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Abstract—Content Centric Networking (CCN) emerged as a
replacement architecture for the current Internet. CCN resorts
to in-network caching to enhance end-user delivery performance.
At the same time, Online Social Networks (OSN) have become
the common paradigm to exchange information between users.
OSNs carry extremely valuable information about their users
and their relationships. This knowledge can help to drastically
improve the efficiency of CCN.

We present a novel caching strategy for CCN based on social
information. We conjecture a small number of users -the Influ-
ential users- dominate the activity, receive most attention from
other users and produce content more likely to be consumed.
Our caching strategy privileges the Influential users and cache
pro-actively their content in the network.

Through extensive simulation experiments based on two social
network scenarios, LastFM and Facebook, and substantial num-
ber of users in a CCN topology, we demonstrate the value of our
approach. We also implemented and deployed our strategy on
PlanetLab and it improves drastically the caching performances
of CCN.

I. INTRODUCTION

Over the past few years Information Centric Networking
(ICN) has become a promising new paradigm for the future
Internet architecture. It is based on named data, where content
address, content retrieval and the content identification is led
by its name instead of its physical location. One of the ICN key
concepts relies on in-network caching to store multiple copies
of data in the network and serve future requests, which helps
to reduce the load on servers, congestion in the network and
enhance end-users delivery performances. ICN architectures
include Content Centric Networking (CCN) [1], NetInf [2]
and Pursuit [3] among others and are compared in [4]. Along
this work, we focus on CCN due to its wide acceptance in the
research community.

In parallel, Online Social Networks (OSN) have gained
tremendous popularity on the Internet. Millions of users inter-
act with each other through OSN such as Facebook or Twitter.
Facebook announced one billion of users [5] while Twitter
is massively used as a micro-blogging service. People create
social relationships through OSN and exchange information
about what they experience in their life within their com-
munity. As an example, the re-election picture of President
Obama has become the single most-retweeted message in
Twitter history with more than 800,000 re-tweets [6]. New
ubiquitous devices (smartphones, tablets) appeared and include
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functionalities to instantaneously share information through
OSN. Most if not all the Internet services improve the users’
experience through the addition of social features to rapidly
spread interesting content. Companies invest strongly into their
Facebook pages to promote new products and benefit from
user’s feedback [7]. 90% of American hospitals use social
media to attract new customers and one third has a formal
social media plan [8]. Users follow friends and families and
organize social events through the Internet. The Internet is
becoming a social-oriented network.

As a central component of CCN is in-network caching,
the content’s availability depends on several criteria such as
cache strategies and replacement policies, cache size or content
popularity. Several cache management schemes have been
evaluated [1], [9]-[12] and there are no consensus about the
appropriate caching scheme for CCN. OSN carry extremely
valuable information about users and their relationships. We
argue that this knowledge can help to drastically improve the
efficiency of Content Centric Networks.

In this paper, we propose to include social information in
the design of a new caching strategy for Content Centric
Networking. We conjecture a small number of users counts
a huge amount of social relationships, dominates the activity
and receives most attention from other users [13]. We call
such users Influential users, and we argue that they produce
content that is more likely to be consumed by others, and in
consequence their content must be favored and replicated in
priority. Our novel caching strategy is therefore prioritizing
content from Influential users of the social network.

The major contributions of this paper are :

¢ A model of social network over a CCN network together
with the new caching strategy for Content Centric Net-
working;

« Extensive simulations of the interaction of users from two
realistic social environments with thousands of users and
an evaluation of the caching strategy;

¢ An implementation of our caching strategy in CCNx and
a deployment on PlanetLab.

The results shows that our proposed socially-aware strategy
improves drastically the caching performances of CCN.

