Networking 2013 1569702431

Balance Visual Saliency, Reusability and Potential
Relevance for Caching P2P 3D Streaming Contents

Wei Wang!, Jinyuan Jiaf, Xiaojun Hei

fSchool of Electronics and Information Engineering, Tongji University, China
iDept. of Electronics & Information Engineering, Huazhong University of Science & Technology, China
WWw.cs.tj @gmail.com, jiyuan @gmail.com, heixj @hust.edu.cn

Abstract—Recent technical progress on the Internet and
virtual reality has enabled the proliferation of distributed virtual
environments (DVEs). In a DVE, high-resolution 3D contents may
generate huge data, and the peer-to-peer (P2P) streaming takes
advantages to carry these huge traffic in a cost-effective manner.
In this P2P paradigm, peers can cache and share DVE data
cooperatively to reduce server workload and improve streaming
quality. Nevertheless, it is critical to maintain and update the
cached contents in each peer efficiently. In this paper, we propose
an efficient caching algorithm for a P2P 3D content streaming
framework. The proposed caching algorithm is based on a new
preservation metric that is defined for balancing visual saliency,
reusability and potential relevance of cached 3D objects. Then
these cached 3D objects in each peer are updated adaptively
with the ascendant order in importance quantified using this new
metric. We implement the proposed caching algorithm in a sim-
ulated DVE platform for P2P-based 3D streaming. We conducted
a comprehensive simulation study and our experimental results
demonstrate that the proposed peer-to-peer streaming method
outperforms the state-of-the-art 3D streaming methods (including
FLoD and MRM) in the terms of fill ratio, base latency, requests
by nodes and requests to the server.

I. INTRODUCTION

With the advance of the Internet and virtual reality tech-
nologies, distributed virtual environments (DVEs) have be-
come popular in recent years. By joining together in a virtual
environment, users who are geographically dispersed are able
to communicate and interact with each other on the Internet
[1]. For a high-resolution 3D visual environment system, the
3D content data are huge (e.g., more than 34 TB data in
Second Life and 70 TB data in Google Earth. Nevertheless,
it is impossible to preload all these data into a client before a
user starts to walkthrough in a virtual scene. Note that a user
can only observe a small portion of the whole virtual scene
due to the occlusions among 3D objects, a practical way is to
download and render the data of the limited visible scene at the
current viewpoint in a client. This strategy is particularly useful
for thin clients, such as personal digital assistants (PDAs) and
other mobile devices.

Various 3D content streaming techniques have been pro-
posed to transfer DVE data, including client-server [2] and
peer-to-peer [3], [4], [5], [6], [7], [8] architectures. It is not
unusual that millions of clients join a DVE simultaneously. If
they are all connected to the server that stores the whole copy
of the virtual environment data, the server is likely to be the
bottleneck due to its limited bandwidth. On the other hand, in
a large-scale DVE system virtual components are redundant

for each user. Each user caches these virtual components and
transfers them cooperatively in a naive P2P manner. When
a user navigates in a virtual environment, her/his viewpoints
exhibit strong time and temporal correlations. In a finer gran-
ularity, 3D virtual scenes can be transferred using P2P mech-
anisms for the clients having similar viewpoints in the virtual
environment. These clients are clustered as neighbors and a
client can send requests to its neighbors for data transmission
of the shared visible scenes. By distributing and reusing 3D
objects among clients, P2P DVE systems are advantageous in
alleviating the burden of the server and enhancing quality-of-
experience of users.

Given the limited cache capacity of individual clients, only
the visible portion of 3D scene can be loaded. When a user
navigates a 3D virtual environment, certain objects must be
removed and updated in the cache due to the changes of
viewpoints. In this paper, we propose a progressive caching
method for real-time navigation in large-scale P2P DVEs.
This proposed caching method is based on three factors: in
addition to the visual attention that is widely used in cache
updating in client/server DVEs, we also propose two new
factors of reusability and potential relevance. Our experimental
results show that a weighted combination of these three factors
provides a satisfied performance measure in updating cached
objects.

The rest of this paper is organized as follows. In Section
II, we summarize the related work on progressive transmission
of DVEs and caching methods. Then, we proposed a P2P
3D content streaming framework in Section III. Within this
framework, an efficient caching algorithm is also proposed
in Section IV and the experimental results and performance
analysis are discussed in Section V. Finally, we present the
conclusion remarks and future work in Section VI.

II. RELATED WORK

For 3D content streaming in a large-scale DVE, three key
ingredients, area-of-interest (AOI) of 3D scene, progressive
transmission and cache updating, are involved and their related
work is summarized below.

A. AOI of complex 3D scenes

Given a limited cache capacity in a client, only a small
portion of a complex 3D scene can be preloaded. Nevertheless,
a virtual viewer can only see a small area of the whole virtual
environment, the concept of area of interest (AOI) has been

proposed and used widely in DVE systems [2], [9], [10]. AOI is
a circular area whose center is coincided with the current view-
point and whose radius is proportional to the visible distance.
All 3D objects enclosed in AOI can be reasonably thought
as objects in the currently visible scene. When the viewpoint
moves, the new added visible scenes have to be incrementally
updated and downloaded from the server or other clients. An
efficient scene culling algorithm is proposed in [11], which
partitions the entire scene using an axis-aligned mesh. Visible
and invisible grids are dynamically maintained according to
the temporal coherence between two consecutive AOIs. An
improved scalable multi-layer AOI scheduling algorithm is
proposed in [12]. Two scheduling mechanisms, area-based
and cell-based scheduling, are studied in [13], showing that
a hybrid scheduling achieves the best performance.

