
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

SANTaClass: A Self Adaptive Network Traffic
Classification System
Alok Tongaonkar, Ram Keralapura, Antonio Nucci

Narus Inc., USA
{alok, rkeralapura, anucci}@narus.com

Abstract—A critical aspect of network management from an
operator’s perspective is the ability to understand or classify
all traffic that traverses the network. The failure of port based
traffic classification technique triggered an interest in discovering
signatures based on packet content. However, this approach in-
volves manually reverse engineering all the applications/protocols
that need to be identified. This suffers from the problem of
scalability; keeping up with the new applications that come
up everyday is very challenging and time-consuming. Moreover,
traditional approach of developing signatures once and using
them in different networks suffers from low coverage. In this
work, we present a novel fully automated packet payload content
(PPC) based network traffic classification system that addresses
the above shortcomings. Our system learns new application
signatures in the network where classification is desired. Further
more, our system adapts the signatures as the traffic for an
application changes. Based on real traces from several service
providers, we show that our system is capable of detecting
(1) tunneled or wrapped applications, (2) applications that use
random ports, and (3) new applications. Moreover, it is robust
to routing asymmetry, an important requirement in large ISPs,
and has a very high (>99.5%) detection rate. Finally, our system
is easy to deploy and setup and performs classification in real-
time.

I. INTRODUCTION

A critical aspect of network management from an operator’s
perspective is the ability to understand or classify all traffic
that traverses the network. This ability is important for traffic
engineering and billing, network planning and provisioning as
well as network security. Rather than basic information about
the ongoing sessions, all of the aforementioned functionalities
require accurate knowledge of what is traversing the network
in order to be effective.

Network operators typically rely on deep packet inspection
(DPI) techniques for gaining visibility into the network traf-
fic [11], [15], [18]. These techniques inspect packet content
and try to identify application-level protocols such as Simple
Mail Transort Protocol (SMTP) and Microsoft Server Message
Block (SMB) protocol. In this paper, we refer to application-
level protocols, with a distinct behavior in terms of com-
munication exchange, simply as applications (or sometimes
as protocol) for ease of understanding. In commercial world,
DPI based techniques commonly use application signatures in
the form of regular expressions to identify the applications.
Signatures for each application are developed manually by
inspecting standards documents or reverse engineering the
application.

However, use of DPI based approaches in large network
shows that the coverage is usually low, i.e., a large fraction
of traffic is unknown. The main reason for the low coverage
in commercial solutions is the lack of signatures for many
applications. Many applications like online gaming and p2p
applications do not publish their protocol formats for general
use. Reverse engineering the several hundred new p2p and
gaming applications that have been introduced over the last
5 years requires a huge manual effort. As a consequence,
keeping a comprehensive and up-to-date list of application
signatures is infeasible.

Recent years have seen an increasing number of research
work that aim to automatically reverse engineer application
message formats. These techniques work well when they are
used for targeted reverse engineering i.e., they have access
to either the binaries for the application [6] or the network
traffic belonging to an application [9], [21]. There are two
main drawbacks of these approaches that severely limit the
use of these techniques for automatic application signature
generation. First, these techniques are unable to handle 0-day
applications, i.e., applications that are seen for the first time in
the network. Clearly, it is impractical for a network operator
to obtain the binaries belonging to all the applications that all
the network users ever install on their machines. On the other
hand, network traffic based techniques are also impractical
for 0-day application signature generation as they require the
ability to identify the application in the first place in order to
group all the application flows together.

The second problem that the automatic reverse engineering
techniques fail to deal with is the variations in the application
message formats. These variations may be due to the evolution
of applications which may lead to addition or modification
of features. For example, many SMTP servers now support
newer extensions such as the use of keyword EHLO instead
of HELO. If the signature for SMTP does not account for this,
it will fail to match flows originating from clients using the
extensions. Another common reason for the variation is the
differences in the underlying OS. Many text-based network
applications use newline as a delimiter. However, newline
is represented by carriage return (CR) and linefeed (LF) on
Windows and only by linefeed on Unix. The signatures need
to account for such differences as well.

In this work, we present a novel approach for network
traffic classification that overcomes the above shortcomings by
learning the application signatures on the network where the

Networking 2013 1569698247

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2

classifier is deployed. Our approach, which we call Self Adap-
tive Network Traffic Classification, aims to eliminate the man-
ual intervention required to develop accurate payload based
signatures for various applications such that they can be used
for real-time classification. We built a Self Adaptive Network
Traffic Classification system, called SANTaClass, that com-
bines a novel automated signature generation algorithm with
a real-time traffic classifier. Our system can be plugged into
any network and it automatically learns application signatures
tailored to that network. The signature generation algorithm is
based on identifying invariant patterns and can handle text-
based and binary-based as well as encrypted applications in a
uniform way. Moreover, our system uses incremental learning
to adapt to the changing nature of the network traffic by
generating signatures for applications which were not seen
before as well as newer versions of applications for which we
have already extracted signatures. The main contributions of
this work are:
• We propose and evaluate a novel methodology that auto-
matically learns signatures for applications on any network
without any manual intervention. These signatures reflect the
applications seen on the deployed link and the signature set
evolves as and how new applications traverse the link.
• We built an efficient system which combines automated
signature generation process with real-time traffic classifica-
tion such that the current set of signatures that are extracted
are utilized to classify traffic in the future in a transparent
fashion. We have currently deployed this system in more than
6 different Internet service providers and enterprise networks.
• Our experiments with real traffic from multiple ISPs shows
that our methodology

• increases coverage by identifying new applications
• handles variations in applications due to varying imple-

mentations or application evolution
• has high accuracy when compared to the state of the art

DPI systems
• adapts to changing network traffic without user interven-

tion
• can extract signatures for several encrypted applications
• is robust to routing asymmetry.