The structure of this paper is organized as follows. We
review in Section II the related work and discuss social
networks, influence of users and caching schemes. Then,
in Section III, we present the model used throughout this



paper. Section IV describes our novel socially-aware caching
strategy designed for CCN. Section V details the simula-
tion environment, and emphasize strongly on the simulation
parameters, the users’ social interactions and the simulation
tool. In Section VI, we present the simulation experiments
results and the benefits of our caching strategy for CCN.
Section VII details the implementation of our caching strategy
into CCNx and the experiments on PlanetLab. We then sum up
our findings and discuss our model in Section VIII. Section IX
concludes the paper and exposes the future work.

II. RELATED WORK
A. Online Social Networks

The study of Online social networks such as Facebook al-
lows analyzing the relationships among interacting users [14]-
[16]. Such studies have gained importance with the rise of
the Web 2.0. The theory of Efficient Hubs or Influentials [13]
shows that only a small number of users dominate the activity,
influence other users and receive most of their attention. As
a result, companies have considered the opinion leadership
in order to improve the quality of their products through
interpretation of media messages and increase their sales [7],
[17]. Aiming at different targets, political analysis follows the
same approach [18] to predict the preferences of a population.
Eigenvector [19] and PageRank [20] are common centrality
measures to calculate the importance of nodes in a graph.
PageRank is a variant of the Eigenvector centrality measure,
and it is used by Google to predict the most important pages
across the Internet.

As social networks have become a very important trend
in the Internet, there are currently only a limited number of
studies about the use of social network paradigm with ICN.
To our knowledge, [11] is the only work studying social
networks and ICN at the same time. ICN, IP networks and
Content Delivery Networks are compared with regard to the
current Twitter architecture. They show that ICN is a natural
architecture for deploying social networks’ applications. In our
paper, we take a different approach. We do not aim to compare
architectures; we aim at using social networks’ information in
order to improve ICN architectures.

B. Caching Schemes in ICN

The use of caches to increase content availability and to
reduce perceived latency time has been deeply investigated
in diverse environments such as Operating Systems, Web-
browsers and Proxy-servers. There is already a large number
of caching schemes in the literature and some of the most
important are presented in [21].

In the context of ICN, caching has also been largely
studied with a strong emphasis on content replacement poli-
cies [1], [10], [22] (e.g.: LRU, RAND, FIFO, etc.), the size
of cache [23] and the impact of broad range of topologies
such as Binary Trees [1], [10] and common ISP structures [9],
[10], [24], [25]. In [26], it is proved that most of replacement
policies can be grouped in equivalence classes and achieved
the same performances.
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Fig. 1: Example of a social network on top of a CCN
architecture. The black solid-lines represent the links between
CCN nodes and the red dashed-lines represent the users’ social
relationships.

Recent studies show that the use of previously mentioned
caching mechanisms does not improve performances [10], and
huge caches up to 10 TB should be necessary to achieve
acceptable levels of performance [27]. Nevertheless, [9] points
out that caching indiscriminately does not guarantee high
performances. They show that caching “less” content can
achieve better performances because it reduces the load on
the caches. Other studies [12], [28] follow the same approach
and propose to discriminate content and cache only popular
one in order to save the resources of the caches.

All these work treat equally content issued by any users
whether they are Influentials or not. In our work, we propose
a new caching strategy that gives priority to content issued by
popular users.

III. NETWORK MODEL

In this section, we describe the model used throughout this
paper. As a foundation, we first assume that the future Internet
architecture is based on Content Centric Networking. Then,
as the Internet is becoming a social oriented network, we
propose a social network model built over the CCN network.
In addition, we also model the interaction of users in social
networks. The Figure 1 gives an overview of our model that we
describe in details in this section. Finally, a use case scenario
illustrates the interactions of users in a social network built
over a CCN. We point out the limitations of the current caching
strategies for CCN and the need for novel caching strategies.

A. Content Centric Networking

Among several ICN architectures [4], we choose Content
Centric Networking (CCN) because it is well established
in the research community [29]. The CCN communication
architecture relies on two named primitives: Interest and Data.
A consumer requests content by broadcasting its Interest
messages all over the CCN network; any node hearing the
request and having the data can issue a response with a Data
message. As it is the most significant functionality in CCN,



nodes cache all the Data messages that have passed through
them. Another fact worthy to mention is that caches have finite
space. Hence an important feature for CCN is to manage
the cache of nodes with caching strategies and replacement
policies, which decide whether to cache and in case the cache
is full, the element to be replaced respectively.

