of practical

purposes.

C. Our Contributions

To overcome the above mentioned drawbacks of LBS and

OSNs, we propose SamaritanCloud, a location-based cyber-

physical network allowing people to reach friends or strangers

in desired locations for help. SamaritanCloud is easily de-

ployed as a location-based cell phone application; the cloud

coordinates client requests and efficiently finds candidates who

are able/willing to offer help, even possibly physical help, in

real-world life-threatening emergencies.

From a technical standpoint our primary contribution is to

show how partially homomorphic encryption can be adapted to

a distributed setting so as to guarantee cryptographic security

without sacrificing efficiency gains. The resulting protocol

finds near-neighbors in constant-time thus providing efficient

and private match of help-seekers and help-givers.

SamaritanCloud preserves efficiency and privacy while cal-

culating near neighbor, by employing different blurring tech-

niques and partially homomorphic encryption.

II. SYSTEM DESIGN

A. System Model

SamaritanCloud consists of m servers and it serves n

clients. The cloud is also composed of high speed connectors

connecting these m servers with each other. Each of the

servers and clients have unique identification which is called

an id. Each server manages atleast one client and stores client

infomations on its local disk. Servers also store a hashing

function (h), that maps a client id to a server id. Each

client has a mobile device with enough computation power

to efficiently encrypt-decrypt using additive homomorphic

functions. Clients are assumed to share a common key with

which they exchange private messages that are denied to

the cloud. SamaritanCloud is efficient in simple arithmatic

computations (viz. addition, subtraction) and also broadcasting

to clients. On the other hand, a client can efficiently talk to

SamaritanCloud or a small group of other clients. Samaritan-

Cloud is used to authenticate clients and to initiate distributed

near-neighbor computation. When a client, sends a request

to the SamaritanCloud, the request is only forwarded to the

server managing that client. The managing server of a client

is determined by hashing the client id to server id using h.

Once the querying client knows the set of near neighbors, it

sends the help request to them. Each client is associated with

an username, password and profile. A client uses username

and password for authentication. A profile is a collection of

variables and their respective values (or range of values).

Variables are drawn from a metric space and for the purposes

of this paper are assumed to take real numbers. To obtain bet-

ter scalability, SamaritanCloud delegates all computationally

extensive operations, viz. distance computations, encryption-

decryption process, to the clients.

B. Attack Model

There are u adversaries (unknown to SamaritanCloud)

present in the network. These adversaries form a group and

launch attacks to retrieve profile information of other good

clients. Adversaries follow SamaritanCloud protocol to avoid

detection and also exchange informations among themeselves

to launch an attack. The adversaries try to extract partial or

full profile information from blurred profile data of a client.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3

C. Definitions and Preliminaries

We present some definitions we will need later on

1) Distance: The distance between two profiles p1, p2,

represented as d-dimensional vectors, is defined as:

‖p1 − p2‖ = (Σi(|pi1 − pi2|)
2)(1/2),

where pi1 and pi2 are the values of the ith dimension of p1
and p2, respectively.

2) Near-neighbor: Given a specific client cq, a set of clients

C, and a distance value dist, ci ∈ C, cq 6∈ C, is said to be

a near-neighbor of cq if the distance between pq and pi is at

most dist, i.e. if

‖pq − pi‖ ≤ dist,

where pq and pi are profile data of cq and ci, respectively.

3) Blur: Blur is a random number which is used to blur

data. e.g. data p is blurred with a random blur r as follows,

β±

r (p) = (p± r) modP,

where r ∈ [0, P) and P is a large public prime number.

4) Profile: Profile (pi) of a client ci, is defined as a

collection of informations of ci, viz, x and y coordinates of its

current location, maximum amount of weight ci can help with,

area where ci can help etc. A profile of a client is represented

as a d-dimensional vector (in d-dimensional Euclidean space).

5) Tolerance-value: Tolerence value is the maximum dis-

tance between profile of a client cj and profile requested by

cq , within which cj receives help request from cq.

TABLE I
TABLE OF NOTATION

Notation Explanation

ci ith client

cq A client which needs help

C Set of clients

pi Profile data of ci, represented as d-dimensional vector

pij ith dimension of pj
pq Profile data requested by cq , represented as

d-dimensional vector

p
q
i ith dimension of pq

βr(p) Profile data p blurred with r

ξk(p) Encryption of data p using key k

ξh
k
(p) Encryption of data p using key k, using additive

homomorphic encryption

δh
k
(c) Decryption of cipher c using key k

sk Secret key only known to clients
iT ith entry of a tuple T

The different kinds of communications between the cloud

and a client are classified as follows,

Authentication: A client uses the assigned username and

password to authenticate itself to SamaritanCloud.