• Finally, the learn-on-the-fly philosophy behind our system
is a major paradigm shift from existing classification systems
which use pre-loaded application signatures.

The rest of the paper is organized as follows. In Section II
we describe the system design. Section III describes the
complete system implementation. We present the experimental
results in Section IV. We discuss related work in Section V.
Finally, we conclude the paper in Section VI.

II. SYSTEM OVERVIEW

SANTaClass is a completely automated network traffic
classification system that involves real-time classification and
unsupervised signature generation. The input to our system are
full packets.

1 CS: EHLO MAIL.LABSERVICE.IT
2 SC: 250-IMTA01.WESTCHESTER.COMCAST.NET HELLO ...
3 CS: MAIL FROM:<DAGA@LABSERVICE.IT> ...
4 SC: 250 2.1.0 <DAGA@LABSERVICE.IT> SENDER OK

Fig. 1. SMTP Session 1

1 CS: EHLO QMTA03.COMCAST.NET
2 SC: 250-MAIL.LABSERVICE.IT SAYS EHLO TO ...
3 CS: MAIL FROM:<> ...
4 SC: 250 MAIL FROM ACCEPTED

Fig. 2. SMTP Session 2

A. Application Signatures

The key insight in generating signatures is that flows be-
longing to an application contain certain invariant parts such
as keywords in text-based applications and fields like session
identifiers in binary-based applications. These invariant parts
can form the building blocks of application signatures. In this
paper, we focus on text-based applications and omit binary-
based applications due to lack of space. We note that the
binary-based technique, which is based on identifying invariant
bit patterns, is similar to the text-based technique that utilizes
invariant string patterns as signatures.

Consider the flows belonging to two different sessions of
SMTP shown in Figures 1 and 2. Client-to-server payloads
are indicated by CS and server-to-client ones with SC. If we
consider the client-to-server flow for session 1, it consists of
payloads in step 1 and 3 concatenated together. Similarly, for
session 2, client-to-server consists of payloads from step 1
and 3. It is clear that they share some common strings such
as “EHLO” and “MAIL FROM:”. These common parts may
or may not contain application keywords. We are interested in
identifying such invariant parts and not necessarily identifying
all application keywords since our goal is not to reverse
engineer the application message formats but to generate
signatures that can be used to identify the applications. We use
“term” to refer to strings of arbitrary length. Terms which are
present in multiple flows are referred to as “common terms”.
The question that we try to address in this work is “how can
we generate application signatures from common terms?”

A straightforward approach to using the terms as signatures
is to use the presence of common terms in flows for clas-
sification. A simple scheme for weighting can reward terms
that occur frequently in an application term set and penalize
terms that are present in multiple term sets [24]. Such an
approach is light-weight and depends only on the weighted
terms. However this approach introduces false positives [17].
The problem of false-positives can be significantly reduced by
providing additional context in the signatures.

The signatures can be augmented with context by consid-
ering the sequence (or ordering) of terms in flow content
instead of considering the terms independently. This allows
us to reduce the false-positives due to overly general or loose
signatures. For example, the signature “application is X only
if a flow contains term A followed by term B” is tighter than
the signature “application is X if a flow contains terms A
and B”. The latter signature will match a flow content that

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3

has terms A and B in the order B followed by A, which
may not be possible in application X. Such ordering relation
can be represented as a Prefix Tree Acceptor (PTA), which
is a trie-like deterministic finite state automata, i.e., it has no
back edges [16]. Figure 3 shows the PTA for SMTP client-
to-server. Note that each of the nodes has a self loop which
allows arbitrary characters to be matched between terms. We
omit these self loops from the figures in this paper for ease of
understanding. We can see that the starting node in the PTA
has two outgoing transitions corresponding to “EHLO” and
“HELO”. This is because some SMTP flows on the network
contain the older “HELO” keyword and others use “EHLO”
which is supported in extended SMTP. In this paper, we
use PTA and state machines interchangeably to refer to the
representation of signatures as shown in Figure 3.

�

�����

�

����

�
�	
���
���

�
�	
���
���

�

�������

�

�������

Fig. 3. PTA for SMTP c-to-s

Handling Encrypted Traffic. Any payload content based
classifier will face certain limitations when the payload is
encrypted. However, we observe that this is not a severe
limitation due to the way applications use encryption. Typ-
ically, most applications have a clear-text part at the start of
a session for negotiating parameters and such. This clear text
contains invariant strings that helps us generate signatures for
applications that use encryption. Since our technique relies
on traffic from multiple communicating entities (explained in
Section III-C), we can also use invariants such certificates
within encrypted payload as application signatures. Moreover,
the invariant bit patterns in encrypted payloads are captured as
binary signatures (which we do not discuss in this paper). We
note that the combination of these factors does not guarantee
that we are be able to identify all the encrypted traffic but still
allowed us to identify a large fraction (≈80%) of real-world
encrypted traffic.

B. Design

Figure 4 shows the architecture of the system with blocks
having real-time constraint shown in Green color. When SAN-
TaClass receives full packets as input, the flow reconstructor
module first reconstructs flows. Then the classifier tries to label
these flows using any existing packet content based signatures.
If the classifier successfully labels a flow, then the result
is recorded in a database. The classification process for the
flow ends. However, if the classifier cannot label the flow,
then the flow is sent to the flow-set constructor which tries
to group together flows belonging to each application into
flow-sets. The signature generator extracts one signature for
each flow-set. Finally, the distiller module distills any newly
extracted signature by consolidating with existing signature for
the application, and eliminating redundancies.