To this end, we design a novel socially-aware caching strat-
egy adapted to CCN and improving the caching performances.
This caching strategy is presented in Section IV.

B. Social Network Model

Online Social Networks (OSN) allow users to publish
content at their own will and share it with their acquaintances
(i.e., friends). Friends may always be updated through a news
feed system. Each time a user finds interesting content (text,
pictures or video), he may share it with his friends, spreading
and expanding the visible scope of these information. Thus,
we model a social network by a network where users can
publish, retrieve and share information with their communities,
according to their personal preferences. In our social model,
each user has therefore two functionalities to interact with its
community: Publish and Retrieve, as defined as follows:

e Publish: the production of new content. After retrieving a
content, users may share it again with their friends (i.e.,
re-tweet a message).

o Retrieve: this function allows users to receive the last con-
tent issued by all their friends. For example in Figure 1,
the user A has friendship relationships (red dashed-line)
with users B, E and F. Each time A issues a Retrieve
message, A will obtain the content from all its friends B,
E and F.

C. Users’ Interaction Model

In order to emulate the users’ activities in the social net-
work, we present the users’ interaction model. Our interaction
model is based on research studies on social networks [15],
[16].

As stated before, a user can Publish or Retrieve content.
The interactions of a user in a social network are depicted
in Figure 2 and the different parameters introduced in the
model are: NS, the number of sessions; ¢1g,, the inter-session
time; IV A;, the number of activities per session; and ¢74;;, the
inter-activity time. The interactions of a user can therefore be
summarized as follows: a user may start a certain number
of independent and consecutive sessions (noted N.S). The
time interval between each session is calculated with an inter-
session time trg, from the time origin ¢0 or the previous
session ending time. In every session %, the user performs
a finite number of activities, N A;, such as publications or
retrievals from friends. These activities are separated by an
inter-activity time t;4,.. In the Figure 2, we illustrate an
example of user interactions in which User A has two sessions
(NS = 2); the first session starts after the inter-session
time ¢r5, and contains two activities (NA; = 2), which are
separated by three different inter-activity times t74,,, t14,,
and tr4,, . The second session counts only one activity
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Fig. 2: Users’ interaction model. Users can perform several
activities within sessions.

(NAy = 1) and is separated from the first session by a second
inter-session time %;g,.

We tune the parameters of our model (NS, trs,, NA; and
t14i;) with realistic values extracted from research studies in
the next simulation environment Section (SectionV).

D. Scenario of the Network Model

We illustrate the users’ interactions over the CCN network
with the following scenario example, depicted on Figure 1.
In this example, 6 users are distributed over a 9 CCN-nodes
network. The users’ social relationships are depicted by the red
dashed-lines and the links between CCN nodes by the black
solid-lines. Note that on this simple example, a user and a
CCN node can be on the same host.

In our model, when a user issues a Retrieve message, the
user requests the last content from all his friends. In Figure 1,
E has a single social relationship with A while B has several
social relationships with A, C and D. Once B issues a Retrieve
message, the last content from A, C and D are requested; when
E issues a Retrieve message, only the last content from A is
requested.

Consider the case where all the users publish a new content,
referred as Content 1 to Content 6 respectively. Next, users A
and E issue a Retrieve message. First, A requests for the last
update of his three friends E, F and B. In the CCN architecture,
it means that an Inferest message is issued from node A to
node E across the shortest path [A, D, g, F, E], and each node
of the path will store the Content 5 from E. A issues another
Interest message across [A, E, g, F] to receive Content 6 from
F, which is stored at each node along the path. Finally, A issues
its third Interest message for B, and Content 2 will be stored
along the path [A, C, h, B]. Then, E issues a Retrieve message,
which means that Content 1 will be cached at each node along
the path [E, F, g, D, A]. The state of the caches is shown in
Table 1. With this simple scenario, we observe that content
published by non-Influential users (Content 5 and Content 6
from node E and F) are not discriminated and are treated
equally as content published by Influential users (content 1
and Content 2 from A and B).



