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Abstract—Guaranteeing a high availability of com-
munication services to customers is a day-to-day chal-
lenge for Carrier networks. In the context of IGP
routing, when a failure occurs, a re-convergence process
is initiated in order to re-establish a consistent view
of the network. During this process, the latency of
the failure detection, which is realized by the Hello
protocol, is responsible for an important unavailability.
Indeed, quick failure detection would require the use
of fast Hello exchange which, in turn, would cause
false detection and instability. However, there are often
forewarning signs that a network device is about to
stop working properly. Based on an embedded and
real-time risk-level assessment, one can adapt in a
real-time manner the Hello message frequency of sick
nodes and thus reduce unavailability while maintaining
the routing stability. This papers details and evaluates
a mechanism for adaptive failure detection timers in
IGP networks. The impacts in terms of availability
and quantity of Hello messages have been estimated
based on an analytical model and then simulated to
measure the benefits of the proposed proactive self-
healing function.

I. Introduction

IP networks now represent a large portion of networks
deployed worldwide, and more and more operators are
investing in full IP networks. Indeed, they have the ad-
vantage to be fast and easy to carry out, through their
various autonomic mechanisms [1], to be inexpensive, and
to allow a high flexibility. However, the IP protocol suffers
from some defects that lead operators to associate the
MPLS protocol for their critical networks. Besides traffic
engineering, IP protocol lacks effective fault management
which is an essential factor for the Quality of Service
(QoS) provided by operators to their customers. Both
topology and fault management rely on the Hello pro-
tocol which is not flawless. The Hello protocol is largely
responsible for the duration of service interruptions caused
by a breakdown that may last for several seconds. Such
unavailability is not acceptable for QoS sensitive traffics.
Unfortunately, the Hello protocol that detects failures by
sending control messages at regular intervals allows fast
detection only by increasing the frequency of sending these
messages at the expense of network stability. To solve
this problem, this paper proposes an Adaptive Failure

Detection Timers (AFDT) mechanism that exploits real-
time failure prediction to automatically adjust the Hello
protocol frequency rate. Many works have been done on
the failure prediction task but none of them interest in how
properly exploit such information. We differ by proving
a realistic way to take advantage of a failure prediction,
and evaluating the expected benefit for the operators,
in order to justify the interest of implementing failure
prediction functions into the network equipments. The
paper contribution aims to answer the following questions:

• What mechanisms can efficiently exploit failure pre-
dictions ?

• What are the gains expected by such predictions?
• What performances the failure prediction has to offer

to improve network management?

After a brief description of IP restoration and its related
works in Sec. II, the paper describes the self-healing
mechanism in Sec. III and explains its integration with
regards to the Hello protocol in Sec. IV. Section V defines
the analytical model developed to measure the effect of the
mechanism on the network availability and the routing sta-
bility. Afterwards, the instantiation of this model network
examples and its comparison with simulation experiments
are analyzed in Sec. VI. Finally, conclusion remarks of
Sec. VII close the paper.

II. Context and related work

In IP networks, intra-domain routing is performed by
using Interior Gateway Protocol (IGP) such as OSPF and
IS-IS. With OSPF, each router in a routing area discovers
and builds a complete view of the network topology.
When topology changes, typically due to a failure, the
convergence process is triggered. This process is composed
of four main phases [2]: a failure detection with tD as
the failure detection time, the Link State Advertisement
(LSA) flooding with tF as the LSA flooding time, the
Shortest Path First (SPF) computation with tSP as SPF
computation time, and the routing table and forwarding
table update with tU as table update time. Consequently,
convergence time tC , during which the routing topology is
not consistent, is given by tD + tF + tSP + tU . As it stands,
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the downtime of flows affected by a failure due to the con-
vergence process is of the order of several seconds, which is
not acceptable for premium traffics. Compared to failure
detection, the other steps are almost negligible in terms of
time since they are less than a hundred milliseconds, with
0.03 seconds for tF [3] and 0.2 seconds for tU [4]. The
computation time of the shortest paths depends on the
number of nodes in the network which, according to [4], is
equal to tSP (N) = 2.47.10−6 ∗|N |2 +9.78.10−3 where N is
the set of routers in the network. For clarity reason, we will
omit the dependence on N by using tSP in the following
formulas. Although subsecond failure detection had been
considered as resolved by using link layer detection or
hardware implemented BFD protocol in the data plane,
these mechanisms are not always available and, most of
all, do not allow to detect software failures present in the
control plane. Unfortunately, software failures have be-
come so important [5] that disregarding such failure is not
possible anymore. That is why the behaviour of Hello P2P
failure detection protocol of both OSPF and IS-IS, where
each router periodically sends keep-alive messages to all its
neighbors, is crucial. For each router, the period between
consecutive Hello messages sent is defined by the Hello
Interval parameter. This parameter has a default value of
30 seconds but can drop down to 1 second. However, it is
usually of the order of tens of seconds. After Router Dead
Interval seconds, a neighbor’s node that has not received
these Hello messages removes the router from the topology.
The Router Dead Interval parameter is commonly set to 3
or 4 times the value of Hello Interval. This ensures a fairly
reliable failure detection by waiting for the non-reception
of 3 or 4 Hello message before declaring it.