B. Progressive transmission of 3D contents

Given a fixed viewpoint, AOI can greatly reduce the
necessary 3D contents for browsing. The 3D objects contained
in an AOI, however, could still be of huge data size if they are
presented in a very high resolution. Level-of-details (LOD)
techniques [14] have been developed, which models a 3D
object O by a base shape B and a set of hierarchical details
D = {D', D? ---}. Then the object O = B U D can be
represented hierarchically by O' c O0%... C O, where
O' = Be&D'@D?*@---®D?, @ is a synthesis operator. Usually
B is an overall simplified shape that can be transformed very
rapidly. When a user watches and manipulates (e.g., translates
and rotates) 3D objects, more and more details in D can
be received by the client and smoothly synthesized into the
model B. Notably, two classes exist for generating a LOD rep-
resentation: surface simplification [15] and progressive mesh
[16]. In this paper, based on progressive representation [16]
of 3D objects, we use the method in [2] to compute an
optimal resolution for each 3D object located in an AOI
that are suitable for the current viewpoint. Given the object
progressive representation, a general problem formulation of
P2P transmission for 3D contents are conducted in [17].

C. Caching methods of massive 3D contents

When the limited local cache in a client has been crammed
by constantly downloaded scene (made up of 3D objects),
some previously cached 3D objects have to be updated and
replaced by new downloaded 3D objects (to constitute a new
scene). Data replacement in the cache is an important issue
that not only exists in 3D content streaming, but also in other
well-studied applications as we summarize below.

Caching based on temporal factor. Page-based data re-
placement strategies, such as least recently used (LRU) and
most recently used (MRU) have been widely used in database
applications [18]. The merits of page-based replacement strate-
gies relies heavily on the principle of locality, i.e., the higher
degree of locality, the better performance can be achieved.
However, it is shown in [19] that these strategies are not
suitable for 3D content replacements since 3D objects that are
accessed by a client might change frequently over time. Video
streaming [20] is another popular application in which caching
is widely studied. In P2P video streaming, video contents are
regarded as one-dimensional (frames change in the dimension
of discrete time) and thus can be accessed sequentially. A

general caching strategy used in many P2P video streaming
systems is that a receiver caches the recently played contents
and supplies them to the requesters. However, P2P 3D content
streaming is much more complex since the 3D objects are
indexed in a 3D space and accessed according to viewer’s
interactive navigation behaviors.

Caching based on spatial factor. A 3D content caching
method is proposed in [6] in which 3D objects are removed in
a descending order indexed by their distances to the viewpoint.
This caching method, however, does not consider the effect
of objects’ deviating angles from the viewpoint. The strategy
of most required movement (MRM) in [2] streams each 3D
object using a progressive representation and assigns to each
3D object an access score measured by a weighted combination
of its distance and deviation angle from the viewpoint. To
take the advantages of both temporal and spatial factors, a
hybrid caching method is proposed in [21] which determines
a replacement order for each 3D object using both temporal
and spatial coherence. All these work determines a 3D object
replacement order in the cache mainly based on the spatial
relation between objects and viewpoint: they are better fitted
into a framework of C/S DVE [18] but not for 3D content
streaming in P2P DVEs. When determining an order to remove
3D objects in the cache in a P2P DVE, in addition to the spatial
relations, the characteristics of the P2P mechanism such as
the potential influence of a cached 3D object on the client’s
neighbors, should be also taken into account.

III. A FRAMEWORK OF P2P DVE

A number of C/S DVE systems and applications have
been developed and deployed [22], [23], [24], but P2P-based
DVEs are still few. We first propose a novel framework of
a P2P DVE. Then we present an efficient caching algorithm
suitable for this proposed P2P DVE. The framework of our
P2P DVE is illustrated in Fig. 1: from bottom to top, the
network architecture consists of three layers, i.e., physical
network layer, Voronoi overlay layer and virtual scene layer.
The physical network layer consists of one server (or sever
clusters) and geographically dispersed clients. The Voronoi
overlay layer is used to highlight awareness of avatars in 3D
virtual environments and the virtual scene layer is the place
where the avatars live. Below the terms node, viewer, client
and peer are used interchangeably.

Given the spatial relation of viewers in the virtual environ-
ment, if a viewer v; is located in the AOI of another viewer v;,
v; is regarded as the neighbor of v;. For example, in Fig. 1, vz
and vg are both neighbors of vy. Three types of participators
involved in the proposed P2P DVE:

e Server: The server (or a server cluster) store all 3D
contents of the DVE. It also manages clients such as
registration in the system and recording their locations
in the virtual environment.

e Requester: A client that requires pieces of 3D content
data for virtual scene rendering.

e Provider: The server or a client that holds the required
pieces of data and can provide them to a requester.

In the proposed P2P DVE, the roles of nodes are inter-
changeable, i.e., a requester can also be a provider for another

Vlrtual terrain of the DVE

A/ 7 /vs'/"/

: (server < { .
\ y

Physical Network

Fig. 1: Network architecture of a P2P-DVE.

node. Note that the server is only considered as a candidate
content provider.

Given a requester vg, we use a mesh-based pull scheme
for P2P transmission of necessary 3D contents when v roams
in the virtual environment [6]. Our proposed P2P framework
utilizes a provider selection mechanism by considering peer
heterogeneity, traffic locality and peer stability and thus con-
struct a better transmission overlay than the one in [6].

e Step 1: Join the DVE. vy joins the P2P DVE by
registering to the server. Then v, downloads the scene
description file of the entire virtual environment. By
applying the greedy forwarding mechanism in [5], vy
connects to its initial AOI neighbors.

e Step 2: Determine the visible scenes. When the view-
point is initialized or moved, vy determines its visi-
ble scenes by applying the incremental AOI culling
method [11]. This step also produces a requesting
queue for pieces of necessary 3D contents.

e Step 3: Update AOI neighbors. v sends the message
of its position updating in the virtual scene layer to
its current AOI neighbors. Updating AOI neighbors
are found based on the methods utilizing the dynamic
Voronoi diagram [25], [5].