ProfileUpdate: The client-side application periodically

sends update messages to the cloud to update profile data.

HelpRequest: When a client looks for help, he/she sends a

request to the cloud, which initiates distributed near-neighbor

computation.

1: procedure MATCH PUB SUB(ξξk(pq)(r))
2: Sc ← φ

3: for all ci ∈ C do

4: ξk(pi)← fetch encrypted profile(ci)
5: ⊲ Encrypted profile of ci
6: if ξξk(pi)(r) = ξξk(pq)(r) then

7: Sc ← Sc ∪ ci
8: end if

9: end for

10: Send2Client(cq, Sc) ⊲ Sends Sc to cq

11: return

12: end procedure

Fig. 1. Procedure invoked by the cloud in publish/subscribe scheme after
receiving a request to determine set of clients whose profile match requested
profile.

1: procedure REQUEST PUB SUB(pq)

2: r ← fetch rand cloud()
3: ⊲ Fetches random number from cloud to encrypt clients

data.

4: Send2Cloud(r, ξξk(pq)(r))
5: ⊲ Sends arguments to cloud

6: return

7: end procedure

Fig. 2. Procedure invoked by a client in publish/subscribe scheme to request
for help

Notification: Once the requesting client finds a set of

clients suitable for servicing a request, it forwards the request

encrypted with shared key (sk) to the set.

Follow-up: SamaritanCloud provides a simple client evalu-

ation scheme by sending follow-up notification to the candi-

dates who committed to offer help. We leave a more complete

evaluation/reputation scheme as future work.

Our scheme builds on prior work on confidential pub-

lish/subscribe schemes. In the subsections to follow we briefly

summarize these techniques.

D. A confidential publish/subscribe scheme and its issues

In the content-based publish/subscribe model the interests of

subscribers are stored in a forwarding server which matches

and routes relevant notifications to interested subscribers [23].

Procedures in Figs. 1, 2 and 3 are the basic primitives shown

in [23].

0Texts after right arrowheads (⊲) in pseudocodes are comments

1: procedure PROFILEUPDATE PUB SUB(pi)

2: Send2Cloud(ξk(pi)) ⊲ Sends argument to cloud

3: ⊲ k is the encryption key, shared among all clients

4: return

5: end procedure

Fig. 3. Procedure invoked by a client in publish/subscribe scheme to update
its profile to cloud

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

4

Observe that, in the above scheme, the server can match

profiles across clients and across time so long as the random

number used by the querying client is same as the random

number used by the server. But, for the security of the scheme,

it is necessary to change the random number often. But

this change incurs large overhead on the system. The extra

overhead is explained with the following scenario.

A client cq wants to send a request to the cloud. So, it invokes

procedure REQUEST PUB SUB, Fig.2. But, after cq fetches

the random number (line2 Fig.2), cloud updates it. When cq

sends the pair of random number and the encrypted value

(line4 Fig.2) back to the cloud, it is rejected as the random

number in cloud is changed. To avoid such scenarios cloud has

to keep extra bookkeeping to make sure that, all the request-

processes are completed before the random number is changed.

For a large system this incurs large overhead.

Also, the request process in publish/subscribe is very resource

consuming as clients have to perform two encryptions before

sending a request to the cloud.

More importantly, the above scheme, without fully-homorphic

crypto-system only computes equality match and not the close-

ness of two attributes. But, Lauter et al [22], have shown that

fully-homorphic encryptions are highly resource consuming

and are not practical in real life scenario.

Therefore, the above publish/subscribe algorithm is inadequate

for our purposes.

E. SamaritanCloud

In this section we propose the protocol of SamaritanCloud.

Then we prove the correctness of our protocol. At the end we

discuss about the security offered by SamaritanCloud.

Before delving into technical details, we first present short

intuitive description of our protocol.

At the startup time, SamaritanCloud generates client specific

blur for each client and a global blur, which are kept secret

from clients.

When profile of a client changes, it blurs the changed

profile with a random personalized blur and sends it to

SamaritanCloud along with encrypted blur. Since, the profile

data is blurred with a random blur and the random blur

is encrypted, no profile information leaks from the blurred

profile. SamaritanCloud reblurs the already blurred profile with

client-specific and global blur of the client and distributes

among k least loaded clients.

When a client wants help, he/she blurs its own profile with

a personalized blur and sends to SamaritanCloud which in

turn reblurs the already blurred profile and broadcasts to all

clients. Along with these reblurred profiles, SamaritanCloud

also broadcasts addition of client specific and encrypted per-

sonalized blurs. With these informations, a client computes

the set of near-neighbors of requesting client. SamaritanCloud

uses both client specific blur and global blur, because without

these blurs under certain attack scenarios, an attacker can

deterministically compute profile information of a requesting

client.