Although the Hello Interval can be as short as one
second, operators prefer to use higher values, i.e. between
3 and 10 seconds [6]. In fact, the use of a high frequency
for sending Hello messages generates false detection of fail-
ures, and hence creates oscillations in the routing process
[7]–[9]. Indeed, the need to send and receive Hello messages
on a few milliseconds basis creates an additional workload
that is not harmless for the main controller or the control
processor and may disturb other tasks performed by the
processing unit. Moreover, the shorter the Hello Interval,
the higher the probability a network congestion leads to
the loss of several consecutive Hello messages.

In many works dedicated to the improvement of the
convergence time [10], [11], a large part deals with failure
detection. The proposed solutions consist in reducing the
Hello Interval to sub-second values [4], [12] to speed up the
convergence of IGP protocols of one order of magnitude.
But this raises the problem of stability [8] that has been
the subject of numerous studies advocating for the dy-
namic adaptation of the Hello rate to the observed network
congestion [13]. Nevertheless, this solution considers that
the sensitivity of the Hello frequency to the congestion is
similar on each device, which is not the case in today’s net-
works with heterogeneous routers having different vendors,

qualities and ages. Another strategy proposes to automat-
ically adjust the frequency to the number of routing flap
[14], but this solution waits to observe oscillations before
to take action, limiting the problem without eradicating
it. Finally, the Bidirectional Forwarding Detection (BFD)
protocol [15] has been defined to allow a much faster de-
tection by using a much faster frequency of sending Hello
messages. It can be hardware implemented on line cards
to support sub-second rates without generating instability.
However, this implies not detecting faults that occur in
the controller or routing software that is problematic with
regards to the importance of such failure [5].

Despite efforts by the community to define the optimal
frequency for sending Hello messages, operators usually
use values in the order of few seconds [6]. Indeed, these
studies are based on some specific network configurations,
which are unrepresentative of the extent of operational
networks. In practice, the Hello Interval is never under
one second, but around three seconds [6] and up to ten
seconds, depending on the characteristics of each network.
Although subsecond failure detection is possible in some
specific cases this does not concern all equipments, all
protocols and becomes less and less frequent with the raise
of the software failures [5]. That why, improving the Hello
protocol is still a present concern.

III. Self-healing mechanism using

risk-assessment

The reliability of network infrastructures has continu-
ously evolved over the years. However, failures remain.
The origin of failures has somewhat evolved too [5]. For-
tunately, many of them are predictable thanks to the
monitoring. On large scale systems, on-line failure predic-
tion techniques like failure tracking, symptom monitoring,
error reporting or undetected error auditing have already
been tested [16]. Moreover, today’s network managers
generate thousands of warning messages that can be mon-
itored to extract a multitude of indicators. This includes
the temperature of the processing unit, the power supply
voltage information available via the ACPI (Advanced
Configuration and Power Interface) or the hard-drive sta-
tus indicated by the SMART (Self-Monitoring, Analysis,
and Reporting Technology) and all other indicators based
on hardware sensors. Network based parameters like the
bit-error rate or the packet-loss rate can also be integrated.
However software malfunction, which become more and
more important [5], are detectable by checking log entries,
system errors, unreleased file locks, file descriptor leaking,
data corruption, memory leaking, etc. Communications
with external systems, like Intrusion Detection System
(IDS) or Network Management System (NMS) are also
envisioned. At last, machine learning techniques [16] using
Bayesian networks, time series analysis, Support Vector
Machines or Semi-Markov Processes can be used to make
prediction more accurate.
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Unfortunately, there is a lack of appropriate tools inside
network elements to report failure detections in advance,
to provide a risk-level assessment in a timely manner, and
to supply relevant decisions with these information. In
Generic Autonomic Network Architecture (GANA) [17],
this role is devoted to the Risk assessment module to
create a time window wherein the autonomic mechanism
would have time to dynamically change the Hello timers.
One of the propositions of the present work, in accordance
with the Hello protocol, is to configure all timers for Hello
messages to a slow rate most of the time and move to
a sub-second rate timers for which the risk-assessment
predicts an upcoming failure on the interface. This in-
creases the responsiveness to failure when warning signs
occurred while maintaining a stable network. Similarly, the
impacted timers for Hello messages return to a slow value
when the probability of risk of failure is low. Considering
that risky periods are usually short and limited to very
few interfaces, the network should remain stable while
the availability for predicted failures increases. However,
failure predictions can also be wrong. This results in send-
ing extra Hello messages fortunately limited to prediction
periods and only concerned interfaces. Considering the
gain in terms of network availability as a whole, this
inconvenience is acceptable.