Given the above design, we can see that the SANTaClass
system can easily tolerate false-negatives (flows that do not

Fig. 4. SANTaClass Architecture

get labeled despite having a signature), but cannot tolerate
false-positives (flows that are misclassified). The reason for
this is the following. The proposed signature generation is
an incremental process, i.e., the signature for an application
is generated as and how the signature generator sees the
flows belonging to the application. The system starts with no
signatures in the database. When the first set of application
flows enter the system, a new signature for the application
is generated and populated in the database. Now the system
has one signature. Henceforth, all the flows that belong to the
application are classified and thus do not enter the automated
training phase. Now, if the signature is not very accurate,
then several flows that do not belong to the application
may get misclassified as belonging to the application. These
misclassified flows (i.e. false-positives) will never be available
for training in the future and the errors in classification will
continue to increase. Hence, in the signature generator, the
goal is to ensure that if the system has to err then it should
err on the false negative side and not the false positive side.

III. IMPLEMENTATION

In this section, we describe each of the system components
in detail.

A. Flow Reconstructor

Flow reconstructor captures all packets flowing through a
link and performs IP defragmentation and TCP reassembly. It
maintains session information for every session. Each session
is composed of two flows: client-to-server (henceforth referred
to as c-to-s) and server-to-client (s-to-c). We consider each
flow of the session independently since in the backbone one of
the two directions is often missing due to routing asymmetry.
Each flow is constructed by concatenating the transport layer
payload from all packets in the given direction. What this
means is that we ignore all headers up to and including
transport layer (TCP/UDP). Maintaining the complete pay-
loads in all packets in a given direction causes dramatic
increase in space requirements as well increases the latency
in classification. To overcome this, we store a specific number
of bytes in each direction. This is a reasonable compromise as
we expect most common terms to be present in the application
layer headers, which are present at the start of the flow. In
our implementation, we store a maximum of 1024 bytes of
application data in each direction as we empirically found
this value to be good for extracting strong signatures without
causing noticeable performance degradation. Note that for the
flows that terminate before producing 1024 bytes of payload,

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

4

all of the application data will be stored. From here on, we
refer to the contents of a flow as payload. We convert the
payload to upper case in order to improve the efficiency of the
classifier since case sensitive string matching incurs space/time
overhead compared to case insensitive matching.

B. Classifier

The classifier is responsible for matching every incoming
payload against all signatures in the database and identifying
all the matching signatures. The classifier can naively do
this by iterating over the signatures and traversing the PTA
by performing string searches for the outgoing transitions in
the payload. The above approach is very inefficient as string
search, which is an expensive operation, may be performed
multiple times. At each state in a PTA, the payload is scanned
multiple times for each of the terms on the outgoing transi-
tions. Moreover, this search is repeated across multiple states
(possibly belonging to different signatures) even if the terms
are same. To overcome these redundancies, we developed a
two phase classification system that uses efficient multi-pattern
search to identify all terms present in a payload in a single
scan and then use these terms to match only the signatures
which contain these terms.

In the first phase, we use Aho-Corasick [3] as follows.
We create a trie-like structure with failure links, called Aho-
Corasick Trie (ACT), from all the terms present in all the
signatures. This ACT helps us identify all the matching terms
in a payload, ordered according to their offsets in the payload,
and the set of signatures that contain each term, in a single
scan of the payload. In the second phase, we iterate over
each of the signatures that have at least one term matched
by ACT, and match their PTA as follows. We maintain a
pointer in the ordered list of terms that matched in a payload,
called current term pointer, and a corresponding pointer to
current state, called current state pointer. Starting from the
current term pointer, we pick the first term in the matched
term list that has an outgoing transition in the current state.
We move the current term pointer to this term and take the
transition by moving the current state pointer to the end
state of the transition. If the new current state is a matching
state, we can announce a match for the signature but continue
matching to see if we can get a stronger match (i.e., match at
a state which has a longer path length from start state). If no
such term is found, then we can make no progress and stop
this process. In this case, based on whether current state is
accepting (or not) we announce success (or failure). We note
that the ACT has to be reconstructed every time the signatures
in the database change. However, the new ACT can be built
in a background thread and hot-swapped with the old one to
prevent any performance degradation.

C. Flow-Set Constructor

A critical component in the overall system is the flow-set
constructor. The main goal of this component is to organize
the incoming flows into buckets (or flow-sets) such that each
bucket represents a particular application. The facts that an

application can run on multiple ports, and multiple applications
can run on the same port, make this problem hard to solve. If
a bucket contains flows from multiple applications, then the
signature extracted by the downstream component will result
in inaccurate classification. Hence, it is critical to devise a
strategy to accurately bucketize applications.

In this work, we perform bucketization in two steps. The
first step is to use DNS information corresponding to the data
flows that need to be bucketized. Most of the applications
today (except for some p2p applications) rely on DNS to
provide the name to ip-address resolution. In other words, a
DNS query and response precedes an actual application flow.
In this approach, we correlate the DNS information (i.e., the
server-ip, client-ip, and domain name) with the data flow to
identify the corresponding domain name. for example, a flow
generated by Google Mail will be correlated to the domain
name mail.google.com or gmail.com. We use the complete
domain name as the “key” for the bucket and place the
application flow into the bucket. If the bucket with the current
“key” did not exist before, then we will create a new bucket
and put the application flow as the first element in the bucket.
For more details about the algorithm and the implementation,
please refer to [4]. The bucket is considered full and sent to
the signature generator based on a simple threshold.