�

�
�

�
�

����
� �� �� �

��
� � � �

� �

���
�
� 	� � �

���
� �� � �

�
�

�����

�
�

�
�	

�
�

�����

Fig. 4. ProfileUpdate process in SamaritanCloud system

1: procedure INITIALIZE

2: rg ← get rand() ⊲ Global blur

3: Store(rg)
4:

csri ← get rand(), ∀ci ∈ C ⊲ Client-specific blur

5: Store(ci,
csri), ∀ci ∈ C

6: ⊲ Stores client-specific blur with corresponding client

7: return

8: end procedure

Fig. 5. Procedure invoked at start of SamaritanCloud system

1) Protocol: SamaritanCloud uses additive homomorphic

crypto system to compute distance between profiles of two

clients. It works in 3 phases as follows,

Initialization: In this phase, Fig.5, SamaritanCloud assignes

client-specific blur to all the clients. A client-specific blur csri
is assigned to a client ci. SamaritanCloud also generates a

global blur rg . Both client-specific and global blur are kept

secret from clients. These are used by SamaritanCloud to blur

client profiles.

ProfileUpdate: This phase, Fig.4, is invoked by a client ci
when its profile data pi is changed.

In this phase, ci updates SamaritanCloud with blurred profile

data. SamaritanCloud broadcasts blurred pi among set of

clients C. The data transfer is thus composed of two subphases

as follows,

a) Update: In Update phase, Fig.6, ci blurs its profile

data pi by blurring each dimension seperately as follows,

β−

ri(pji) = (pji − ri) mod P, ∀j ∈ [1, d] (1)

β−

ri(pi) = (β−

ri(p1i), β
−

ri(p2i), ..., β
−

ri(pdi))

where, pji is jth dimension of pi, and ri is the personalized

blur used by ci.

ci also encrypts its personalized blur, using the additive-

homomorphic encryption ξhsk(ri), and sends the pair

(ξhsk(ri), β
−
ri(pi)) to the cloud.

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

5

1: procedure UPDATE(pi)

2: r← get rand() ⊲ Personalized random blur

3: (p1i, ..., pji, ..., pdi)← pi
4: β−

r (pji)← (pji − r) mod P, ∀j ∈ [1, d]
5: β−

r (pi)← (β−
r (p1i), ..., β

−
r (pji), ..., β

−
r (pdi))

6: ξhsk(r)← (r · sk) mod P

7: Send2Cloud (ξhsk(r), β
−
r (pi))

8: ⊲ Sends the pair to SamaritanCloud

9: return

10: end procedure

Fig. 6. Procedure invoked by a client to update its blurred profile to
SamaritanCloud

b) Redistribution: SamaritanCloud invokes this phase,

Fig.7, when it receives an update request from a client ci.

Client-specific blur csri, and the global blur r
g are used to blur

already blurred profile of ci. We call this process reblurring.

prblurji = (β−

ri(pji)−
cs ri + rg) mod P, ∀j ∈ [1, d]

= (pji − ri −
cs ri + rg) mod P (2)

prbluri = (prblur1i , prblur2i , ..., prblurdi)

SamaritanCloud distributes reblurred profile values computed

in equation (2) along with the address of ci among k least-

loaded clients and saves the encrypted blur ξhsk(ri).
HelpRequest: When a client (cq) is in need of help, it

invokes HelpRequest phase Fig.10. In this phase, cq sends

blurred requested-profile along with a tolerance value to

SamaritanCloud. On reception of a request, SamaritanCloud

broadcasts the blurred requested-profile to all clients and

delegates the near-neighbor computation to clients. Clients

compute distance between the requested profile and saved

blurred-profiles and send back the result directly to cq. Thus,

this phase is composed of 3 subphases as follows,

c) Request: The requesting client cq blurs the requested-

profile pq with a randomly generated personalized blur (rq),

Fig.8, by blurring each dimension of pq seperately.

β+
rq (p

q
i) = (pqi + rq) mod P, ∀i ∈ [1, d] (3)

β+
rq (p

q) = (β+
rq (p

q
1), β

+
rq (p

q
2), ..., β

+
rq (p

q
d))

cq encrypts its personalized blur and tolerance value (tol) and

sends the tuple (ξhsk(r
q), ξhsk(tol), β

+
rq (p

q)) to SamaritanCloud.

d) Redistribution: SamaritanCloud invokes this phase on

reception of a request from cq .