Many studies concentrated on the evaluation of failure
prediction. This study sets apart failure prediction perfor-
mances and focuses on the proactive action part. Indeed it
is essential to ensure that failure prediction permit a real
QoS improvement. We answer this question by providing a
pragmatical proactive resilience mechanism, evaluating its
benefits and characterizing the constraints on the failure
prediction task.

Figure 1. Time relation in online failure prediction.

The following details the characteristics of failure pre-
dictions at the different time periods involved in the online
failure prediction process (see Fig. 1):

• T : the present time.
• ∆td: the data window time in which the failure predic-

tor keeps the data used to predict upcoming failures.
• ∆tl: the lead time, i.e. the minimal period between

the prediction and the failure event.
• ∆tw: the warning time is the time required to set

up proactive self-healing actions. It is always smaller
than ∆tl.

• ∆tp: the prediction period for which the prediction
remains valid. Most competitive failure prediction
methods consider values up to few minutes [18]. But,
in order to consider the widest set of failure prediction

methods, we take a margin by setting this parameter
to one hour.

We could have chosen to use a subset of existing failure
prediction mechanisms but we chose to use failure predic-
tion performance metrics in order to be more exhaustive,
i.e. to give an overview of the performances of our mech-
anism with any failure prediction mechanism. Regarding
performance, both unpredicted failures (FN) and wrong
predictions (FP ) characterize failure predictors. In this
paper, Precision and Recall are the considered metrics:
Recall to evaluate the ability to detect a failure using the
correctly predicted failures (TP ) over the total number of
effective failures ratio; Precision takes into account false
predictions using the correctly identified failures over the
total number of predicted failures ratio. As advances in
the failure prediction field allow a large ratio (greater than
90% for Recall and 80% for Precision [18]), in this paper,
a value of 80% is considered as as the most competitive
value for both metrics.

Recall =
T P

T P + F N
Precision =

T P

T P + F P
. (1)

Recall, Precision and ∆tp are the inputs considered
in Sec. V and VI to analyze the failure prediction per-
formance which enable the adaption of failure detection
timers. Then, Recall and Precision are also used to take
into account the uncertainty of failure predictions.

IV. Applicability to Hello protocol

The proposed idea aims to dynamically adapt the Hello
Interval when a predictive failure is detected. Many studies
concentrate their efforts to put forward failure prediction
mechanism but neglect that how exploiting this infor-
mation is just as important. In consequence, we choose
to repair this deficiency by proposing a pragmatic and
extremely fast to activate proactive mechanism to exploit
failure prediction and by evaluating the expected gains,
as well as the constraints with regards to the failure
prediction task.

Figure 2. AFDT state diagram.

Thanks to the prediction provided by the Risk As-
sessment Module (RAM), the module that manages the
frequency of Hello messages, located within the routers,
is in charge of accelerating the Hello rate of all interfaces
concerned by a failure prediction (see Fig. 2). Symmet-
rically, the Fig. 2 shows that AFDT module is also in

3
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charge of restoring a less-aggressive Hello Interval value
that is considered as extremely stable when the prediction
expire.

Changing the Hello rate requires two steps. First the
remote neighbour need to be aware of the new timer value
thanks to a synchronization step to update its Router
Dead Interval consequently. Then, the risky node can send
fast Hello from the risky interfaces.

