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Abstract—In cloud computing, a cloud provider hosts the data
of an organization and replies query results to the customers
of the organization. Because organization’s data are confidential
and the cloud provider cannot be fully trusted, some schemes
have been proposed to preserve data privacy and query result
integrity. However, these schemes either include false positives in
query results, or are too expensive. In this paper, we propose an
effective and efficient privacy and integrity preserving scheme
for multi-dimensional range queries. To preserve privacy, we
propose an order-preserving hash-based function to encode both
data and queries so that a cloud provider can correctly process
encoded queries over encoded data without knowing their values.

To preserve integrity, we propose a new data structure called local
bit matrices that allows a customer to verify the integrity of a
query result with a high probability. Experimental results show
that our scheme can efficiently process a dataset with one million
data items.

I. INTRODUCTION

A. Motivation and Problem Statement

Cloud computing has become a new computing paradigm,

where cloud providers host significant amounts of hardware,

software, and network resources, to store organizations’ data

and perform computation over the data on demand of cus-

tomers’ requests. It has three major advantages. First, organi-

zations can instantly open business and provide products or

services to their customers without building and maintaining

their computing infrastructure, which significantly reduces

costs. Second, the data stored in a cloud are more reliable and

can be accessed whenever a customer has internet connection.

Third, cloud providers have powerful computation capacity,

which provides better experience to customers. Many clouds

have been successfully built, e.g., Amazon EC2 and S3 [1],

Google App Engine [2], and Microsoft Azure [3].

Supporting databases is a must for cloud providers.

Databases have been introduced since 1960s and become a key

component for most applications. When organizations move

their applications to clouds, database operations, especially

database queries, should be supported by these clouds.

The database-as-a-service (DAS) model, first introduced by

Hacigumus et al. [13], is one of the most important works

in cloud computing, where a cloud provider hosts the data

of an organization and replies query results to the customers

on behalf of the organization, However, the DAS model brings

significant security and privacy challenges. As cloud providers

cannot be fully trusted and the data of an organization are typ-

ically confidential, the organization needs to encrypt the data

before storing it in a cloud to prevent the cloud provider from

revealing the data. However, it is difficult to process queries

over encrypted data. Furthermore, since cloud providers serve

as an important role for answering queries from customers,

they may return forged data for the query or may not return

all the data items that satisfy the query.

Therefore, we want to design a protocol for the DAS model

that supports multi-dimensional range queries while preserving

the privacy of both data and queries and the integrity of query

results. The importance of this problem is also pointed out in

[20]. Range queries are one of the most important queries for

various database systems and have wide applications. In terms

of data privacy, cloud providers cannot reveal the organization

data and customer queries. Note that the customer queries also

need to be kept confidential from cloud providers because

such queries may leak critical information about query results.

In terms of query result integrity, customers need to detect

whether a query result includes forged data or does not include

all the data items that satisfy the query.

B. Technical Challenges

There are three key challenges in solving secure multi-

dimensional range queries problem in the DAS model. First,

a cloud provider needs to correctly process range queries over

encrypted data without knowing the values of both data and

queries. Second, customers need to verify whether a query

result contains all the data items that satisfy the query and

does not contain any forged data. Third, supporting multi-

dimensional range queries is a difficult problem.

C. Limitations of Previous Work

Four main techniques have been proposed in the privacy-

preserving schemes: bucket partitioning (e.g., [13], [14]),

order-preserving hash functions (e.g., [11]), order-preserving

encryptions (e.g., [4], [22]), and public-key encryption (e.g.,

[6], [19]). However, bucket partitioning leads to false positives

in query results, i.e., a query result includes data items that do

not satisfy the query. Existing order-preserving hash functions

and order-preserving encryptions require large amount of

shared secret information between an organization and its

customers. The public-key cryptography is too expensive to

be applied in realistic applications.ISBN 978-3-901882-58-6 c© 2014 IFIP
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Three main techniques have been proposed in the integrity-

preserving schemes: Merkle hash trees (e.g., [10], [18], [23]),

signature aggregation and chaining (e.g., [17], [16], [24], [25]),

and spatial data structures (e.g., [7]). However, Merkle hash

trees is expensive to support multi-dimensional range queries.

Signature aggregation and chaining requires a cloud provider

to reply to the customer the boundary data items of the query

that do not satisfy the query. However, for applications that

require strict access control, leaking boundary data items may

violate access control policies. The importance of enforcing

access control policies for DAS has been discussed in [7].

Furthermore, the chaining technique is expensive when apply-

ing it to multi-dimensional case. Spatial data structures are not

clear to be used for searching query results over such structures

in a privacy preserving manner.

D. Our Approach

In this paper, we propose an effective and efficient privacy

and integrity preserving scheme for the DAS model. To

preserve privacy, we propose an order-preserving hash-based

function to encode both data and queries such that a cloud

provider can correctly process encoded queries over encoded

data without knowing their values. To preserve integrity, we

present the first probabilistic integrity-preserving scheme for

multi-dimensional range queries. In this scheme, we propose a

new data structure, called local bit matrices, to encode neigh-

borhood information for each data item from an organization,

such that a customer can verify the integrity of a query result

with a high probability.