e Step 4: Locate candidate providers. After updating
AOI neighbors, v, sends queries of required data
pieces to its AOI neighbors. Those neighbors which
response positively for a special piece are considered
as candidate providers for this piece. A candidate
provider also returns its current resource information,
e.g., upload capacity and its Internet service provider
(ASP).

e Step 5: Select providers. For each piece of required
data, from the list of candidate providers, vy selects
a provider which can provide the best service (more
details are presented below).

e Step 6: Transfer 3D contents. vy receives data pieces
from providers in parallel and renders the visible scene
of current viewpoint for browsing. If the viewpoint
moves during the data receiving process, the process
is terminated and goto Step 2.

e Step 7: Caching by 3D scene replacement. If the
limited cache has been fully occupied by 3D scene
data, vy invokes the proposed progressive scene re-
placement mechanism, as presented in Section IV.

e Step 8: Leave the DVE system. When v, leaves the
DVE system, it logouts from the server and discon-
nects from its AOI neighbors. For any abnormal leav-
ing such as power failure, the server can diagnose the
case by receiving messages from v;’s AOI neighbors.

In [6], only AOI neighbors in the Voronoi overlay layer
are considered for P2P streaming and this may lead to a long-
distance traffic in peers that are topologically close (in the
virtual scene layer) but physically far away (in the physical
network layer). In our P2P framework, we consider some
more factors in a realistic networking environment. In Step
4, denote the upload capacity of each candidate provider 7
by u;, © = 1,2,...,n, and ug is the upload capacity of the
server in bit-per-second. Given the observation [26] that if a
peer stays in a channel longer, this peer tends to keep staying
in the channel, the stability s; of each candidate provider 7
is measured by its staying time ¢; in the DVE system. Let
tmaz = max{ty, ta,...,t, . We define a normalized stability
si = ti/tmaz € [0,1]: if s; > s;, then peer ¢ is more
stable than peer j. We also define a general distance metric
D(r,i) € [0,1] between the requester r and a candidate
provider ¢: any customized metric that measures the physical
distance between r and ¢ can be used and currently we define
D(r,i) = 0.1 if r and ¢ are in the same ISP and otherwise
D(r,i) = 1. This distance definition penalizes cross-ISP traffic
by a long physical distance. Let

w; = 8; - D(r, 1) (D
be a weighted distance from r to the candidate provider q.

Given the information of w; and w; of each candidate
provider 7 returned by Step 4, the provider selection with
the best service in Step 5 uses the following strategy. We
normalize the weights by w; = w;/Wmay, Where Wiee =
max{wy,wa,...,w,}. Set wj = 1 for the sever of upload
capacity ug. We sort the upload capacities {ug,u1,...,u,}
of the sever and all candidate providers using the weight w)
in a descending order and denote the sorted set by U’ =
(u(,ul,...,ul). Let h be the required bit rate (in bps) of the
visible scene movement that is estimated by the viewpoint’s
velocity at the current position due to user behaviors. We
choose the first k peers in U’ as the providers, where

J
k = min{j : Zw;ul > h}.
i=0

If all the weights are the same (as assumed in [27]), our
provider selection strategy satisfies the stochastic fluid theory
[27], since
J n n—1
Zw;ul g w; u; S ug + 27’?1 Ui.
n—

w
i=0 i=0 T

IV. THE CACHING ALGORITHM

If the cache of a client is fully occupied by 3D scene data
(i.e., 3D objects that constitute of the visible scene), the client
has to update and replace some 3D scene data progressively
according to the movement of viewpoint. Assume that the set
of currently cached 3D objects is O = {O1,03,...,0,, }. We
define a preservation metric (Section IV-D) for each object
O;, which indicates the importance of O; by referring to the
current viewpoint and its AOI neighbors. This preservation
metric is based on three factors: (1) the visual saliency degree
(Section IV-A); (2) the reusability degree (Section IV-B); (3)
the potential relevance degree for AOI neighbors (Section
IV-C). The client determines the order of 3D objects in the
cache to be removed by indexing the values output from the
preservation metric.

A. Visual saliency degree of 3D objects

Note that 3D objects which can provide higher visual
quality should be cached for a longer time. Recall that we
use a progressive representation of a 3D object O = B U D,
where B is the base shape for quick transmission and D is a
set of geometric details for progressive transmission. We define
the visual saliency degree of 3D object O by considering the
base shape B and the detailed part D separately.

The base shape B of O is used for quick transmission such
that a viewer can have an overlook of the object O instantly.
However, if we oversimplify the object shape, the base shape
may have a poor appearance and thus a poor visual saliency.
Hence, we define the visual saliency degree of the base shape
by the ratio

L. CB)
B C (O))
where C'(B) and C(O) are the complexities of the base shape
and the full object, respectively. We measure the complexity
of a mesh model by its surface area.

The detailed part D of O will progressively improve the
visual quality of the object. Its visual saliency is determined by
two factors: (1) the distance d from the object to the viewpoint;
(2) the angle 6 (0 < 0 <) deviated from O to the viewing
direction. See Fig. 2 for an illustration of these parameters.

We define the visual saliency degree of the detailed part D

Vo =M1—)+ (1= N1 - 2),

as

where R is the radius of AOI and 0 < A < 1 is a weighting
coefficient. Finally, we define the visual saliency degree of an
object O; € O as

V(Ol) = wVB(Oi) + (1 — w)VD(Oi), 2)

where 0 < w < 1 is a weight that balances the contributions
of the base shape and the detailed part. In our experiments,

A

I Viewing direction

Area of interest
(AOI)

Fig. 2: The parameters in the definition of the visual saliency
degree.

o

Fixed Path

(_)pal,Paf_h Finder

Fig. 3: A typical scene in the virtual environment with similar
3D tree models.

we set A = w = 0.5. The value output from V is normalized
in [-1,1].