The solution described above requires some specific
changes to the Hello protocol of OSPF or ISIS. The first
required extension is to enable the dynamic change of both
Hello Interval and Router Dead Interval values, which
is currently not possible. These settings are currently
configured to init the service and are not intended to be
modified. Secondly, the configuration of these parameters
must be specific to each neighbor, so that it becomes
possible to assign a rapid rate to a single router or a
single link. The values for Hello Interval and Router Dead
Interval are currently global to an entire area.

Finally, it is also necessary to introduce the ability to
specify values of Hello Interval and Router Dead Interval
that are smaller than one second. BFD is already capable
of maintaining individual timers and changing them dy-
namically without noticeable overhead. The real issue is to
be capable of handling fast Hello rates. BFD can resolve
this problem with an implementation in the data plane.
This solution has the disadvantage of not considering the
numerous errors happening in the control plane. For this
reason, we prefer to modify the hello protocol even if BFD
could indeed be an alternative to deploy the mechanism
without standardization effort.

The proposed mechanism combines all advantages of
Hello Interval configuration strategies: rapid detection of
failures when the environment is risky and a smooth and
stable behaviour when the environment is safe. With a
Hello Interval greater than one second during normal
periods, stability is ensured. Then, at a failure prediction,
the Hello burst is confined to the risky network elements
during the prediction period ∆tp. A router usually receives
Hello messages on only one interface during a limited
period without comparison with the use of a rapid rate
full time across the whole network.

V. Analytical modelling

A. Notations

Let N be the set of nodes (or routers) in the network
and E be the set of directed edges (or links). The network
can be modelled as directed graph G=(N ,E). Let F be
the set of traffic flows in network G. Each traffic flow f
∈ F is associated with its ingress node In(f) ∈ N , its
destination node Out(f) ∈ N , its throughput µ(f) and
the ordered list of transit routers which is the shortest
path provided by the routing protocol (OSPF or IS-IS).
In this study, the impact of the failure of ingress or egress
nodes is not considered as there is no way to protect from

or restore the traffic flows in such a case. In real networks,
such a case is handled by multi-homing.

Each node n ∈ N is mainly characterized by its Mean-
Time-Between-Failure MTBF (n) and the Mean-Time-To-
Repair MTTR(n) << MTBF (n). For the risk-awareness
modelling, let Recall(n) and Precision(n) values be de-
fined for each node n (Cf Sec. III). Changes during time
for these parameters are not considered. For a stationary
ergodic process, the probability that a node is in a failure
state is given by:

Pnode(n) =
MTTR(n)

MTBF (n) + MTTR(n)
<< 1 (2)

When considering the case of identical routers, with re-
gards to failure probability, one can omit the dependency
in n in the notations for all these parameters. For each
flow f ∈ F , when a transit node n ∈ sp(f) is failing, the
flow is only restored after the convergence process which
duration tC is define in Sec. II. In order to evaluate the
AFDT mechanism, it has to be compared to the standard
use of the Hello protocol with both fast and slow timers.
While tF and tU are constant and tSP depends on the
network size, tD depends on the Hello Interval noted tHI

and the Router Dead Interval noted tRDI . If one considers
that failure occur uniformly between two Hello messages,
and that tRDI = 4 ∗ tHI , the average detection time is :

tD = (tRDI − tHI) +
tHI

2
= (3 ∗ tHI) +

tHI

2
. (3)

Nevertheless, all three strategies (slow timer (S), fast timer
(F ) and AFDT) require the definition of tF HI (resp. tSHI)
to represent the fast Hello Interval (resp. the slow one) and
of tF RDI (resp. tSRDI) that represent the short Router
Dead Interval (resp. the long one). As a consequence, there
are two convergence times, one using fast timers tF C and
the other one using slow timers tSC such as:

tF C = (tF RDI − tF HI) +
tF HI

2
+ tF + tSP + tU

tSC = (tSRDI − tSHI) +
tSHI

2
+ tF + tSP + tU .