Users Cache Users | Cache Nodes | Cache
A 1,2,5,6 D 1,56 g 1,5,6
B 2 E 1,5,6 h 2
C 2 F 1,56 i -

TABLE I: State of the caches after the network model scenario
in Section III-D.

In other words, there are as many copies of Content 6 as
Content 1 in the network, whereas Content 1 has been gener-
ated by A, an Influential user, and this content is more likely
to be consumed by others. Content 6 from non-Influential
user E is wasting space in the network caches since it has
a limited interest for other users. Then, we advocate the fact
that content strategy in CCN should privilege content from
Influential users.

In the following section, we present our novel socially-
aware caching strategy that takes advantage of users’ social
information, and particularly the importance of users in the
network.

IV. SOCIALLY-AWARE CACHING STRATEGY

The Previous section described our model and the interac-
tions of a social network over a CCN network. In the case of a
Future Internet based on CCN, we expect that users will still
organize themselves into communities and exchange largely
content through social networks, as it is already the case in
the current Internet. A major limitation from the previous
example (Section III-D) is that content is replicated into the
CCN network whatever it comes from an Influential user (i.e.:
a popular user with many social relationships) or not.

SACS: Socially-Aware Caching Strategy

We proposed a novel caching strategy for CCN based on
the social information of users. Our socially-aware caching
strategy gives priority to content issued by Influential users and
cache it pro-actively into the CCN network. Indeed, users with
more social relationships (popular users) are more influential
than users with fewer relationships, and they produce content
that is more likely to be consumed by others. For instance,
when a popular Twitter user sends a message, it may count
much more re-tweets than a message from a regular user. In
the rest of the paper, we refer to our socially-aware caching
strategy as SACS. To the best of our knowledge, SACS is the
first proposed caching strategy designed for CCN using the
social information of users.

In our strategy, the content published by Influential users
is pro-actively replicated into the shortest path towards their
social neighbors before it is requested. It improves the avail-
ability of Influential users’ content and reduces the number of
Interest messages in the CCN network. Thus, SACS privileges
content issued by Influential users. It is therefore an important
matter for SACS to detect the influential users in the social
network.

Eigenvector PageRank
Users | Score | Influential Score | Influential
A 0.58 Yes 0.29 Yes
B 0.58 Yes 0.29 Yes
C 0.29 No 0.11 No
D 0.29 No 0.11 No
E 0.29 No 0.11 No
F 0.29 No 0.11 No
[ Avg. [ 0.38 [ N/A H 0.17 [ N/A ]

TABLE II: Scores of the centrality measures computed from
the users’ social relationship on Figure 1.

Influential Users Detection

We detect the influence of users within a social network
by using the Eigenvector and PageRank centrality measures.
These measures allow computing a score for every user in
the network according to their importance. More details on
the computation of these centrality measures can be found
in [19] and [20] for Eigenvector and PageRank respectively.
For instance, we compute on the Table II the score of users
from the previous example (Figure 1) by using both the
Eigenvector and PageRank centrality measure. We then define
a user as being Influential if its score is greater than the average
score of the overall social network.

From table II, A and B are Influential users because their
score are greater than the average one (0.58 > 0.38 and
0.29 > 0.17 respectively) while users C, D, E & F are non-
influential users. Thus, whenever Influential user A publishes
a new message, it is proactively cached into nodes along
the shortest paths towards its social relationships B, E and
F ([A,C,h,B)|, [A,D,q,F] and [A,D,g,F, E]). When F
publishes a new message, it is not pro-actively cached as F is
not an Influential user.

V. SIMULATION ENVIRONMENT

In this section, we present our simulation environment and
the parameters we use to tune our model in order to evaluate
SACS, our socially-aware caching strategy. A general overview
of our simulation environment is provided in the Figure 3.
As we describe the environment, all the parameters are also
summarized in Table III.