B. Reusability degree of 3D objects

In a large-scale DVE, repeated patterns frequently appear.
For example, the trees aligned along the roadside (Fig. 3)
and the buildings in commercial and resident areas. It is cost-
effective to keep only one copy of the repeated or similar 3D
objects in the cache. In addition, if a 3D object has many
similar objects in the whole DVE scene, it is more preferable
to cache this object for a long time. Based on this intuition,
we define the following reusability degree of 3D objects.

Let O be the set of all 3D objects in the DVE and S(-)
is a metric that returns the similarity of two 3D objects in
the range [0, 1], where 1 means identical. Usually the 3D
objects in O have color information and the similarity metric
S in [24] can be applied. We maintain a matrix in the scene
description file that encodes the similarities between all 3D
objects in the virtual environment, which is downloaded from
the server when a client is registered. For each object O; € O,
we compute the number n(O;) of 3D objects in O that have

Object No. 1392

Object No. 106 296 10 20

Fig. 4: 3D scenes before (top row) and after (bottom) applying
the model reusability. Repeated objects are only shown by one
instance in the bottom row. The complexity of 3D scenes is
shown by the numbers of 3D objects used to render the scenes.

the similarity value larger than 0.9 with respect to O;. We
use n(0;) as a reusability measure of the object O; and the
reusability degree of O; is defined as

R(0;) = MO0 3)

Nmax

where 7,4, = max{n(0,)}, YO, € O. The value output
from R is normalized in [0, 1]. Four examples of 3D scene
renderings with model reusability are illustrated in Fig. 4.

C. Potential relevance degree of 3D objects

Each cached 3D object in a client is used not only for
rendering the visible scene, but also for providing a piece
of data that can be transmitted to its AOI neighbors. So the
priority of removing 3D objects in the cache must consider the
potential impact on its AOI neighbors.

For each 3D object O; € O, let ND(O;) be the number
of downloading O; by the AOI neighbors. We use N.D(O;)
to estimate how many copies of O, are maintained in the AOI
neighbors. The more copies of a 3D object are maintained in
neighbors, the higher priority of this 3D object is to be removed
from the cache. We define the potential relevance degree of a
3D object O; € O as
ND(0;)

1- =2, 4)

PO) =1- %5

where
ND,or = maX{ND(Oj),VOi S O}
The value output from P is normalized in [0, 1].
D. Combination of three degrees as the preservation caching
criteria

We combine the three degrees defined as the weighted
average of Egs. (2), (3) and (4) for a preservation criteria to

update cache:
M(0;) = aV(0;) + BR(O;) +vP(0;),)

where 0 < o, 8,7 < 1 and v+ 5+ = 1. In our experiments,
we select « = =y = % We use the preservation criteria
(5) to build replacement priorities for cached 3D objects: if a
3D object has a lower value of this preservation degree, it is
removed from the cache with a higher priority.

Denote the cache capacity of a client as C'y,y;, the cached
data volume as Coyccupied and the data volume of the next
downloading request as Data,cquest- Given the preservation
criteria (5), we sort the 3D objects in O using the value
M(O;), with the first object having the lowest value. Without
confusion, O below denotes the ordered set of 3D objects in
the cache.

Our caching algorithm can be outlined in two major steps:

o Step L. If Cruu — Coceupied < Datarequest, then start
the object replacement procedure.

e Step 2. Download the requested data.

The object replacement procedure in Step 1 consists of
three sub-steps:

e Step 1.1. Access the 3D objects in O sequentially
and if any 3D object O; € O has redundant details
(Df“, Df+2, -+ -), then remove these details until the
optimal resolution of the object O] = B & D} @
D? @ --- @ D] is reached. The object’s optimal
resolution is determined by using the method in [2].
If C(full - Coccupied > Datarequesta gOtO Step 2.

e Step 1.2. Access the 3D objects in O sequentially and
remove the detailed part D of the accessed 3D object
O; (i.e., only keep the base shape B of O;). If Cpyy —
Coccupied > Datarequest’ gOtO Step 2.

e Step 1.3. Access the 3D objects in O sequentially and
remove the base shape B of the accessed 3D object
Oi- If C'full - Coccupied > Data'request’ gOtO Step 2.

V. PERFORMANCE ANALYSIS

To evaluate the performance of the proposed caching
algorithm in a large-scale DVE, we design and implement a
P2P DVE simulator in which the following two aspects are
considered in-depth:

1) To evaluate whether the combination in the metric (5)
is optimal, we compare it with an alternative metric:

M(0;) = 0.5V (0;) + 0.5P(0;). (6)

Since the visual saliency is a critical measure in the
navigation of 3D virtual environment and potential
relevance is a critical measure in P2P transmission
of 3D contents, we keep items V(0O;) and P(O;) in
both metrics (5) and (6). So the comparison between
the metrics (5) and (6) is to evaluate the significance
of the reusability measure R(O;) in Eq. (3).

2) We compare our caching algorithm with two other
caching algorithms [2], [6]. The most required move-
ment (MRM) strategy in [2] is a classic one in 3D

. .o." Hotsp:)t
<0: ,’ .

Fig. 5: Two navigation behaviors. Left: A random walk. Right:
A clustering movement, in which the point size indicates the
possibility that a viewer is likely moved to this position.

content streaming that progressively transmits the
base shapes and detailed parts of 3D objects, and
thus is closely related to our work. Among state-
of-the-art P2P DVEs [3], [4], [5], [6], [7], [8], we
use a similar P2P content streaming mechanism as
in [6]. Hence, we compare our caching algorithm to
these two works. Denote PSRM (progressive scene
replacement mechanism) as the abbreviation for our
method, P2P-MRM in [2] and FLoD in [6], respec-
tively. Furthermore, we distinguish our method using
the metrics (5) and (6), respectively, by PSRM (using
the metric (5)) and PSRM-N (using the metric (6)).