(4)

B. Unavailability computing

For the AFDT case, the conditional probability part
can be split in the sum of the two disjoint probabilities
about successful risk detection (Recall) or unsuccessful
risk detection (1 − Recall), which finally gives:

UAF DT (f, n) = Recall(n).tF C/(MT BF (n) + MT T R(n))

+ (1 − Recall(n)).tSC/(MT BF (n) + MT T R(n)).
(5)

Note that the formula for the fast timer case (resp. slow
timer case) is given by Eq. (5) by setting Recall(n) = 1
(resp. Recall(n) = 0). The following relationship stands:

UAF DT (f, n) =(1 − Recall(n)).US(f, n)

+ Recall(n).UF (f, n).
(6)
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Thus, US(f, n) ≥ UAF DT (f, n) ≥ UF (f, n). Assume that
router failures are independent events, with X = AFDT ,
S or F , the network unavailability for flow f ∈ F is:

UX(f) = 1 −





∏

n∈sp(f)

(1 − UX(f, n))



 ≈
∑

n∈sp(f)

UX(f, n). (7)

The approximation being valid as of Eq. (2), which means
we neglect the case with simultaneous failures of two or
more routers in the network. Then one can give a weight
for each flow f , e.g., their throughput µ(f), in order to
define the average network unavailability:

UX(G, F ) =

∑

f∈F

µ(f).UX(f)

∑

f∈F

µ(f)
. (8)

C. Quantity of Hello messages

As we said, the routing instability generated by routing
flaps is the major drawback of short Hello timers. This
well know issue [7]–[9], [14] is unfortunately hard to model
because of the heterogeneity of equipment with multiple
control packet management architectures, the various traf-
fic engineering policies, queues management and so on,
make it very difficult to quantify, precisely and in a general
way, the impact of Hello timer values on routing instability,
especially on the number of false failure detection. In con-
sequence, we prefer to avoid approximation and measure
the cause if its instability evaluated by the measure of the
Hello message rate that each router have to process and
let operators evaluate if it is compatible with their own
specific infrastructure. To calculate the number of Hello
messages received per second, it is necessary to average the
messages received for all nodes when they are not failed.
With d− and d+ the in and out degree, the average Hello
rate by node for the standard strategies (i.e. S and F ) is:

HIGP (G) =

∑

n∈N

d−(n) − (Pnode(n).d+(n))

|N | ∗ tHI

=
|E|.(1 − Pnode)

|N | ∗ tHI

.

(9)

The AFDT case needs to take into account the impact
of true positive (TP ) and false positive (FP ). The corre-
sponding probabilities for node n are:

PF P (n) = Pnode(n).Recall(n).

(

1

P recision
− 1

)

.

(

∆tp

MT T R(n)

)

,

PT P (n) = Recall(n).

(

∆tp/2

MT T R(n) + MT BF (n)

)

.

(10)

The above formulas in Eq. (10) take into account that:

• at a wrong prediction (FP ), the n node sends Hello
messages with the fast frequency (1/TF HI) for the
prediction period ∆tp;

• when a failure is predicted in advance (TP ), the node
n sends Hello messages with the 1/TF HI frequency

only before the failure occurrence. Considering that
the occurrence of failures is uniformly distributed over
∆tp, the average time of sending Hello messages at the
fast frequency is ∆tp/2;

• the remaining time Hello messages are sent to the slow
frequency 1/TSHI , except during a failure where no
message is sent.

It is then possible to calculate the average of received Hello
per second and per node. With a unique failure probability
Pnode, meaning that we consider identical routers, the
equation can be simplified as the following:

HAF DT (G) =
∑

n∈N

d+(n)(1 − (pnode(n) + PT P (n) + PF P (n))

|N | ∗ tSHI

+
∑

n∈N

d+(n).(PT P (n) + PF P (n))

|N | ∗ tF HI

HAF DT (G) =
|E|

|N |
∗

(

1 − (Pnode + PT P + PF P )

tSHI

+
(PT P + PF P )

tF HI

)

.

(11)

The next section is dedicated to the AFDT mechanism
evaluation with concrete examples.

VI. Case study analysis

A. Network topologies and traffic matrices

(a) (b)

(c)

Figure 3. Network topologies.

The real-core network topologies presented in Fig. 3
have been used to illustrate the aforementioned models: a)

5
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(a) (b) (c)

Figure 4. Hello quantity and unavailability estimation (MT T R = 5000h, MT T R = 5h, ∆tp = 1h) for the 3 networks.

a national network in Europe, b) a US network and c) a
Pan-European network. Table I details the characteristics
of these networks: |N | represents the number of routers,
|E| the number of links, d̄ the average degree and d(G)
the diameter of the network. Additionally, IGP metrics
are based on the distance between each node (i.e. between
cities), and the flow distribution for traffic matrices is pro-
portionally balanced with city populations. The number
of flows (|F |) and the sum of these flows (Traffic) can be
found in Tab I.