Network Topology

We consider a future content-centric Internet built on the
CCN architecture. Besides the caching capabilities at each
node, the topological structure of this future Internet will
be just like today’s Internet. We then resort to Inet [30], a
common tool to generate Internet topologies that we use to
model the CCN topology. We use the Inet default parameters
as presented in Table III and the network topology we use
throughout this paper counts 3,037 nodes.

Social Network

In order to model the social relationships between users,
we resort to two publicly available data sets : (i) LastFM data
set [31] and (ii) Facebook data set [32]. LastFM is a music



recommender system, where users share their musical pref-
erences with their community. From the LastFM data set,
we extract a social graph counting 1,896 users, 12,717 bi-
directional relationships and each user counts in average 13
relationships. Facebook is the most popular OSN and the data
set consists of 4,039 users, 88,234 friend relationships and
each user counts in average 44 relationships. Our simulation
experiments are therefore performed with two different social
network models.

The users of the social network are randomly mapped into
the network topology.

Users’ Activities

Now that we model social networks from publicly available
data set over a CCN topology through Inet, we model the
users’ activities and interactions, i.e., the behavior of users
and how they publish or retrieve pieces of information from
their social relationships. Remember that in our model, users
perform activities within sessions (Fig 2) and have two activity
functions within the social network: Publish and Retrieve (Sec-
tion IIT). We therefore extract from previous studies [15], [16]
the distribution parameters to model the users’ interactions
such as the number of sessions, the number of activities by
session, the inter-session time and the inter-activity time. From
these measurement studies, we also found out that in average,
5% of the user’s activities are Publication. This is consistent
with the fact that most of the users only consult their timelines
in the OSN and they barely publish new content such as status
updates or share multimedia content. These distributions and
their parameters are presented in Table III. Then, for each
user from the two data sets (about 1,900 and 4,000 users
respectively), we generate a sequence of activities (Publish and
Retrieve) and sessions. These activities are timestamped and
we obtain a realistic sequence of social activities for each user.
By merging all the sequences of users’ activities, we obtain
synthetic social network activity traces for the LastFM and
Facebook data sets. Following this procedure, we can generate
as many traces as we need and for the next experiments we
generate 20 different synthetic traces. On average, each trace
counts 56,000 activities for the Facebook data set, and 25,547
activities for the LastFM data set. Our generator of social
network activity traces will be publicly available.

Simulation Tool

Finally, in order to evaluate our socially-aware caching
strategy for CCN, we implement a discrete-event simulation
tool written in Python. We could not serve of the commonly
used CCN simulators such as ccnSim [10] because these
simulators are not designed to receive a realistic workload in
input such as social network activity traces.

We also implement our novel caching strategy into our
simulator. As our caching strategy relies on centrality measure
to detect Influential users in the social network, we implement
both Eigenvector and PageRank.

As stated before, CCN uses caching strategies and replace-
ment policies to manage the cache of nodes. Our caching

Social Network
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CCN

Replacement Policies

Caching Configuration
Caching Strategies

Simulation tool

Fig. 3: General overview of the simulation environment.

Social Network Activity Traces
Number of sessions N.S Zipf (a = 1.792, 8 = 1.0)
Number of activities N A; Zipf (a« = 1.765, 8 = 4.888)
Inter-session time t1s, (s) LogNormal (@ = 2.245,0 = 1.133)
Inter-activity time lra,; (s) LogNormal (u = 1.789,0 = 2.366)
Publish/Retrieve 5%
CCN Topology
#Nodes 3,037 Social Network Topology
Degree-one nodes 0.3% LastFM
Plan size 10,000 #Users 1,896
Seed 0 #Links 12,717
Caching Configuration Avg. Degree 13

Replacement Policies  LRU, FIFO, Facebook

RAND #Users 4,039
Centrality Measure Eigenvector / || #Links 88,234

PageRank Avg. Degree 44
Cache Size {1...20}

TABLE III: Simulation parameters of the experiments.

strategy can therefore be used jointly with the traditional
replacement policies for CCN such as Last Recently Used
(LRU), Random (RAND) and First In First Out (FIFO).