Without loss of generality, let us assume that a client ci has

blurred profile information of t other clients cj , ∀j ∈ [1, t].
SamaritanCloud builds a set (S

q
i) of t 6-tuples (T

q
j) and sends

it to ci, Fig.9.

1st and 2nd entries of T
q
j are the address of cq and cj ,

respectively.

1T
q
j = cq

2T
q
j = cj

3rd entry is built by reblurring the blurred profile of cq , with

the clients-specific blur assigned to cq and the global blur, as

1: procedure REDIST UP((ξhsk(ri), β
−
r (pi)))

2: csri ← fetch cs blur(ci)
3: ⊲ Fetches client-specific blur for ci
4: rg ← fetch global blur() ⊲ Fetches global blur

5: (β−
r (pji), ..., β

−
r (pji)), ..., β

−
r (pdi))← β−

r (pi))
6: prblurji ← (β−

r (pi)−
csri + rg) mod P, ∀j ∈ [1, d]

7: prbluri ← (prblur1i , ..., prblurji , ..., prblurdi)
8: Ct ← get random clients(t)
9: ⊲ Randomly selectes set of t clients

10: Send2ClientsCt
(ci, p

rblur
i)

11: ⊲ Sends pair of arguments to Ct

12: Store(ci, ξ
h
sk(ri))

13: ⊲ Stores encrypted personalized blur

14: return

15: end procedure

Fig. 7. Procedure invoked by SamaritanCloud to redistribute reblurred profile
of ci

1: procedure REQUEST(pq)

2: rq ← get rand()
3: ⊲ Randomly generates personalized blur

4: (pq1, ..., p
q
j , ..., p

q
d)← pq

5: β+
rq (p

q
j)← (pqj + rq) mod P, ∀j ∈ [1, d]

6: β+
rq (p

q)← (β+
rq (p

q
1), ..., β

+
rq (p

q
j), ..., β

+
rq (p

q
d))

7: ξhsk(r
q)← (rq · sk) mod P

8: ξhsk(tol)← (tol · sk) mod P

9: ⊲ Encrypts tolerance value

10: Send2Cloud(ξhsk(r
q), ξhsk(tol), β

+
rq (p

q))
11: ⊲ Sends arguments to SamaritanCloud

12: return

13: end procedure

Fig. 8. Procedure invoked by a requesting client to compute set of near-
neighbors

follows.

3T
q
lj = (β+

rq (p
q
l) +

csrq + rg) mod P, ∀j ∈ [1, t]

= (pql + rq + csrq + rg) mod P, (4)

where 3T
q
lj is lth dimension of 3rd entry of T

q
j ,

csrq is client

specific blur of cq and rg is the global blur.

SamaritanCloud adds encrypted personalized random blur of

cq and cj to build 4th entry of the tuple. This is where we use

additive homorphic nature of encryption scheme.

4T
q
j = (ξhsk(r

q) + ξhsk(rj)) mod P (5)

5th entry is built by adding the client specific blur of cq and cj .

Since, both the client-specific blurs are not known to clients,

the individual value of either csrq or csrj is not leaked by this

entry.
5T

q
j = (csrq + csrj) mod P (6)

6th entry is the encrypted tolerance value sent by cq . This

tolerance value is used in the near-neighbor computation.

6T
q
j = ξhsk(tol) (7)

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

6

1: procedure REDIST REQ((ξhsk(r
q), ξhsk(tol), β

+
rq (p

q)))
2: for all ci ∈ C do

3: rg ← fetch global blur()
4: ⊲ Fetches global blur

5: csrq ← fetch cs blur(cq)
6: ⊲ Fetches client-specific blur for ci
7: prblurj ← (β+

rq (p
q
j)+

csrq + rg) mod P, ∀j ∈ [1, d]

8: prblur ← (prblur1 , ..., prblurj , ..., prblurd)
9: Ci ← fetch clients in(ci)
10: ⊲ Set of clients whose blurred profile is stored by ci
11: S

q
i ← φ

12: for all cj ∈ Ci do

13: 1T
q
j ← cq

14: 2T
q
j ← cj

15: 3T
q
j ← prblur

16: ξhsk(rj)← fetch encrypted blur(cj)
17: ⊲ Encrypted personalized blur of cj
18: 4T

q
j ← (ξhsk(r

q) + ξhsk(rj)) mod P

19: csrj ← fetch cs blur(cj)
20: ⊲ Client specific blur of cj
21: 5T

q
j ← (csrq + csrj) mod P

22: 6T
q
j ← ξhsk(tol)

23: T
q
j ← (1T q

j ,
2T

q
j ,

3T
q
j ,

4T
q
j ,

5T
q
j ,

6T
q
j)

24: S
q
i ← Si ∪ T

q
j

25: end for

26: Send2Client(ci, S
q
i) ⊲ Sends S

q
i to client ci

27: return

28: end for

29: end procedure

Fig. 9. Procedure invoked by SamaritanCloud to delegate nearness compu-
tation to clients

e) Distance-Computation: In this phase, Fig.11, clients

compute distance between the blurred requested-profile and

saved blurred profile data of other clients.