For a flow that comes into the flow-set constructor, we
first try to put it into a bucket based on the corresponding
DNS domain name as described above. If we can successfully
bucketize the flow, then we are done. If not, we proceed
to the second step of bucketization. In the second step, we
bucketize the flow using the following three values as the
“key”: the layer-4 protocol, the server port number, and the
flow direction (i.e., s-to-c or c-to-s). Obviously a strategy like
this will introduce flows from several applications into a single
bucket. We counter this by using two steps: (i) Ensuring that
the bucket is good statistical representation of the flows on the
port, and (ii) Sophisticated clustering algorithm that groups
various flows based on the similarity of their payloads.

To ensure we have a good statistically diverse set of flows
inside a flow-set, we use several user configurable parameters
while constructing flow-sets. A valid flow set should satisfy the
following constraints: (a) Server Diversity. The total number
of server ip-addresses in the flow set should be greater than a
threshold (say, sth). This ensures that the signature extracted
is not specific to one server hosting a service. (b) Number of
Flows per Server. To help reduce the impact of one server
on the extracted signature, we bound the maximum number
of flows that we consider for each server IP-address by a
threshold (say nmaxsth). (c) Total Flows Per Flow-Set. The
total number of flows in the flow set should be greater than
a threshold (say nminth) to ensure that a flow set contains
enough number of flows to represent a statistically good subset
of application flows.

The flow-set formed using the above process is subject to a
two-dimensional clustering process based on the similarity of
the flow payloads. The algorithm that we use is similar to [23].
We will omit the details of the algorithm here, but mention

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

5

that the output from this algorithm will result in a flow-set
with extremely cohesive set of flows.

D. Signature Generator

We developed a novel system for extracting the signatures
from the flow-sets. It is composed of the following three
components: (i) Common Term Set Extraction (ii) Common
Term Set Refinement (iii) PTA Generation.

1) Common Term Set Extraction: The input to this compo-
nent is a flow-set that contains the application payload content
of each flow in the flow-set. Extracting common terms requires
pairwise comparisons of the application payload content of
all the flows in the flow-set. In other words, if there are n
flows in a flow-set, then this operation requires O(n2) payload
comparisons. To further increase the complexity, each payload
comparison involves all common substring extraction - an
operation that has the complexity O(ab), where a and b are
the lengths of the two payload strings that are being compared.
Hence, the overall complexity of extracting all common sub-
strings for a flow set has the complexity O(n2m2), where n is
the total number of flows in the flow-set and m is the average
length of the payload strings in the flow-set. If we assume that
a flow-set consists of a few thousand flows and the average
payload length is 1000 bytes, the common substring extraction
algorithm requires more than a million string comparisons -
an impractical operation.

Hence, we first split a given flow set, F , into several smaller
subsets1, and extract common terms in each of these subsets
independently. For every pair of payloads in each of the
subsets we extract all the common terms and insert them in
common term set CTS. Note that CTS contains only unique
terms and hence, duplicates are eliminated.

2) Common Term Set Refinement: As noted before, we ex-
tract terms (i.e., the longest common substrings) by comparing
two flow payloads with each other. The quality of the extracted
terms could affect both the quality of final signatures and the
efficiency of real-time classification. To ensure a high quality
of extracted terms, we enforce a set of rules that accepts good
terms and rejects bad terms. Here we present these rules.
Remove short terms. When multiple payloads are compared
with each other, many short terms are extracted. However,
these short terms add little value in determining whether
a particular flow belongs to given application or not. We
eliminate all terms that are shorter than a threshold, Tlen. In
our experiments, we found that a value of 4 for Tlen is good
for retaining important terms while discarding shorter terms
like OK+.
Remove terms unrelated to applications. Typically, a flow
originating from any application has certain fields, such
as the date/time field, that always occur but do not have
any relevance to the application. Hence we remove strings
that identify day/month/year, such as “MON”, “MONDAY”,
“JAN”, “2010”, “2011”, and those identifying specific domains
on the Internet, such as “.com”, “.edu”, etc.

1The upper bound on the number of flows in a sub-flow set can be controlled
using a user specified parameter.

Identify and remove bad terms. Most of the flows that we
see in the data traces carry several different parameter values
that are usually numeric values. We eliminate any terms that
does not contain at least two alphabetic characters, such as
“2E00”,“/0/0/0/”, “0.001”, etc.

Remove low frequency terms. If the number of terms in the
common term set is large it can potentially lead to PTAs with
a large number of states and paths. To reduce the number of
terms that we consider in the common term set, we define
two thresholds: term probability threshold, P and the number
of terms threshold, N . The term probability threshold selects
only those terms that occur with a probability greater than P
in the flow-set . The number of terms threshold selects at most
the top-N terms with the highest probabilities. The terms that
pass both of the above constraints are retained in the common
term set and the rest are discarded.

Handle substrings. If we find that one term is a substring
of another term, then we retain the term that has a higher
probability and eliminate the other. If the probabilities happen
to be the same, then we retain the term that is longer.