A. Experimental settings

We have implemented a prototype system of the proposed
P2P DVE in a LAN environment with multiple users. Since the
system scale plays an important role in the evaluation of our
caching algorithm, we also implement a simulated large-scale
simulator that can capture the real behaviors of large-scale P2P
DVE using a set of open-source programming libraries. The
simulated large-scale DVE platform is stored in a server. The
number of 3D objects in the simulated virtual environment is
of the order of magnitude of 10 to 10*. The file size and the
position of each 3D object is set randomly and the progressive
representation is used in all 3D objects. We generate two
special object types called frees and buildings. The similarity
value of two 3D objects in each of special object types is set
to be 0.99 and the similarity value in the remaining 3D objects
is randomly drawn from a poisson distribution in [0, 1].

Our discrete-time simulator uses a time step of 100 ms and
then 3000 steps means a simulation process of 300 seconds.
To perform a faithful comparison with MRM [2] and FLoD
[6], in our simulation we implement two navigation behaviors
of a viewer in P2P DVE (Fig. 5):

e A random walk [2]: the orientation and position of
a viewer at each step of movement are generated
randomly.

e A clustering movement [6]: a viewer has a higher
possibility for moving to nearby special hotspots and
has a lower possibility of moving to remaining sites.
We randomly generate 1.5 In n hotspots in the 2D map
of a virtual environment, where n is the number of 3D
objects in the map.

] o €5 - o L W I £ e
TS 7y pdzz, o3 s o 1207 4
o < o) T 791 o {
o o < ‘va 453 LSy

LA T 859 Tazd 0 Fro ek SR I
W a0 401 o %T a3l a T gog
OO0 ogad2 2160) 25
& BTT 31586537 8877 O1ia

g4l, s FE>—T09,

L) o
& . sqalasl \1 ;_r: \ . 3 pmgs @40 58
" o] —and | 336 ;ﬁgﬁg fo W

gy O & _ o) gasasfﬁézsé:aq m}gg” :
Tegz o 796 o /529 CAL4EEISI12- 56 Ql v g
0 ® A 495?3538’?9312 65355434 g
O '5%23 g 24l | 355, 4:948] 0 3{
27 o0 o © Q a1
L 7589 o 2737 12 }%518 gg"lr
- 503 s OO 4341
S S e SO0 545868
It £04 [tatel (3355 1@342 & 257505
o 555150 o0 o
313 <) 238845 Q4
< & 2 Efmai . 235 oo O,

Fig. 6: A part of a screenshot of the P2P DVE simulator.

Since peer heterogeneity, traffic locality and peer stability
are not considered in [2], [6], we set all the nodes with the
same upload capacity and located in the same ISP; i.e., we
only use peer stability to determine the weight w; in Eq. (1) for
each candidate provider. Note that FLoD [6] did not consider
the network latency among different nodes in the P2P overlay.
Actually two close viewers in the virtual scene layer may be
far from each other geographically in the physical network
layer (See Fig. 1). To simulate the real-world applications,
network latency among different viewers in the virtual scene
layer is randomly assigned from 100 ms to 1500 ms in our
simulator. Furthermore, FLoD [6] only allowed viewers to start
a navigation when 99% data of the visible scene within initial
AOI has been downloaded. However, in realistic situations,
a user may not have enough patience to wait for a long
downloading time. Hence, we remove this strong restriction
in our simulation.

A part of a screenshot of the simulated P2P DVE system
is shown in Fig. 6 in which the numbers indicate the IDs of
nodes in the P2P DVE. Similar to the FLoD [6], we run all
the simulations in 3000 steps (i.e., 300 seconds). To evaluate
the stable state behavior, the performance analysis is based
on the statistic data collected in the last 2000 steps for each
simulation. The settings of the detailed parameters used in the
simulator are summarized in Table I. Note that in Table I, we
have two settings of the number of nodes, i.e., 500 and 1000.

TABLE I: Parameter settings in the simulator

Parameter Value
DVE dimensions (units) 5000 x 5000
Cell width (units) 50 x 50
3D Object file size (KB) 20 — 50
3D Object number in DVE 10000
Complexity ratio of base
shape over the full object 10%
Increment size in detailed part (Bytes) 50
AOI radius 75
Connection limit of AOI neighbors 20
Number of nodes in DVE 500, 1000
Server upload bandwidth 10 Mbps
Peer download bandwidth 66 KB/s
Peer upload bandwidth 33 KB/s

B. Performance metrics

We use the following metrics to evaluate the performance
of the caching algorithms, PSRM, P2P-MRM and FLoD, in
the simulated P2P DVE.

e Fill ratio (FR). When a viewer in the virtual scene
layer moves to a new position in the virtual environ-
ment, FR is the size ratio of the available data for
the visible scene in the client (already downloaded)
divided by all the data required for rendering the
visible scene (should be downloaded). Note that in
our definition of FR, we use the optimal resolution of
each 3D object as in MRM [2], while FLoD [6] used
the full resolution of 3D objects.

e Base latency (BL). BL is the latency between the
time instant, when a client requests the data of all 3D
objects in the visible scene, and the time instant, when
it receives all the base shapes of these 3D objects.
Once the base shapes are available in a client, a
viewer can start a meaningful navigation in the virtual
environment.

e Requests by nodes (RN). RN is the totally number
of requests delivered by all the nodes in the DVE at
each simulating step. All the data communicated in
the physical network layer (See Fig. 1) is composed
of two parts: the transmission of 3D contents and
the requests delivered by clients and the server. A
good caching algorithm should reduce the requests
by the nodes (corresponding to clients in the physical
network layer) as well as the delivery of 3D contents.

e Requests to the server (RS). RS is the total number
of requests received by the server at each simulated
step. When the AOI neighbors do not have the 3D
content requested by a client, it has to send requests
to the server for downloading the data. A good caching
algorithm should reduce the RS as well as the RN.