Let us assume that after redistribution phase, a client ci
receives a set S

q
i . Let us also assume that ci has blurred profile

informations of t clients, cj , ∀j ∈ [1, t]. Let T i
j ∈ S

q
i be the

tuple corresponding to cj and prblurj be the reblurred profile

of cj .

Since, ci has the shared secret sk, it decrypts the encrypted

blur and tolerance value in T i
j . ci sends clients whose reblurred

profile satisfies the following condition to cq.

(

d∑

l=1

(3T i
lj − prblurj − δhsk(

4T i
lj)−

5 T i
lj)

2)1/2 < δhsk(
6T i

lj), (8)

where δhsk(·) decrypts given cipher data using key sk.

2) Correctness: After stating the newly proposed scheme,

here we prove that, the scheme calculates distance correctly

between requested profile data cq and blurred profile of a

candidate client cj . The fact that blurring according to our

proposed scheme preserves distance is captured by the fol-

lowing lemma.

Lemma 1. Given, T
q
j is the tuple corresponding to cj and

�
� �����

�

�
�

���
� �� �� ����

� ���	 �

����

�
�

��
�

� �
�

�

����	
�������
���������
����������
������	
���

�
�

����
� ��
� �

��
�
 � �

� �

�
�
�
�

�	
��

��
� �
��

Fig. 10. Request process in SamaritanCloud system

prblurj is the blurred profile of cj

(

d∑

i=1

(3T q
ij − prblurj − δhsk(

4T
q
ij)−

5 T
q
ij)

2)1/2 = ‖pq − pj‖

Proof: As described in ProfileUpdate protocol, blurred

profile stored on SamaritanCloud is calculated using equation

(2).

prblurij = (pij − rj −
csrj + rg) mod P (9)

Since, ξhsk(·) is an additive homorphic encryption, from equa-

tion (5),

4T
q
j = (ξhsk(r

q) + ξhsk(rj)) mod P

= ξhsk(r
q + rj) mod P

So,
δhsk(

4T
q
j) = δhsk(ξ

h
sk(r

q + rj) mod P)

= (rq + rj) mod P (10)

So, combining equations (4), (6), (9), and (10),

(3T q
ij − prblurj − δhsk(

4T
q
ij)−

5 T
q
ij)

= ((pqi + rq + csrq + rg) mod P−

(pij − rj −
csrj + rg) mod P−

(rq + rj) mod P − (csrq + csrj) mod P)

= (pqi − pij) mod P

Thus, according to the definition,

(

d∑

i=1

(3T q
ij − prblurj − δhsk(

4T
q
ij)−

5 T
q
ij)

2)1/2

= (

d∑

i=1

((pqi − pij)
2)1/2) mod P

= ‖pq − pj‖

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

7

1: procedure DISTANCE COMP(S)

2: Sc = φ ⊲ Set of clients matching requested profile

3: for all T ∈ S do

4: (cq, cj ,
3T

q
j ,

4T
q
j ,

5T
q
j ,

6T
q
j)← T

5: prblurj ← fetch blur profile(cj)
6: ⊲ Blurred profile of cj
7: ‖pq − pj‖ ←

8: (
∑d

i=1(
3T

q
j −p

rblur
j −δhsk(

4T
q
j)−

5T
q
j)

2)1/2

9: ⊲ Distance between profiles of cq and cj
10: if ‖pq − pi‖ < δhsk(

6T
q
j) then

11: ξhsk(cj)← (cj · sk) modP

12: Sc ← Sc ∪ ξhsk(cj)
13: end if

14: Send2Client(cq, Sc)
15: ⊲ Sends the set of near-neighbors to cq

16: end for

17: return

18: end procedure

Fig. 11. Procedure invoked by clients to compute near-neighbor of requested
profile

3) Security: A client ci has access to reblurred profile data

of set of other t clients cj , j ∈ [1, t]. The client ci does not

know profile data of any of cj clients, as all the profile data

are blurred with random blurs unknown to ci. Attacks on

SamaritanCloud are averted by the use of different types of

blurs. Here we state the effect of different blurs on the security

of the overall SamaritanCloud system,

a) Personalized blur: Personalized blur is a random

number used by every client to blur their original profile

information. Since, this blur is randomly selected by clients,

SamaritanCloud cannot gain knowledge from blurred profile

about the profile data of a client.

b) Client-specific and global blur: Both client-specific

and global blurs are randomly generated by SamaritanCloud.