G |N | |E| d̄ Density d(G) |F | Traffic (Gbit/s) #IF

a 17 26 3.06 0.19 8 242 1363 626

b 29 44 3.03 0.11 9 812 485 440

c 34 49 2.88 0.09 14 1122 1554 1244

Table I
Topology Characteristics.

B. Theoretical comparison between AFDT and standard

Hello

The purpose of this section is to compare the perfor-
mance of the Adaptive Failure Detection Timers mech-
anism vs. the classical Hello behaviour with both fast
and slow timers using the previously defined analytical
model. In the analysis, the convergence time use the
aforementioned values given in Sec. II and V and with
a short Hello Interval set to 100 miliseconds (tF HI) and
a stable Hello Interval (tSHI) of three seconds. Mean
Time Between Failure (MTBF), Mean Time To Repair
(MTTR) and ∆tp are respectively assigned to 5000 hours,
5 hours and 1 hour as reference values. Nevertheless, for
exhaustivity reason, we mind to vary the MTBF from 1000
to 10000 hours, the MTTR from 1 to 10 hours and ∆tp

from 5 minutes to 10 hours on the three topologies but for
space reason we will only show the most valuable results.

Since the main benefit of the AFDT solution is a lower
unavailability probability than the slow timers case, and
a much lower quantity of Hello to process than the fast

timers configuration, we plot for each network x (x =
a, b and c) on Fig. 4 what gives slow, fast and AFDT
cases for the Hello rate (X-axis) and the bit unavailability
probability (Y-axis). Moreover, for AFDT, three different
levels of performance are considered for both Recall and
Precision of the online failure predictor: low level at 20%,
medium level at 50% and a high level at 80%, giving nine
points for the AFDT cases.

Thanks to the AFDT mechanisms we observe on the
three topologies (see Fig. 4), a unavailability gain of more
than 4 for Recall of 80%, almost 2 for the 50% and 1.4 for
Recall of only 20%. The AFDT availability performances
are not similar to the 100ms timers performance, but
allow intermediates performances, up to a factor 4 close
to fast instable timers, while providing a much better
availability than the stable slow timers. When we analyze

Figure 5. MTBF impact on network c availability.

the Hello quantity that have to be processed on each
router, we observe on Fig. 4 that AFDT and normal slow
timers have a similar impact on processing unit, which is
more than 30 times lower than with short Hello Interval.
The only differences between the slow timers and the
AFDT cases are limited in time and space to the (true
or false) prediction period. But this interlude is negligible

6
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in comparison to the full fast timer. Concerning the failure
predictor performance, its impact on the Hello quantity is
very low and we need to zoom in Fig. 4 to make it visible.
While Recall values have an important impact on the
availability performance of the AFDT scheme, Precision
impact is negligible. Indeed, the Hello burst due to false
predictions is spatially and timely very contained.

After seeing the references condition results, it is inter-
esting to look into the AFDT of one topology (c) behaviour
when failure rate evolves. The Fig. 5 show how MTBF
influences unavailability of each strategy. Since availability
is only function of Recall, the AFDT mechanism is rep-
resented by only three curves. Although the differences of
performance increase with failure rate, the ratio between
each mechanism remains constant.

The Fig. 6 is rather focus on the Hello quantity evolution
resulting from the variation of failure rate. The MTBF
decrease associated with the different configurations of
failure prediction performance show a relatively reduced
increase of Hello rate to process compare to the about
1700 messages that the short Hello Interval configurations
have to handle.

It is also useful to notice that the failure prediction
performance play an important role on the Hello quan-
tity but it is mostly the quantity of whatever prediction
(TP and FP ) which is responsible of the Hello burst.
Indeed, one can see that the two most Hello expensive
configurations are the ones with the lowest Precision with
80% and 50% for Recall. The third is a configuration
having a Precision of 50% and Recall of 80% because
this configuration generates more predictions that the one
having 20% for both Precision and Recall.

Figure 6. MTBF impact on Hello quantity with network c.