Comparing with the state-of-the-art of privacy and integrity

preserving schemes, our scheme achieves both security and

efficiency. In terms of security, our scheme not only enables

a cloud provider to correctly process queries over encrypted

data, but also leaks only the minimum privacy information as

we will discuss in Section IV-C. In terms of efficiency, our

scheme is much more efficient due to the use of the hash

function and symmetric encryption.

E. Key Contributions

In this paper, we make three key contributions. First, we

propose an efficient privacy-preserving scheme that can pro-

cess multi-dimensional range queries without false positives.

Second, we propose the first probabilistic scheme for verifying

the integrity of range query results. This scheme employs a

new data structure, local bit matrices, which enables customers

to verify query result integrity with high probability. Third, we

conduct extensive experiments on real and synthetic datasets

to evaluate the effectiveness and efficiency of our scheme.

F. Summary of Experimental Results

We performed extensive experiments on synthetic datasets

and the Adult dataset [12]. Our experimental results show that

our scheme is efficient for preserving privacy and integrity

of multi-dimensional range queries in cloud computing. We

chose three attributes of the Adult dataset in the experiments.

For a synthetic dataset with one million 1-dimensional data

items, the one-time offline data processing time is about 50

minutes, the space cost is 33MB, and the query processing

time is 2 milliseconds. For the Adult dataset with 45222

3-dimensional data items, the data processing time is 104

seconds, the space cost is 1.5MB, and the query processing

time is 3.5 milliseconds.

II. RELATED WORK

A. Privacy Preserving in Databases

Database privacy has been studied extensively in both

database and security communities (e.g., [13], [14], [4], [5],

[22], [11], [19], [6], [20], [21]). Based on whether query

results include false positives, i.e., data items that do not

satisfy the queries but are included in the query results, we

can classify these schemes into the following two categories:

approximate privacy-preserving schemes [13], [14] and precise

privacy-preserving schemes [4], [5], [22], [11], [19], [6]. The

approximate privacy-preserving schemes reply query results

with false positives but they are more efficient, while the

precise privacy-preserving schemes reply query results without

false positives but they are more expensive. Next, we discuss

these two categories of privacy-preserving schemes.

Approximate Privacy-Preserving Schemes

Hacigumus et al. first proposed the bucket partitioning idea

for querying encrypted data in the DAS model [13]. The basic

idea is to divide the attribute domains into multiple buckets and

then map bucket ids to random numbers for preserving privacy.

Later, Hore et al. explored the optimal partitioning of buckets

[14]. However, as pointed out in [14], bucket partitioning

incurs a tradeoff between privacy and efficiency. If the bucket

sizes are large, less privacy information is leaked, but query

results include more false positives; if the bucket sizes are

small, more privacy information is leaked, but query results

include less false positives. In contrast, our scheme in this

paper is a precise privacy-preserving scheme, which returns

query results without false positives. Furthermore, our scheme

leaks only the minimum privacy information for any possible

precise privacy-preserving scheme, which will be discussed in

detail in Section IV-C.

Precise Privacy-Preserving Schemes

Previous order-preserving hash functions [11] and order-

preserving encryptions [4], [5], [22] can be employed for

constructing precise privacy-preserving schemes in cloud com-

puting. Fox et al. proposed an order-preserving minimal prefect

hash function (OPMPHF) for a domain with N possible values

[11]. Agrawal et al. proposed an order-preserving encryption

(OPES) [4]. The basic idea of OPES is to transform data

items to different values such that the transformed values

preserve the order of the data items without disclosing the

privacy of the data items to cloud providers. Specifically,

this scheme first divides the data domain into multiple buck-

ets, i.e., m buckets, computes a transformation polynomial

function for each bucket, and then applies the corresponding

transformation function to the data items in each bucket.

However, for z-dimensional data items, the OPMPHF function

requires O(zN logN) shared secret information between the
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organization and its customers, and the OPES encryption re-

quires O(zm) shared secret information. In contrast, our order-

preserving hash-based function only requires O(z) shared

secret information.

B. Integrity Preserving in Databases

Independent of database privacy, database integrity has also

been explored in prior work [10], [18], [23], [17], [16], [24],

[25], [8], [7]. Merkle hash trees have been used for the

authentication of data items [15] and they were used for

verifying the integrity of range queries in [10], [18], [23].

Pang et al. [17], Narasimha & Tsudik [16], and Hu et al.

[24] proposed similar schemes for verifying the integrity of

range query results using signature aggregation and chaining.

For each data item, Pang et al. computed the signature of

the data item by signing the concatenation of the digests of

the data item itself as well as its left and right neighbors

[17]. Narasimha & Tsudik computed the signature by signing

the concatenation of the digests of the data item and its left

neighbors along each dimension [16]. Chen & Liu proposed a

chaining technique to verify the integrity of range query results

in two-tiered sensor networks [25]. It directly concatenates

the data item with its left neighbors along each dimension.