Add mutually exclusive terms. A problem that will be
introduced by the above thresholds is that several important
terms might be eliminated. For example, consider the popular
HTTP protocol. There are several methods that can be used
in this protocol like GET, POST, HEAD, PUT, DELETE, etc.
Each of these methods might not have a high probability of
occurrence; however when analyzing many http flows all of
these methods can occur in the flows. If we set the term
probability threshold, P to be high, then all of the terms
representing these methods will get eliminated. To counter
this problem we introduce mutually exclusive term grouping
- a process by which terms are grouped together when two
conditions are satisfied: (1) The terms that belong to the
same group do not occur in the same flow payload, i.e., the
terms occur mutually exclusively from each other, and (2) The
combined probability of all the terms in a group should be at
least equal to the term probability threshold, P . Note that the
combined probability of a mutually exclusive term group is
simply the sum of the probabilities of all the terms in the
group. We add all the terms in the mutually exclusive group
into the set of eligible terms.

3) PTA Generation from Terms: The inputs to this compo-
nent are all the flows in a flow set and the common term set for
the flow set. First, for every flow in the training set, we sort the
common terms in the order of occurrence in the payload. We
iterate through each of these terms in the order of occurrence
in the flow payload and build the state machine starting from
state 0 every time. If the transitions (i.e. the terms) are already
part of the state machine, then the pointer to the current state
is just forwarded. However, if the transition and states do not
exist, then they are added to the existing state machine. If
the term that is being examined is the last one in the sorted
sequence in the flow payload, then we make the next state an
accepting state.

5



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

6

E. Distiller

The signature generation module presented in previous
section generates signatures from a given flow-set independent
of other flow-sets, which may result in redundancies in the
signatures. We have developed a distiller module to distill all
the current signatures by resolving conflicts (i.e., overlaps),
identifying and eliminating duplicates, and optimizing state
machines. In the distiller module, we mainly accomplish the
following tasks:

1) Eliminate Redundancy: The distiller is responsible for
eliminating redundancy in the state machines as follows.
Identify and merge redundant state machines. Many appli-
cations, such as p2p, do not use a single standard port but can
run on any one (possibly user configured) of a range of port
numbers. This leads to the presence of same application in
different flow-sets. If the state machines that are extracted in
the signature generation module are identical, it indicates that
a particular application could be running on many different
ports. The distiller eliminates such duplicate state machines
and tags the first extracted one with a label that indicates the
application. Moreover, since our system may generate multiple
state machines for the same application in different iterations,
the distiller merges these state machines belonging to the same
application.
Handle overlaps between state machines Several applica-
tions, although significantly different from each other, can
share paths in their state machines. This typically occurs when
different applications share some common message formats,
such as the ones used for user authentication at the start of
a session. These paths, when traversed by a flow, could lead
to multiple labels which may or may not be conflicting with
each other. The distiller identifies these overlaps and extracts
them (i.e., the overlapping paths) to create new state machines
with multiple labels (concatenation of labels from all the
overlapping state machines) associated with them.

2) Optimize PTA: Our signature algorithm generates a
trie-like automaton. The advantage of this is the ease of
construction and sharing of states whenever the prefix of two
paths are common. A disadvantage of this approach is that
there is redundancy when paths share suffixes. In the distiller,
we identify such redundancies and merge suffixes to generate
directed-acylic-graph-like (DAG-like) automata that has the
same matching semantics as that of the trie-like automaton.
This optimization reduces the size of the automaton drasti-
cally for many of the signatures, which translates to a large
reduction in the memory footprint of the classifier. Figure 5
shows the optimized PTA corresponding to the PTA shown in
Figure 3.

�

�����

�

���� �

�	
���
���

�	
���
��� �

�������

Fig. 5. Optimized PTA for SMTP

3) Assign Confidence Scores: A flow may match multiple
state machines in the classifier. We developed a metric, called

confidence score, that helps us resolve ambiguity and assign a
unique label in case of conflicts. Intuitively, confidence scores
are values associated with the signatures that represent the
confidence that we have about how good a given signature is
for accurately identifying the application. If a flow matches
multiple state machines, we assign the label of the state
machine that has the higher confidence score. Since not all
the paths in a state machine are equally good for identifying
an application, we assign a confidence score for the state
machine and another for each path within the state machine.
The state machine confidence score is directly proportional to
the number of flows considered for signature generation. The
intuition here is that we can have a higher confidence on state
machines that are extracted from a higher number of flows.

We have developed three confidence scores based on path
characteristics which can be used independently or in combi-
nation (along with the state machine confidence score). Here
we explain these confidence scores in more detail.
Path lengths. Longer path lengths are typically better signa-
tures than shorter path lengths. One of the confidence scores
that the distiller module assigns is based on the path length
where longer paths get higher scores.
Transition probabilities along a path. If a lot of flows in
a flow set matches a particular path in the state machine,
then we can consider the path to be a good path. To capture
this notion we use a confidence score based on transition
probabilities. The transition probabilities are computed after
the state machines are constructed using the percentage of
flows from the flow set that traverse a particular transition.
The transition probabilities are weakly decreasing along a path.
Hence, we consider the probability of the last transition on a
path as the representative (lowest) probability of the path being
taken. We assign a high confidence score for paths that have
large values of last transition probability.
Term Frequency Inverse Document Frequency (TFIDF).
Term Frequency Inverse Document Frequency (tf-idf) [22] is
a weight commonly used in information retrieval and text
mining to evaluate how important a word is to a document
in a collection. The importance of a word increases with its
frequency in a document but reduces with an increase in the
number of documents containing that word. Intuitively, a high
tf-idf word indicates that the word is good for identifying
a document in a collection. We use a similar notion in the
distiller module to score the term sets that we use for signature
generation. A state machine represents a document and the
set of all state machines represents the overall collection. We
compute the tf-idf value of each term with respect to a state
machine. To compute the confidence score of a match along a
path, the distiller computes the maximum2 tf-idf of all terms
along a path and assigns it to the accepting state. Using this
methodology, we assign a high score to paths which have
terms with high tf-idf values, thus helping us to distinguish
an application from the entire set of applications.