C. Experimental results

Denote that M is the total data size of the DVE, R is the
radius of a viewer’s AOI, H and W are the height and width
of the whole area of the virtual environment, respectively. The
the average data size of an AOI can be defined as

mR?

Dat = —M.
ataaor HW

We define the cache ratio as the ratio of a client’s cache
capacity over the Dataoy. It is clear that the effectiveness
of any caching algorithm is dependent of the cache ratio. In
our study, we use five settings of cache ratios: 0.25, 0.5, 1, 2,
3.

1) Fill ratios: Fig. 7 shows the experimental results of fill
ratios of four methods with respect to different cache ratios in
a 500-node DVE system with two navigation behaviors (i.e.,
random walk and clustering movement). The first observation
from the results in Fig. 7 is that the fill ratio does not increase
to 1 when the the cache ratio is increasing to 2 and 3. This
can be explained by that even if a client has more cache
capacity than the required 3D visible scene data, it may still
not have the full data of the visible scene at each step, due to

the large displacement of viewpoint movement and the limited
rendering ability of that client (the rendering time is increased
dramatically when the 3D scene data is increased above the
optimal resolutions [28]).

100 100
95 95
90 90
8 S e
85 /a//“—* o8 e e————————
= ._k——r//d—. [
80 80

751 ——FLoD(500) —+— P2P-MRM(500)
70 PSRM(500) PSRM-N(500)

00 05 10 15 20 25 30 35
Cache Ratio

75— FLoD(500) —¢— P2P-MRM(500)
PSRM(500) PSRM-N(500)

00 05 10 15 20 25 30 35
Cache Ratio

Fig. 7: The fill ratios in a 500-node DVE system with respect
to different cache ratios. Left: the behavior of a random walk
is used. Right: the behavior of a clustering movement.

As shown in Fig. 7, in a 500-node DVE system, when
the cache ratio decreases from 2 to 1, the fill ratio of FLoD is
reduced from 82% to 81% in a random walking, and from 84%
to 82% in a clustering movement, respectively. When the cache
ratio reaches 0.25, the fill ratio of FLoD is reduced to 80% in
a random walk and to 82% in a clustering movement. PSRM,
PSRM-N and P2P-MRM (MRM in a P2P DVE) generally have
the higher fill ratio than FLoD. This demonstrates that using
the optimal resolution with respect to the current viewpoint
based on a progressive representation of 3D objects, it is
possible to maintain a relative high fill ratio even if the cache
ratio is very small. A similar conclusion can be drawn from a
test on 1000-node DVE system as shown in Fig. 8. In both tests
on 500-node and 1000-node DVE system, the PSRM has the
highest fill ratios over the four methods: this can be explained
by that PSRM takes object reusability and potential relevance
into consideration and thus has the higher fill ratios than other
methods. The property of maintaining high fill ratios makes
PSRM particularly suitable in a small-cache-capacity condition
of a client such as mobile phones and PDAs.

i e ———— Sos] m———
g &

75 {—l— FLoD(1000) —e— P2P-MRM(1000)
o PSRM(1000) PSRM-N(1000)

00 05 10 15 20 25 30 35
Cache Ratio

75 {—— FLoD(1000) —+— P2P-MRM(1000)
PSRM(1000) PSRM-N(1000)

00 05 10 15 20 25 30 35
Cache Ratio

Fig. 8: The fill ratios in a 1000-node DVE system with respect
to different cache ratios. Left: the behavior of a random walk
is used. Right: the behavior of a clustering movement.

2) Base latency: The base latency measures the delay of
receiving all necessary base shapes of visible scene under
the current viewpoint. Since P2P-MRM and PSRM apply
a caching mechanism that always postpone to remove base
shapes from the cache as later as possible, it is expected that
P2P-MRM, PSRM-N and PSRM should have the less base
latency than FLoD. This expectation is demonstrated by the
experimental results shown in Fig. 9 and 10, in which two
DVE systems (500-node and 1000-node) are tested.

0.8 m 08 T—e
07 P 2 B c—
"50.6 1é’(le
g0 305
204 204
203 203

g? —l— FLoD(500) —¢— P2P-MRM(500)

. PSRM(500) PSRM-N(500)

700 05 1.0 15 20 25 3.0 35
Cache Ratio

02 —— FLoD(500) —¥— P2P-MRM(500)

2(]] PSRM(500) PSRM-N(500)
700 05 1.0 15 20 25 3.0 35
Cache Ratio

Fig. 9: The base latency in a 500-node DVE system with
respect to different cache ratios. Left: the behavior of a random
walk is used. Right: the behavior of a clustering movement.

1.0 1.0
0.9 0.9
08] S——— 08y "= .

07 R— 07—

‘é’o.o go.a

gos gos

204 504

@03 203
3? —— FLoD(1000) —f¢— P2P-MRM(1000) 8? —B— FLoD(1000) —%— P2P-MRM(1000)
0'0 | ‘PSRY\‘/I(IOO‘O) : PSI‘(M—N‘(IOOO‘) U‘(:‘ | ‘PSRV\‘/I(IOO‘()) : PS}‘RM—N‘(]()OO‘)
700 05 1.0 15 20 25 3.0 35 700 05 1.0 15 20 25 3.0 35

Cache Ratio Cache Ratio

Fig. 10: The base latency in a 1000-node DVE system with
respect to different cache ratios. Top: the behavior of a random
walk is used. Bottom: the behavior of a clustering movement.

As summarized in Fig. 9 and 10, in either navigation behav-
ior of random walking or cluster movement, the base latency
of FLoD is the highest (always larger than 0.7 seconds). The
base latency of PSRM-N is less than P2P-MRM, and PSRM is
less than PSRM-N in turn. PSRM has the lowest base latency
(always less than 0.65 seconds). There is one more reason
to explain the best base latency performance of PSRM over
FLoD: in peer selection, PSRM selects a peer from its AOI
neighbors based on the candidate providers’ available resource
(i.e., peer stability), while FLoD randomly selects a peer from
its AOI neighbors.