These blurs are used by the cloud to reblur profile of a client.

Clients do not have access to these blurs. Global blur along

with client-specific blur are used to protect profile data from

distributed attacks by a group of adversaries.

We measure security of the proposed protocol with follow-

ing metric,

Probability of Information Leak per Comparison (PILC):

PILC is defined as the probability of an advesary successfully

computing the profile data of a client by single comparison

between reblurred profile of the client and that of an adversary.

Now, we state different kinds of possible attacks as follows,

External attack: In external attack, attackers know pro-

tocol of SamaritanCloud, but do not know the shared secret

key(sk).

Every profile data is blurred with above mentioned blurs.

Since, blurs are random numbers, it is impossible for external

attackers, without the knowledge of blurs used, to extract

profile information from the blurred profile data. Also, clients

send personalized blurs to SamaritanCloud encrypted with a

shared key. The shared key is known only to clients. Thus,

blurred profile together with encrypted blurs avert external

attacks.

Internal attack: For internal attack, the assumptions are

much more strict than external attack. Here, attackers know

both the protocol and the shared secret key(sk).

According to our proposed system, a client has access to

reblurred profile of t other clients. Since, for internal attacks,

attackers behave as clients, an adversary ai has access to

blurred profile data of t other clients ci, i ∈ [1, t]. Some of

these t clients are adversaries. There are two types of internal

attacks as follows,

• Active attack: An adversary sends a help request to

SamaritanCloud. The intention of the help request is

to assist other advesaries to compute random blurs and

thereby assisting them to successfully retrieve profile

information of a good client. We know that, an adversary

ai has profile information of a client ci blurred with

personalized blur, client-specific blur of ci and the global

blur, equation (2).

When SamaritanCloud receives the fake help request, it

broadcasts following three informations to all clients,

– reblurred requested-profile data of the querying ad-

versary (aq) to all other clients. Thus an adversary

(ai) receives requested profile blurred with personal-

ized blur, client-specific blur of the querying adver-

sary and the global blur rg , equation (4). Assuming

aq informs ai about personalized blur (rq), and re-

quested profile (pq), ai computes (csrq+rg) mod P

successfully. Profile data of a client ci is blurred with

its own client-specific (csri) and the global blur. So,

ai can successfully compute blurred profile (pji−ri)
mod P of a client ci, if csrq = csri, equation

(2). Since, all the blurs are selected randomly from

[0, P),

Pr[ai knows (pji − ri) mod P] =
1

P

– the addition of client-specific blur of aq and ci as

in equation (6). Since, both the blurs are random

numbers unknown to clients, this addition does not

reveal individual value of each blur.

– encrypted value of the addition of the personalized

blur of aq and ci as shown in equation (5). ai knows

the personlaized blur of aq , as all the advesaries

share information. Thus, ai computes ri mod P

successfully.
Thus,

PILC =
1

P
(11)

• Passive Attack: An adversary (ai) can launch a passive

attack if it has access to reblurred profile of another ad-

versary aj , equation (2). Let us assume that ai knows the

reblurred profile of a client ci. Since, all adversaries share

informations, ai knows the blurred profile of aj . If client-

specific blur of aj is same as that of ci, ai can compute

blurred profile of ci ((pji − ri) mod P), equation (2).

Since, reblurred profile of a client is randomly distributed

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

8

among t clients with least number of reblurred profile of

other clients,

Pr[ai has reblurred profile of aj]

= 1− (1−
u− 1

n
)t

≈
(u− 1) · loglogn

n · logk
, [Since, t =

loglogn

logk
[24]]

Since, personalized and client-specific blurs are randomly

selected from [0, P),

Pr[aj knows client specific blur of ci] =
1

P

Pr[ai knows personalized blur of ci] =
1

P

So, PILC =
(u− 1) · loglogn

n · logk
· (

1

P
)2 (12)

Since, P is chosen to be a large prime number, probability of

a successful attack is small both in active (equation (11)) and

passive (equation (12)) internal attacks.

III. EXPERIMENTAL EVALUATION

A. Implementation

The implementation of SamaritanCloud includes two parts

— client side application and the cloud. We implemented the

client side application with a prototype mobile application

running on iOS 5.0, allowing users to,

• log in or register with unique username and password.

• choose time interval to update profile; by setting a fixed

update time interval, exact profile change time is not

exposed to the cloud.