2Note that we can use the average, median or any other metric feasible in
this context.

6



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

7

Note that none of the above measures will be very accurate
in all scenarios. For example, the signature for BitTorrent
protocol, shown in Figure 7, has a path length of 1. If we only
use the path length based confidence score, then we will ignore
it whenever we have matches with other signatures of longer
path lengths. On the other hand if we use tfidf confidence
score, then this is a very strong signature. Hence, we wish to
point out that an ideal approach is to use all the confidence
scores together and make a decision based on all the scores.

IV. EVALUATION

In this section, we provide details about the setup that we
have used for our experiments and the results that we obtained
using the system that we presented.

A. Setup

Data Set. To evaluate our algorithms, we used 2 different
traces from large ISPs. The first trace is from a tier-1 backbone
network, while the second trace is from a cellular service
provider. The first trace is about 10 minutes long collected
from a OC-192 link while the second trace is about 30 minutes
long collected on a 1 GigE link. Both the traces are raw
packets including the complete packet payload. The details
of the traces are shown in Table I.

Name Collection Time Duration Link Flows
ISP1 Aug 2010 10 mins OC-192 1.2M
ISP2 Mar 2011 30 mins 1 GigE 5.2M

TABLE I
DATA TRACES USED IN EXPERIMENTS

System Settings. Before we present the state machines, it
is important to understand all the parameters that we use
in our algorithms when running our experiments. Due to
space limitations we will not discuss how we tune these
parameters in our experiments. However, Table II shows all the
parameters used. Using these parameter settings we extracted
36 state machines for ISP1 traces and 158 state machines for
ISP2 traces. Some of the key observations are presented below.

B. Results

1) PTAs Generated by SANTaClass: Here, we will show
several different PTAs that we were able to extract automati-
cally from the two traces. We will focus mainly on PTAs that
we generated using the ISP2 (the cellular service provider)
traces. However, we will use some of the PTAs from the other
ISP to compare and contrast between the PTAs.
Some PTAs are trace dependent. Figure 6 shows the state
machine that our algorithm automatically extracted for SMTP
in ISP2 trace. This PTA has has just one path with three terms
(HELO, MAIL FROM:, RCPT TO:). However, the same ap-
plication has a different PTA in ISP1 traces (Figure 5). We can
see that there is an additional path, starting with a transition
on EHLO. The main take away point here is that some of
the applications like SMTP (which typically runs on TCP

Parameter Name Value
Min. Flows in a Flow-Set, nminth 50

Min. Num. of Servers, sth 5
Max. Num. of Flows Per Server, nmaxsth 200

Min. Num. of Total Flows 1000
Max. Num. of Total Flows 5000
Min. Term Length, Tlen 4 bytes

Term Probability Threshold, P 0.8
Max Num of Term Threshold, N Unused

TABLE II
PARAMETER SETTINGS FOR SANTACLASS SYSTEM

port 25) can behave a little differently in different networks
depending on the implementation both on the server and the
client sides. Hence, it is a good choice to extract signatures
for such applications on the network where we intend to
classify traffic since signatures carried over from one network
to another might not work very well.
Signatures for new applications. We examined the set of
PTAs that were output by our system and found that there
were several PTAs that we could not easily associate with
a well known application. We show a couple of examples
for this here. The first application is “nginx”, a http and a
reverse proxy server that is very popular with the users in
ISP2. The PTAs (for both the directions) for this service are
shown in Figures 8 and 9. Note that some of the terms in the
PTA can help us identify the application/service easily. The
second application that we want to point out is “LindenLab”
(Figure 10). This is a gaming application (on the same lines
as “second life”). The main take away point here is that our
approach is capable of identifying new applications without
any human intervention.

The terms in a state machine can reveal a lot about the
application. Another important characteristic of our signature
generation process is that the PTA and the term set associated
with it can reveal a lot of information about the behavior of
the application. For example, consider the RTSP protocol that
is running on TCP port 554 in the ISP2 trace. Figures 11
and 12 show the state machines for this protocol in the client
to server and server to client direction respectively. These
PTAs reveal a number of important aspects: (1) The first
term DESCRIBE is a request method in the RTSP protocol.
(2) The term YOUTUBE occurs with a probability of over
90%. This shows that Youtube is an extremely popular site
among ISP2 customers and more than 90% of RTSP requests
are intended for Youtube streaming. (3) The term .3GP
reveals the video file format that is being requested. (4) The
term RTSP/1.0 reveals the version of RTSP being used
and CSEQ that a sequence number is being specified for a
request/response. (5) The term MVOG tells us that the cellular
service provider network is using a mobile video optimization
gateway (MVOG) to optimize multimedia traffic.