The cache size at each node ranges from 1 to 20 elements
and we show through experiments that larger cache size
do not improve performances (see Section VI for further
explanations).

VI. SIMULATION EXPERIMENTS RESULTS
A. Notations

Our objective is to evaluate the caching performances of
CCN with regard to our socially-aware caching strategy, i.e.,
to compare CCN with or without using SACS. We performed
simulations with each of the replacement policies (LRU,
RAND, and FIFO). For sake of clearness, we present in this
paper only the results with the LRU replacement policy and
the other policies (RAND and FIFO) show similar results.
Indeed, as stated in [26], replacement policies can be grouped
into equivalent classes and have similar performances.

Thus, in order to clarify our notation, for the rest of the
paper we refer to CCN as CCN with the LRU replacement
policy. We also refer to SACS as CCN with the LRU replace-
ment policy and the SACS caching strategy. In addition, as our
caching-strategy relies on centrality measure, we implemented
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Fig. 4: Caching performances of CCN with or without using SACS, our proposed socially-aware caching strategy (Cache Hit,
Stretch, Expired Elements and Diversity). The figures on the left side are for the LastFM data set and on the right side are for

the Facebook data set.

both Eigenvector and PageRank and refer to them explicitly.
We also perform the simulation experiments using two data
sets (LastFM and Facebook, Section V) and refer to them
directly.

B. Evaluation Metrics

We evaluate the performance of our socially-aware caching
strategy according to the following metrics :

o Cache Hit: the probability to obtain a cache hit all along
the path from a requester to a cache node;

e Stretch: the distance in number of hops that the data
chunk has traveled in the network with respect to the
distance between the node storing the original copy
(ratio);

e Expired Elements: the ratio of content stored across the
caches that are no longer requested by any users;

o Diversity: the number of distinct content stored across all
the caches with respect to the total caching space.



C. Results

The results of our simulation experiments are presented in
Figure 4. This figure consists in fact of 8 figures: the four
figures on the left column (Fig. 4(a)-(b)-(c)-(d)) are for the
results obtained with the LastFM data set, while the four on the
right column are for the Facebook data set (Fig. 4(e)-(f)-(g)-
(h)). Four rows of two charts depict each of our metrics: Cache
Hit (Fig. 4(a)-(e)), Stretch (Fig. 4(b)-(f)), Expired Elements
(Fig. 4(c)-(g)) and Diversity (Fig. 4(d)-(h)). All the figures
share the same axes: the x-axis is the cache size ranging from
1 to 20 elements; The y-axis is the probability. For clarity
reasons, we show the x-axis only on the two bottom figures
((Fig. 4(d)-(h)), and the y-axis on the figures of the right
column (Fig. 4(e)-(f)-(g)-(h)). For each simulation experiment,
we performed 20 runs of each simulation using different social
network activity traces and provide the average value and the
confidence intervals.

Figures 4(a) and 4(e) show the Cache Hit performances of
CCN with or without using SACS, our socially-aware caching
strategy (for Eigenvector and PageRank measures). Without
our strategy, the Cache Hit of CCN achieves low values and
it barely reaches 5%. Differently, SACS increases significantly
the Cache Hit and reaches 30% for SACS/Eigenvector and up
to 40% for SACS/PageRank with the LastFM data set, while
it reaches 10% and up to 40% using Facebook data set.

The low performances for CCN are due to the use of large-
scale and realistic social and network topologies. Indeed, the
long routes traversed by the content affect the Cache Hit and
its computation works as follows. In every hop passed by an
Interest message, the Cache Hit gets updated with a Hit or a
Miss. If the requested content is present at hop n , we obtain a
single Hit and there has been n — 1 hops without the requested
content (i.e., n — 1 Miss). As the Cache Hit metric is the ratio
of Hit with regard to the number of Miss, the longer the path
to find the content is, the lower the Cache Hit is. In our case,
our strategy pro-actively caches content from Influential users
in the network paths. Our strategy SACS succeeds to make the
content more available and improves drastically the caching
performances of CCN.