• input request location (either latitude and longitude coor-

dinates or zipcode) and request content.

• get notification when the client is close to a requested

location; respond with willingness to offer help.

• get notification if anyone offers help to the client’s

request.

• get follow-up questionnaire of (1) “did you offer the help

that you committed to?” if the client was a candidate, (2)

“was the request resolved?” if the client was the requester.

We implemented the server using the Python Twisted library.

The major concerns of SamaritanCloud performance are client

application battery consumption and server scalability. We

examine those two concerns with experimental results.

B. Mobile application

We first examine SamaritanCloud on mobile devices. Our

application registers itself as a background VoIP service

allowing it to maintain a persistent connection with the

server, periodically fetch location information, even if the

application is running in background. Our application utilizes

Core Location Framework to get physical location. Location

coordinates can be obtained through standard location ser-

vice, and significant-change location service. With standard

location service, location data is gathered with either cell

triangulation, Wi-Fi hotspots or GPS satellites, depending on

required accuracy. As our application periodically updates

location to the server, it saves battery life by enabling the

standard location service as per the interval defined by clients.

With significant-change location service, a location update is

triggered by the OS only if a device moves from one cell tower

to another, thus providing only coarse location update. There is

an accuracy-power tradeoff – GPS location update is accurate

but power inefficient while significant-change location service

is less accurate and low on power usage. To test the worst

possible impact of our application on battery life, we run the

applications always in foreground with intensive update (once

per minute) via both 3G and WiFi. In each update, the mobile

application fetches location coordinates (lat, lon), computes

((lat+ r) mod P, (lon+ r) mod P) (P is a prime with 64

bits, r is randomly chosen between [0, P)), sends the result

together with ξhsk(r) to the server. The encryption function

used is as follows,

ξhsk(r) = (r · sk) mod P (13)

where, sk is a 512bit key. The results in Table II show

that the impact on battery life is acceptable (in real world

deployment the application would run in background with

infrequent location updates).

TABLE II
IMPACT OF SAMARITANCLOUD IOS APPLICATION ON BATTERY LIFE.

standard standard significant-change
network (GPS) (WiFi/cellular) location service

3G 10h 12h 8mins 12h 10mins
WiFi 11h 14mins 16h 14mins 16h

1) Key distrubution: Each client-side application is pro-

vided with a long term 1024bit secret key (lk). This key is

used to encrypt the secret key sk, equation (13). The shared

secret key, sk, is changed every one hour. At the start of each

hour, SamaritanCloud randomly selects a client. The selected

client, randomly generates the shared secret key, encrypts it

with lk as follows, and sends it to SamaritanCloud

ξlk(sk) = (sk · lk) mod P

SamaritanCloud broadcasts the encrypted shared secret, to all

clients.

C. Server scalability

For server side performance we are primarily interested in

understanding the rate of requests that a single server can

handle, as this serves as the dominating factor controlling the

number of online users that the server can support.

In ProfileUpdate phase, a client sends its blurred profile

and SamaritanCloud distributes the blurred profile among

t clients having least number of profiles of other clients.

Since, SamaritanCloud can distribute in parallel, the runtime

of ProfileUpdate is O(1).
In HelpRequest phase, the requesting client sends blurred

requested profile along with encrypted tolerance value to the

cloud. SamaritanCloud broadcasts these informations among

all available clients. Clients compute the distance between

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

9

requested profile and other stored profile data. Broadcast

to clients take O(1) time. Time taken to compute distance

between a pair is O(d), because a profile has d dimensions.

Since, each client has k number of profile data of other clients,

it takes O(d · k) time for a client to determine set of near-

neighbors. Since, blurred profile data of a client is distributed

among t clients having least number of profile data of other

clients, k = loglogn
logt [24].

For experimental purpose we consider plain-text mode, where

ProfileUpdate HelpRequest

O(1) O(d ·

loglogn

logt
)

TABLE III
RUNTIME OF DIFFERENT PHASES OF SAMARITANCLOUD

no profile information is blurred and all communications are

un-encrypted. We compared latency of a help request in plain-

text mode with that of the proposed protocol.

Latency, Fig.12, is measured starting from the moment the

requester sends out blurred attributes to the time he gets

response from the server. We ran our server implementation

on a machine with 2.5 GHz Intel Core i5 and 4GB memory.