�� �
����

�
�	
���
��� 
�������

Fig. 6. PTA for SMTP in ISP2

7



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

8

70 1GET[20]/D/ 2ULFVA 3THE.EVENT.10 4.HDTV-LOL.AVI[20]HTTP/1. 5HOST:[20]S 6USER-AGENT: CONNECTION:[20]KEEP-ALIVE

Fig. 8. PTA for <TCP,182,c-to-s> in ISP2

9 10WRONG[20]IP0 1HTTP/1.1 2SERVER:[20]NGINX/0.8.4 3DATE: 4CONTENT-TYPE: 5CONTENT-LENGTH: 6LAST-MODIFIED: 7CONNECTION: 8T-RANGE :[20]BYTES

Fig. 9. PTA for <TCP,182,s-to-c> in ISP2

90 1GET[20]/CAP/ 2/?TEXTURE_ID= 3HTTP/1.1 4HOST:[20]SIM 5.AGNI.LINDENLAB.COM:12046 6CONNECTION:[20]KEEP-ALIVE 7KEEP-ALIVE:[20]300 8ACCEPT:[20]IMAGE/X-J2C RANGE:[20]BYTES=

Fig. 10. PTA for <TCP,12046,c-to-s> in ISP2

2

57P://D

88

DEVICE0 40DESCRIBE 1RTSP:// 31YOUTUBE 277LENY73WIA
283

FEIJBXYTZ29VZ2XLSA

301

BXYTC 2130.3GPXVZSA 3RTSP/1.0 4CSEQ: USER-AGENT:

Fig. 11. PTA for <TCP,554,c-to-s> in ISP2

10
BITTORRENT[20]PROTOCOL

Fig. 7. PTA for Bittorent

ISP1 ISP2
Total Flows 1.2M (100%) 5.2M (100%)

Total Classified 1.19M (99.56%) 5.17M (99.54%)
Total Missed 5.3K (0.44%) 23.8K (0.46%)

TABLE III
FINAL CLASSIFICATION RESULTS

C. Classification Results

Measuring coverage. For each of the traces, we passed the
complete trace through the system to generate signatures and
then passed the trace to the system again to evaluate the
classifier recall. Table III shows the classification results for
both the traces using the PTAs generated using the same trace.
We can see that in both the traces, we are able to classify
over 99.5% of all traffic. The small fraction of traffic that our
classifier does not identify is mainly due to the fact that we
do not extract signatures for applications for which there are
not enough flows.
Measuring accuracy. As mentioned before, our system can
not tolerate false positives. To measure false positives we
need ground truth about the actual application in a flow. One
way to obtain the ground truth is to use a traditional DPI
system. Unfortunately, DPI systems typically can recognize
only a limited number of applications and can not label
new applications. Even for known applications, the DPI may
label the flow incorrectly. Hence, we have a chicken and
egg problem, where it is difficult to obtain the ground truth.
However, to get an idea about the false positives in our system,
we considered all the flows for which a commercial DPI
gave some label. We manually inspected the flows that had a
mismatch to check whether the labels generated by our system
were incorrect. In our experiments we found no false positives
as the mismatches were due to the more fine-grained labeling
in our system.

Below we present some interesting findings from our exper-
iments on the trace from ISP2 which highlights the accuracy
of our system compared to other approaches.

Well-known applications running on non-standard port.
We found 41 SMTP flows on TCP port 110 which is typically
reserved for POP3. In addition, we found a HTTP flow on
port 110. Traditional port-based classification approach would
have classified these flows as POP3.
Tunneled applications. Many applications tunnel traffic inside
other applications. Traditional approaches label such tunneled
flows with the label from either the outer application or the
inner application, but not both. In contrast, our approach
presents multiple labels corresponding to both the inner and
the outer application. We compared our results with a com-
mercial DPI system. In our experiments, we identified the
following tunneled applications based on the labels:
• We found 400 BitTorrent flows within HTTP. The commer-
cial DPI solution labeled these flows as just BitTorrent while
our system labeled these flows as both HTTP and BitTorrent.
• For many of the flows labeled as HTTP by DPI system, we
had additional labels:

• 3282 flows were labeled as Real Time Message Protocol
(RTMP) and HTTP. Inspection of these flows revealed
keywords such as HTTP, Shockwave, and Flash, clearly
indicating that the flows were carrying RTMP within
HTTP.

• We obtained HTTP and LindenLab labels for 5115 flows.
A manual inspection revealed that these were LindenLab
gaming flows tunneled inside HTTP.

• We identified 30080 flows that were running Torrent
inside HTTP. These flows revealed that “Azureus” client
was being used for tunneling torrents within HTTP.

Applications using random ports. We see that BitTorrent and
other torrent signatures match flows on many different ports.
This is expected since clients for these applications do not
require a fixed port and end up selecting random port in every
session based on user preference.

V. RELATED WORK

Failure of port based traffic classification systems led to
a growing interest in deep packet inspection solutions [1],
[2], [8], [19]. However, laborious manual step required to
reverse engineer protocols to develop signatures make these
solutions non-scalable. Many techniques use network traffic

8



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

9

3
31RTP/AVP

25

DATE:

21

0 2RTSP/1.0 1CSEQ:
7

:[20]RTSP

16

CACHE
MVOG/2.0

36CONTROL: 24DATE: 20[20]GMT
[20]GMT

:[20]RTSP

Fig. 12. PTA for <TCP,554,s-to-c> in ISP2

to reverser engineer protocols [9], [20], [21] but their focus is
on extracting the message formats and not application identi-
fication. They require the flows belonging to an application to
be grouped a priori. This limits the use of these techniques in
the real-world for generating signatures for new applications.