3) Requests by nodes: We examined the requests by nodes
as a measure of network dataflow in the P2P DVE. PSRM and
PSRM-N have much less requests by nodes than P2P-MRM
and FLoD. This demonstrates that the caching algorithm that
keeps the base shapes as long as possible and uses the potential
relevance degree has a good performance in reducing the data
requests from a client to its AOI neighbors in the proposed
P2P DVE. PSRM generally has less requests by nodes than
PSRM-N. This demonstrates that the reusability degree not
only enhances the navigation experience in virtual environment
(evaluated by fill ratios and base latency), but also can reduce
the data from clients sent into the P2P network. The data
of requests by nodes of four methods is stable with respect
to different cache ratios. This is due to the fact that when
the cache capacity is increased, the bottleneck of 3D scene
rendering in client’s CPU plays a more and more important
role in the navigation of virtual environment.

4) Requests to the server: We also examined the requests to
the server as another measure of network dataflow in the P2P
DVE. Our results shows that PSRM and PSRM-N have much
less requests to the server than P2P-MRM and FLoD. This
demonstrates that our caching algorithm is particularly suitable
in the proposed P2P DVE, since very few data requests are sent

back directly to the server. We regard that this suitability comes
from the following two aspects: i) Our caching algorithm takes
3D object usability into account, which makes a client always
downloads the frequently used 3D objects first and maintains
them as long as possible in the cache, such that very few
data requests are sent to the server when the viewpoint in
virtual environment is changed. ii) Our caching algorithm takes
potential relevance of 3D objects into account, which makes
the AOI neighbors of a client have as much data as possible
that may be requested by that client, such that few data requests
have to be sent to the server.

D. Scalability of PSRM

The experimental results have shown that by evaluating
with fill ratios, base latency, requests by nodes and requests
to the servers, PSRM outperforms PSRM-N, P2P-MRM and
FLoD in a large-scale DVE (measured in 500-node and 1000-
node systems). It is interesting to ask whether the PSRM is
still suitable for small- or medium-scale P2P DVE? We thus
test the four methods in P2P DVE systems of scales of 100,
200, 300, 400 and 500 nodes, respectively, with a fixed cache
ratio 0.25.

Fig. 11 shows the fill ratio of four methods with two
navigation behaviors. The results clearly show that with the
decrease of nodes in the DVE to a small scale, the fill ratio
decreases gradually in all the four methods, but PSRM is still
generally has the highest fill ratios due to its usage of the
progress representation and the base shape removal delaying
mechanism in the caching algorithm. When there is very few
nodes in the DVE, the Voronoi overlays become smaller and
each node can find fewer AOI neighbors; thus, the performance
of a P2P DVE in a small scale will closely behave like a C/S
DVE. The tendency to C/S DVE is demonstrated by the results
summarized in Table II, in which the index of requests to the
server is increased when the node number is decreased. Also
revealed by the data in Table II, the difference between the two
navigation styles of random walking and clustering movement
becomes very small since there are few nodes in the DVE. In
all the cases, the performance of PSRM is slightly better than
PSRM-N: this demonstrates that the reusability of 3D objects
can still improve the performance in a small-scale P2P DVE.

100 100
95 95

90 90

<85

e £

751 —M—FLoD —&— P2P-MRM 751 —— FLoD —&— P2P-MRM
2 PSRM PSRM-N 70 PSRM PSRM-N

100 200 300 400 560 160 200 400 560
Node Size

85

FR(%)

/‘———r/_’,____.__.k——*"‘
80 80

300
Node Size

Fig. 11: The fill ratios in the DVE system with a fixed cache
ratio 0.25. Left: the behavior of a random walk is used. Right:
the behavior of a clustering movement.

VI. CONCLUSION

In this paper we propose a P2P DVE framework that
utilizes a progressive representation of 3D objects. An efficient
caching algorithm is proposed for this P2P DVE framework.

TABLE II: Requests to the server per step in a P2P DVE with
fixed cache ratio 0.25

A random walk A clustering movement
Node size | PSRM-N ~ PSRM | PSRM-N PSRM
100 335 324 339 327
200 292 279 295 271
300 223 215 216 210
400 163 152 157 146
500 123 118 129 115

Three distinct features are designed in the proposed caching
algorithm.

1) Consider more realistic factors in the P2P DVE
framework including peer heterogeneity, traffic local-
ity and peer stability.

2) Utilize a cache scheduler that postpones the base
shapes of 3D objects as later as possible by always
removing the detailed parts of 3D objects first.

3) In addition to the traditional visual factor measure-
ment (similar to the one defined in Section IV-A)
for ranking the importance of 3D objects in the
cache, two more new measures based on object
reusability and potential relevance in AOI neighbors
are introduced to capture the traffic patterns of 3D
DVE streaming applications.

We conducted a comprehensive simulation study. Our
experiment results demonstrate that our proposed caching
algorithm outperforms two classic methods [2], [6], in terms
of fill ratio, base latency, requests by nodes and requests to
the server. The proposed caching algorithm performs well on
clients having small cache capacity in both large-scale and
small-scale P2P DVEs. Nevertheless, in our experiments, we
use a fixed setting of weights @ = # = v = 1 in the
preservation metric (5). In addition, user behaviors may impact
the performance of the caching algorithm heavily [29]. We
plan to improve the caching performance by finding an optimal
weight settings in our algorithm depending on customized user
behaviors as our future work.

ACKNOWLEDGEMENT

This work has been partially supported by the NSFC
(60972014,61272276), the Fundamental Research Funds for
the Central Universities (HUST:2012TS018) and the Technol-
ogy Support Plan of the National “Twelfth Five-Year-Plan” of
China (2011BAK08B00,2012BAC11B00-04-03).