To minimize the affect of Internet speed, we simulated clients

on another machine on the same LAN. The main takeaways

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

L
a

te
n

c
y
 (

s
)

Number of requests per second

n=10k, d=10
n=20k, d=10
n=30k, d=10

n=10k, d=100
n=20k, d=100
n=30k, d=100

Fig. 12. Matching time measurement: plain-text(red) vs. encrypted mes-
sage(green)

are that using plain-text messages has the benefit of fast

query processing but leaks client privacy to the server; com-

munication with encrypted messages preserves client privacy,

while the query processing is expensive. When using plain-text

messages, query latency nearly remains the same when request

rate increases; server scalability depends on the number of live

TCP connections (open files) allowed on the machine. In the

normal encrypted mode, for n=20k query processing is not

fast enough when request rate exceeds 200/second. To prevent

congestion each client can send one valid request only every 5

minutes. With this request rate, the server can handle 30,000

live clients simultaneously.

IV. CONCLUSION

To the best of our knowledge, SamaritanCloud is the first

of its kind in using location-based social networking system

to enable people to physically help each other. In our system,

when an user needs help at a particular location, the request

is sent to the server and the users near the area of interest are

looked up efficiently using distributed additive homomorphic

encryption. To hinder external and internal security attacks

SamaritanCloud uses randomly generated blurs. We have

implemented a SamaritanCloud mobile application for iOS

5.0. The application fetches user’s location with the help of

one of cell triangulation, Wi-Fi hotspot or GPS. Because of

the limited battery-life and processing power of smartphones,

the mobile application allows users to manually select the

frequency of location update and the level of security that

they desire. Our SamaritanCloud system, opens up an entirely

new approach to enable people to benefit from location-based

social networks.

REFERENCES

[1] “Strangers helping strangers,” http://www.facebook.com/SHStrangers.
[2] “Yelp,” http://www.yelp.com/.
[3] “Facebook places,” http://www.facebook.com/facebookplaces.
[4] “Gowalla,” http://gowalla.com/.
[5] “Foursquare,” https://foursquare.com/.
[6] D. Stackpole, “Dynamic geosocial networking,” Patent US

2008/0 140 650 A1, 06 12, 2008.
[7] Q. Huang and Y. Liu, “On geo-social network services,” Geoinformatics,

2009.
[8] A. Cooper and T. Hardie, “Geopriv: creating building blocks for man-

aging location privacy on the internet,” IETF Journal, 2002.
[9] G. Myles, A. Friday, and N. Davies, “Preserving privacy in environments

with location-based applications,” Pervasive Computing, IEEE, 2003.
[10] H. Kido, Y. Yanagisawa, and T. Satoh, “An anonymous communication

technique using dummies for location-based services,” in Proceedings

of IEEE International Conference on Pervasive Service, 2005.
[11] A. R. Beresford and F. Stajano, “Location privacy in pervasive comput-

ing,” IEEE Pervasive Computing, 2003.
[12] K. P. Tang, P. Keyani, J. Fogarty, and J. I. Hong, “Putting people in

their place: An anonymous and privacy-sensitive approach to collecting
sensed data in location-based applications,” in Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, 2006.

[13] M. Gruteser and X. Liu, “Protecting privacy in continuous location-
tracking applications,” IEEE security and privacy, 2004.

[14] M. Duckham and L. Kulik, “A formal model of obfuscation and
negotiation for location privacy,” Pervasive, 2005.

[15] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloacking,” in Proceedings of the
International Conference on MobiSys, 2003.

[16] B. Gedik and L. Liu, “A customizable k-anonymity model for protecting
location privacy,” in Proceeding of the International Conference on

Distributed Computing Systems, 2005.
[17] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The new casper: a

privacy-aware location-based database server,” IEEE 23rd International

Conference on Data Engineering, 2007.
[18] J. I. Hong and J. A. Landay, “An architecture for privacy-sensitive

ubiquitous computing,” in Proceedings of the International Conference

on Mobile Systems, 2004.
[19] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play

mental poker keeping secret all partial information,” in Proceedings of

the fourteenth annual ACM symposium on Theory of computing, ser.
STOC ’82. ACM, 1982.

[20] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” Information Theory, IEEE Transactions on, vol. 31,
no. 4, pp. 469 – 472, jul 1985.

[21] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Pro-
ceedings of the 41st annual ACM symposium on Theory of computing,
ser. STOC ’09. ACM, 2009.

[22] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of the 3rd ACM workshop on

Cloud computing security workshop, ser. CCSW ’11. ACM, 2011.
[23] C. Raiciu and D. S. Rosenblum, “Enabling confidentiality in content-

based publish/subscribe infrastructures,” Securecomm and Workshops,
2006.

[24] R. S. Michael Mitzenmacher, Andrea W. Richa, “The power of two
random choices: A survey of techniques and results,” in Handbook of
Randomized Computing. Kluwer, 2000, pp. 255–312.

9