The LASER [17] and CUTE [24] systems try to automati-
cally extract application signatures based on longest common
substrings in application flows. However, these systems have
high false-positive and false-negative rates due to the lack
of context in signatures. ACAS [11] is another technique
intended to automatically extract application signatures using
the first 200 bytes of the flow payload content with the
intent of classifying traffic [11]. Although this work is novel
from a pure conceptual perspective, the practicality of such
framework is questionable since it has been tested only on
a very few and well-known applications such as FTP, POP3,
and IMAP. Moreover, it does not provide a way to recognize
new applications; it is mainly intended to find signatures
of applications that an operator is aware of. ACAS expects
the operator to manually group the flows that belong to an
application and provide it as input. Ma et al [14] developed
techniques for unsupervised learning for traffic classification
using common substrings. However, they do not show the
practicality of such techniques in recognizing applications in
the wild. Automatic worm detection is another area where
researchers have studied signature extraction in an automated
fashion [12], [13], [16]. However, these techniques also require
the flows, for which signature is to be extracted, to be grouped
together a priori.

Another drawback of DPI systems is that it is not always
possible or legal to access full payload data. This fact com-
bined with the inability of DPI in handling encrypted traffic
led to the development of techniques that use flow statistics
(i.e., L4 data) [5], [7], [10], [15], [25], [26]. Some of these
techniques have been shown to achieve high accuracy. How-
ever, in general, these results are from controlled experiments
and do not translate to equivalent high accuracy when dealing
with applications in the wild.

VI. CONCLUSIONS

In this work we presented SANTaClass, an automated
signature generation and traffic classification system based on
the Layer-7 (packet content) data. We proposed algorithms
for signature generation and distilling the generated signatures,
and showed that the generated signatures are practical for real-
time classification in the real-world.

REFERENCES

[1] CloudShield Technologies. http://www.cloudshield.com.
[2] L7 filter. http://l7-filter.sourceforge.net/.

[3] A. Aho and M. Corasick. Efficient string matching: An aid to biblio-
graphic search. Communications of the ACM, June 1975.

[4] I. Bermudez, M. Mellia, M. Munafo, R. Keralapura, and A. Nucci. DNS
to the Rescue: Discerning Content and Services in a Tangled Web. In
ACM Internet Measurement Conference, 2012.

[5] L. Bernaille, R. Teixeira, and K. Salamatian. Early Application Identifi-
cation. In ACM Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2006.

[6] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic
Extraction of Protocol Message Format using Dynamic Binary Analysis.
In ACM Conference on Computer and Communications Security, 2007.

[7] J.Y. Chung, B. Park, Y.J. Won, J. Strassner, and J.W. Hong. Traffic
Classification Based on Flow Similarity. In IEEE Workshop on IP
Operations and Management, 2009.

[8] Allot Communications. http://www.allot.com/.
[9] W. Cui, J. Kannan, and H. Wang. Discoverer: automatic protocol reverse

engineering of input formats. In Usenix Security Symposium, 2007.
[10] J. Erman, M. Arlitt, and A. Mahanti. Traffic Classification using

Clustering Algorithms. In ACM SIGCOMM Workshop on Mining
Network Data, 2006.

[11] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS: Automated
Construction of Application Signatures. In ACM SIGCOMM Workshop
on Mining Network Data, 2005.

[12] H. A. Kim and B. Karp. Autograph: Toward Automated, Distributed
Worm Signature Detection. In USENIX Security Symposium, 2004.

[13] Z. Li, M. Sanghi, Y. Chen, and M. Y. Kao. Hamsa: Fast Signature
Generation for Zero-day Polymorphic Worms with Provable Attack
Resilience. In IEEE Symposium on Security and Privacy, 2006.

[14] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. Voelker. Un-
expected Means of Protocol Inference. In ACM Internet Measurement
Conference, 2006.

[15] A. Moore and K. Papagiannaki. Toward the Accurate Identification of
Network Applications. In Passive and Active Measurements, 2005.

[16] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generat-
ing Signatures for Polymorphic Worms. In IEEE Symposium on Security
and Privacy, 2005.

[17] B. Park, Y. J. Won, M. Kim, and J. W. Hong. Towards Automated Ap-
plication Signature Generation for Traffic Identification. In IEEE/IFIP
Network Operations and Management Symposium, 2008.

[18] S. Sen, O. Spatscheck, and D. Wang. Accurate, Scalable In-Network
Identification of P2P Traffic Using Application Signatures. In Interna-
tional Conference on World Wide Web, 2004.

[19] TSTAT. http://www.telematica.polito.it/public/project/tstat-traffic-
monitoring-and-classification.

[20] Y. Wang, Y. Xiang, W. Zhou, and S. Yu. Generating regular expression
signatures for network traffic classification in trusted network manage-
ment. Journal of Network and Computer Applications, May 2012.

[21] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. Liu, Z. Zhang, D. Yao,
Y. Zhang, and L. Guo. A Semantics Aware Approach to Automated
Reverse Engineering Unknown Protocols. In IEEE International Con-
ference on Network Protocols, 2012.

[22] Wikipedia. http://en.wikipedia.org/wiki/tfidf.
[23] G. Xie, M. Iliofotou, R. Keralapura, M. Faloutsos, and A. Nucci.

SubFlow: Towards Practical Flow-Level Traffic Classification. In
IEEE International Conference on Computer Communications (Mini-
Conference), 2012.

[24] S. Yeganeh, M. Eftekhar, Y. Ganjali, R. Keralapura, and A. Nucci.
CUTE: traffic Classification Using TErms. In IEEE International
Conference on Computer Communications and Networking, 2012.

[25] S. Zander, T. Nguyen, and G. Armitage. Automated Traffic Classification
and Application Identification using Machine Learning. In IEEE
Conference on Local Computer Networks, 2005.

[26] S. Zander, T. Nguyen, and G. Armitage. Self-Learning IP Traffic
Classification Based on Statistical Flow Characteristics. In Passive and
Active Measurements, 2005.

9