REFERENCES

[1] A. Steed and M. F. Oliveira, Networked Graphics: Building Networked
Games and Virtual Environments. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2009.

[2] J. Chim, R. Lau, H. Leong, and A. Si, “CyberWalk: a web-based
distributed virtual walkthrough environments,” IEEE Trans. Multimedia,
vol. 5, no. 4, pp. 503-515, 2003.

[3] J. Botev, A. Hohfeld, H. Schloss, I. Scholtes, P. Sturm, and M. Esch,
“The HyperVerse: concepts for a federated and torrent-based *3D web’,”
International Journal of Advanced Media and Communication, vol. 2,
no. 4, pp. 122-128, 2008.

[4] R. Cavagna, J. R. andPatrick Gioia, C. Bouville, M. Abdallah, and
E. Buyukkay, “Peer-to-peer visualization of very large 3D landscape and

city models using MPEG-4,” Signal Processing: Image Communication,
vol. 24, no. 1-2, pp. 115-121, 2009.

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “VON: a scalable peer-to-peer
network for virtual environments,” IEEE Network, vol. 20, no. 4, pp.
22-31, 2006.

S.-Y. Hu, T.-H. Huang, S.-C. Chang, W.-L. Sung, J.-R. Jiang, and B.-Y.
Chen, “FLoD: a framework for peer-to-peer 3D streaming,” in /[EEE
INFOCOM, 2008, pp. 1373-1381.

J. Royan, P. Gioia, R. Cavagna, and C. Bouville, “Network-based
visualization of 3D landscapes and city models,” IEEE Computer
Graphics and Applications, vol. 27, no. 6, pp. 70-79, 2007.

M. Zhu, S. Mondet, G. Morin, W. T. Ooi, and W. Cheng, “Towards
peer-assisted rendering in networked virtual environments,” in ACM
Multimedia, 2011, pp. 183-192.

F. W. Li, R. W. Lau, D. Kilis, and L. W. Li, “Game-on-demand: An
online game engine based on geometry streaming,” ACM Transactions
on Multimedia Computing, Communications, and Applications, vol. 7,
no. 3, 2011.

G. Popescu and C. Codella, “An architecture for QoS data replication in
network virtual environments,” in Proceedings of Virtual Reality, IEEE,
2002, pp. 41-48.

J. Jia, P. Wang, S. Wang, and Y. Wang, “An integer incremental
AOLI algorithm for progressive downloading of large scale VRML
environments,” in Edutainment, 2007, pp. 711-722.

W. Wang and J. Jia, “An incremental SMLAOI algorithm for progressive
downloading large scale WebVR scenes,” in ACM Web3D, 2009, pp.
55-60.

K. Pan, W. Cai, X. Tang, S. Zhou, and S. Turner, “A hybrid interest man-
agement mechanism for peer-to-peer networked virtual environments,”
in IEEE Parallel & Distributed Processing, 2010, pp. 1-12.

D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Hueb-
ner, Level of Detail for 3D Graphics. Morgan Kaufmann Pub., 2002.

M. Garland and P. Heckbert, “Surface simplification using quadric error
metrics,” in ACM SIGGRAPH, 1997, pp. 209-216.

H. Hoppe, “Progressive mesh,” in ACM SIGGRAPH, 1996, pp. 99-108.

S.-Y. Hu, J.-R. Jiang, and B.-Y. Chen, “Peer-to-peer 3D streaming,”
IEEE Internet Computing, vol. 14, no. 2, pp. 54-61, 2010.

M. Franklin, M. Carey, and M. Livny, “Global memory management in
client-server DBMS architectures,” in Proceedings of VLDB, 1992, pp.
596-609.

A. Si and H.-V. Leong, “Adaptive caching and refreshing in mobile
databases,” Personal Technologies, vol. 1, no. 3, pp. 156170, 1997.

J. Apostolopoulos, W.-T. Tan, and S. Wee, Video Streaming: Concepts,
Algorithms, and Systems. Technical Report HPL-2002-260, Mobile
and Media Systems Laboratory, Hewlett-Packard Company, 2002.

T.-Y. Li and W.-H. Hsu, “A data management scheme for effective
walkthrough in large-scale virtual environments,” The Visual Computer,
vol. 20, no. 10, pp. 624-634, 2004.

S. Singhal and M. Zyda, Networked Virtual Environments: Design and
Implementation. Addison-Wesley Professional, 1999.

Y.-J. Liu, Z. Chen, and K. Tang, “Construction of iso-contours, bisec-
tors, and Voronoi diagrams on triangulated surfaces,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1502
—1517, Aug. 2011.

Y.-J. Liu, Y.-F. Zheng, L. Lv, Y.-M. Xuan, and X.-L. Fu, “3D model
retrieval based on color+geometry signatures,” The Visual Computer,
vol. 28, no. 1, pp. 75-86, 2012.

M. Albano, R. Baraglia, M. Mordacchini, and L. Ricci, “Efficient
broadcast on area of interest in Voronoi overlays,” in /[EEE CSE, 2009,
pp. 224-231.

M. Bishop, S. Rao, and K. Sripanidkulchai, “Considering priority
in overlay multicast protocols under heterogeneous environments,” in
IEEE INFOCOM, 2006, pp. 1-13.

R. Kumar, Y. Liu, and K. W. Ross, “Stochastic fluid theory for P2P
streaming systems,” in /JEEE INFOCOM, 2007, pp. 919-927.

T. Akenine-Moller, E. Haines, and N. Hoffman, Real-Time Rendering.
3rd ed., A.K. Peters Ltd.,, 2008.

P. Morillo, S. Rueda, J. M. Orduiia, and J. Duato, “Ensuring the perfor-
mance and scalability of peer-to-peer distributed virtual environments,”
Future Gener. Comput. Syst., vol. 26, no. 7, pp. 905-915, July 2010.