The Stretch metric is presented in Figures 4(b) and 4(f).
This metric is in direct correlation with the Cache Hit.
Without our strategy, the Interest messages traverse 90% of
the shortest path to get the content. As expected, the distance
to get the content has greatly reduced with SACS: Interest
messages traverse only 35% and 72% of the shortest path
with SACS/Eigenvector and 22% and 26% of the path with
SACS/PageRank (LastFM and Facebook data set respectively).

Figures 4(c) and 4(g) show the ratio of Expired Elements
in the caches. This metric is important to verify if the content
stored in the caches is still requested or not (i.e., outdated).
One could have expected that CCN performs better than our
socially-aware caching strategy because SACS favors the con-
tent from Influential users. However, as seen on Figures 4(c)
and 4(g), SACS achieves the same level of performances as
CCN. Indeed, our strategy gives priority to content from

Fig. 5: Location of the selected PlanetLab nodes.

Influential users, and these popular users produce content that
is more likely to be consumed by others. Thus, content cached
by SACS is still mainly requested and it keeps the level of
expired elements at the same level as CCN.

Last, the Diversity metric is presented in Figures 4(d) and
4(h). Since this metric stands for the number of distinct content
stored across all the caches with respect to the total caching
space, Diversity decreases as measure as the cache size grows.
There is less diversity in the caches with SACS and this result
was expected since our strategy discriminates content from
Influential users. Hence SACS deliberately creates multiple
copies of Influential’s content, reducing the variety in the
caches at the same time. However, even though SACS does not
provide as high Diversity as CCN, it still drastically increases
the caching performances in CCN.

It is noteworthy to mention that larger cache sizes have no
impact on the Cache Hit. On Fig. 4(e), the Cache Hit for
SACS/PageRank remains stable from a cache size of 6, while
it is stable at any Cache size for Sacs/Eigenvector or for the
other data set (Fig. 4(a)).

Regarding both data sets, the number of users has no impact
on the performances of our strategy. Indeed, Facebook data
set counts almost twice the number of users as the LastFM
one (4,039 and 1,896 respectively, Table III), and our strategy
achieves high level of performances with each social environ-
ment. It is especially the case with the PageRank centrality
measure (blue-dashed line on Fig. 4(a)-(e)). With the LastFM
data set, SACS shows similar performances for both cen-
trality measures. For the Facebook data set, SACS/PageRank
reaches high performances while SACS/Eigenvector is lower
and slightly improves CCN. The average degree can explain
this trend (13 for LastFM and 44 for Facebook, Table III)
and the PageRank measure exhibits better performances than
Eigenvector with a highly connected social environment. As
the two centrality measures succeed to detect influential users
in the network, the PageRank measure is a better choice for
our strategy.

VII. EXPERIMENTS ON PLANETLAB

Besides simulation experiments, we evaluate SACS, our
socially-aware caching strategy, into a real testbed. To this



end, we use CCNx [29], the most advanced prototype of CCN,
and we perform experiments on PlanetLab, a planetary-scale
testbed platform that supports the development of new network
services [33].

We implemented our socially-aware caching strategy into
CCNx v0.7.1. and the PageRank centrality measure to detect
Influential users as it has shown the best performances in
the simulation experiments (Section VI). Our modified CCNx
prototype has been deployed into 14 PlanetLab nodes geo-
graphically distributed. During our experiments, as PlanetLab
is a global research network, we could not handle more stable
nodes at the same time. The location of the PlanetLab nodes
is indicated in the Figure 5.

For these experiments, we use the LastFM data set presented
in Section V that counts 1,896 users and for which we obtained
synthetic social network activity traces to model the users’
activities. Each of the 1,896 users was assigned to one of
the 14 PlanetLab nodes. The built CCN topology consists of
a fully connected topology between the 14 PlanetLab nodes.
We perform three runs of the experiment for each cache size
with different synthetic traces. We evaluate the Cache Hit
performances of CCN with regards to our strategy. The results
of the experiments are presented in Figure 6 and we provide
the average value and the standard deviation.