But the most impacting parameter on the Hello quantity
is the prediction period ∆tp as illustrated by the Fig. 7.
With long ∆tp of several hours, even if we are far away
from the 1727 messages of the fast timers, the high average
increase of Hello quantity might be symptomatic of major
Hello burst that could generate routing flaps. The AFDT

simulations describe in the next section allow to study that
particular point.

Figure 7. ∆tp impact on Hello quantity with network c.

C. Simulation experiments

In order to verify the analytical hypothesis, the AFDT
mechanism has been implemented in the NS3 discrete-
event simulator [19]. The general reliability theory [20]
has been applied to generate failure events using an ex-
ponential distribution (λ = 1/MTBF ) for time between
failures and lognormal distribution ln N(µ, σ2) with µ =
log(MTTR) − ((0.5) ∗ log(1+ ((0.6 ∗ MTTR)2/MTTR2)))
and σ =

√

log(1 + ((0.6 ∗ MTTR)2/MTTR2)) for time to
repair. Concerning failure prediction, anticipated failures
have been uniformly chosen following the Recall ratio
and the false predictions have been uniformly generated
during the simulated time to reach the targeted Precision.
Using the same network topologies and traffic matrices
than in the analytical evaluation, the impacts of MTBF,
MTTR, Recall, Precision and ∆tp have been analyzed
based on 7 simulation runs with a simulated time equals
to 5 ∗ (MTBF + MTTR).

Using the same configurations as the analytical exper-
iments of Fig. 4, the simulation results with confidence
interval of 99% are presented in Fig. 8. The adequacy
of these results with the analytical results illustrates the
global observation of simulation outcomes, which confirms
the validity of the proposed analytical model.

On top of the same configurations that the ones analyti-
cally studied, the simulations allow a more precise analysis
of Hello bursts. First, they show the limited distribution
in space, by validating that Hello bursts never append
on more than one interface. A Hello burst leads to the
processing of an average of 643 Hello messages by minute
within network c, while the fast timers strategy generates
three times this value. Then, it is important to ensure
that burst are also time limited. Fig. 9 shows the total
time of the Hello burst period function of ∆tp. We can
see the burst duration accounts for less than 0.5% of the
total time until ∆tp of two hours, but then can reach

7
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Figure 8. Hello quantity and unavailability simulation (MT T R = 5000h, MT T R = 5h, ∆tp = 1h) for the 3 networks.

up to 2%. Although 2% is quite low, it is possible that
some operators become reluctant to tolerate such value; it
is therefore preferable to only use failure predictors with
∆tp of 2 hours at maximum, in order to ensure an utmost
stability.
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Figure 9. ∆tp impact on Hello burst duration with network c.

VII. Conclusion

The paper present a new proactive mechanism exploit-
ing failure prediction, its evaluation and the gain quantifi-
cation whatever the failure prediction performances, i.e.
for any existing or future failure prediction mechanisms, as
well as the impact quantification of the failure prediction
performances on the proactive mechanism behavior. This
paper differs from common proactive self-healing contribu-
tion by focusing on the resilience action and its evaluation
instead of the failure prediction aspect. The adaptation
of failure detection timer to the risk of failure proposed
in this paper is intended to improve the convergence time
of IGP. Failure detection is the most critical step during
IP restoration and can be accelerated by increasing the
frequency of sending messages at the expense of system
stability. Observation of router health allows to use the

risk of failure information in real time to speed up the
Hello rate during a limited period and for a small subset
of equipment. The behaviour of this mechanism has been
analytically modelled in order to quantify its impact on
the availability and on router workload that is responsible
of instabilities. The results of this study were then con-
fronted with the simulation results. The AFDT mechanism
improves availability with few drawbacks. Gains on avail-
ability are proportional to the percentage of failures that
were anticipated by the failure prediction module of the
RAM. Impacts on routing stability are minor regardless
of the network topology, as the Hello rate acceleration
only concerns the unsafe equipments. However, extreme
conditions, including both low Precision and high Recall
(i.e. a large number of predictions), as well as a high failure
rate or a very long failure prediction period (i.e. ∆tp) show
potential limitations that can deter some very conservative
operators to use the mechanism in such conditions. The
interest of this proposition is that it leverages a proac-
tive risk of failure information to autonomously adapt a
parameter that improves network availability but that is
currently used in a static way. The consequences of this
intervention do not alter the traffic flows thereby limiting
the impact of false predictions on the quality of service.
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