In the previous section, we used additionally Stretch, Di-
versity and Expired Elements. Due to the high complexity
to implement these metrics in the PlanetLab platform, we
decide to only implement Cache Hit and to use it to assess
the previously shown results.

Our socially-aware caching strategy improves drastically the
performances of CCNx. CCNx Cache Hit barely reaches 20%,
while it reaches about 50% with our strategy. SACS enhances
the performances of the default caching strategies in CCNx
by 2.5 times.

The planet-scale experiment results match the previously
obtained simulation results (Section VI), and it confirms
that our socially-aware caching strategy SACS improves the
caching performances of CCN. It also points out that the use
of social information (i.e.: the importance of users in a social
network) improves the performances of a Future Internet based
on the Content Centric Networking architecture.

VIII. DISCUSSION

From our previous experiments, we show that SACS im-
proves drastically the caching performances of CCN and
naturally reduces the distance to get the content. In addition,
our PlanetLab experiments demonstrate that SACS enhances
the caching performances of CCN by 2.5 times. Besides, we
discuss here some open issues regarding our caching strategy.

SACS discriminates the content from popular users and
caches it pro-actively in the network. There is a trade-off be-
tween the caching performances and the diversity of elements
in the caches. By privileging content from important users,
SACS reduces the number of sources of content, and thus the
number of distinct elements stored in the network. However,
regarding the number of Expired Elements, SACS shows the
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Fig. 6: Cache Hit performances for CCNx and our socially-
aware strategy (SACS with PageRank centrality measure) on
Planetlab.

same level of performances as CCN. With SACS, the replicated
content is the one from popular users. These pieces of content
are still requested frequently by other users and multiple copies
into caches does not induce larger waste of space than using
CCN.

Our strategy also requires detecting Influential users. It
is therefore essential to compute accurately the centrality
measure in the social network. In order to avoid a central-
ized computation of this measure and to have a complete
knowledge of the social network, several studies [34]-[36]
address the topic and in particular, in [34], they propose a
decentralized version of the Eigenvector algorithm in which
scores are calculated locally by every node and normalized by
exchanging messages. [35], [36] also shows that it is feasible
to compute a good estimation of the PageRank without the
entire knowledge of the network.

Another matter of importance is the privacy of users. Com-
puting a centrality measure involves the exchange of users’
relationships. Thus, users are exposing sensitive information
and partially unveiling their privacy. As the management of
privacy is a subject of high interest, it has been investigated in
other research areas. For instance, in the context of databases,
Differential Privacy [37] hides sensitive information while it
still allows answering queries on databases. Such kind of
mechanism can also be used with our strategy in order to
preserve users’ privacy.

For large bulks of data (such as video), congestion control
mechanisms could be put together with our strategy. For
instance, [28] decides the number of chunks to be cached
according to the content popularity. SACS may use congestion
control mechanisms along with its proactive content replica-
tion functionality in order to avoid overloading the network.

IX. CONCLUSION

We proposed in this paper SACS, a Socially-Aware Caching
Strategy for Content Centric Networks. SACS uses social



information and privileges Influential users in the network by
pro-actively caching the content they produce.

Based on extensive simulation experiments, we showed
that our caching strategy improves significantly the caching
performances of CCN with regard to the Cache Hit and
Stretch, while it keeps a similar level of performances for
the Expired Elements. Furthermore, we implemented SACS
on CCNx and performed experiments on PlanetLab. SACS
improved the caching performances of CCN by 2.5 times in
a real testbed. These results point out that social information
are relevant pieces of information to improve a future content-
centric Internet.

Finally, the inclusion of social information should not be
limited to CCN caching related issues. As future work, routing
alternatives may as well consider social features to select the
best path. Increasing the cache diversity is also a topic to be
investigated.
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