However, signature aggregation and chaining has two major

drawbacks. First, it does support access control because it

requires a cloud provider to reply to the customer the boundary

data items of the query that do not satisfy the query. The

importance of enforcing access control policies for DAS has

been discussed in [7]. For applications that require strict

access control, leaking boundary data items violates access

control policies. Second, chaining technique is expensive when

applying it to the multi-dimensional case. Considering a z-

dimensional data Dj , for each dimension, it has a left neighbor

and a right neighbor. Overall, Dj has 2 × z neighbors. The

chaining data structure consists of Dj and its 2×z neighbors.

Thus it takes O(z) space to store a chaining structure.

Chen et al. proposed Canonical Range Trees (CRTs) to

store the counting information for multi-dimensional data

such that the counting information can be used for integrity

verification without leaking boundary data items of the query

[7]. However, the most important requirement in cloud com-

puting is to preserve data privacy. CRTs contain a lot of

privacy information. Thus, we need to preserve the privacy of

CRTs. As we discussed before, preserving privacy of relational

databases is already difficult. Preserving privacy of CRT trees

is much more difficult and no scheme has been proposed.

III. MODELS AND PROBLEM STATEMENT

A. System Model

We consider the DAS model in Figure 1. The DAS model

consists of three parties: an organization, a cloud provider,

and customers. The organization outsources their private data

to a cloud provider. A cloud provider hosts outsourced data

from the organizations and processes the customers’ queries

on behalf of the organization. Customers are the clients of the

organization that query a cloud provider and retrieve query

results from the outsourced data in the cloud provider.

Organization Cloud Provider

Customer

Customer

Customer

Query

Result

Query

Result

Query

Result

Fig. 1. The DAS model

B. Threat Model

We assume that organizations and their customers are

trusted but the cloud provider is not. In a hostile environment,

both customers and cloud providers may not be trusted. If a

customer is malicious, it may retrieve all the organization’s

data and distribute to other unauthorized users. Such attack

is very difficult to be prevented and is out of the scope of

this paper. In this paper, we mainly focus on the scenario

where the cloud provider is not trusted and it may try to

reveal organizations’ data and falsify the query results. In

reality, cloud providers and organizations typically belong to

different parties, i.e., different companies. The organizations

cannot share their private data with untrusted cloud providers.

A malicious cloud provider may try to reveal the private data

of organizations, and return falsified query results that include

forged data or exclude legitimate data. We also assume that

there are secure channels between the organization and the

cloud provider, and between the cloud provider and each

customer, which can be achieved using protocols such as SSL.

C. Problem Statement

The fundamental problem for the DAS model is: how can

we design the storage scheme and the query protocol in

a privacy and integrity preserving manner? A satisfactory

solution should meet the following three requirements. (1)

Data and query privacy: Data privacy means that a cloud

provider cannot reveal any data item from organizations.

Query privacy means that a cloud provider cannot reveal any

query from customers. (2) Data integrity: If a cloud provider

returns forged data or does not return all the data items that

satisfy the query, such misbehavior should be detected by the

customer. (3) Range Query Processing: The encoded data from

organizations and encoded queries from customers should

allow a cloud provider to correctly process range queries.

IV. PRIVACY PRESERVING FOR 1-DIMENSIONAL DATA

In this section, we present our privacy-preserving scheme

for 1-dimensional data. To preserve privacy, it is natural to

have an organization to encrypt its data items. Let d1, · · · , dn
denote n data items, the encryption results can be denoted as

(d1)k, · · · , (dn)k, where k is the shared secret key between the

organization and its customers. However, the key challenge is

how a cloud provider can process queries over encrypted data

without knowing the values of data items.
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The basic idea of our scheme is to design an order-

preserving hash-based function to encode the data items from

the organization and the queries from its customers such

that the cloud provider can use the encoded queries and

encoded data items to find out the query results without

knowing the actual values. More formally, let fk denote the

order-preserving hash-based function, where k is the shared

secret key between the organization and its customers. To

compute fk, the organization and its customers also need to

share the secret information, the domain of the data items

[x1, xN ]. This function fk satisfies the following property:

the condition fk(xi1 ) < fk(xi2 ) holds if and only if x1 ≤
xi1 < xi2 ≤ xN . To submit n data items d1, · · · , dn to

a cloud provider, the organization first encrypts each data

item with the secret key k, i.e., (d1)k, · · · , (dn)k. Second,

the organization applies the function fk to each data item,

i.e., fk(d1), · · · , fk(dn). Finally, the organization sends the

encrypted data items (d1)k, · · · , (dn)k as well as the encoded

data items fk(d1), · · · , fk(dn) to the cloud provider. To per-

form a range query [a, b], the customer applies the order-

preserving hash-based function fk to the lower and upper

bounds of the query, i.e., fk(a) and fk(b), and then sends

[fk(a), fk(b)] as the query to the cloud provider. Finally, the

cloud provider can find out whether the data item dj (1≤j≤n)

satisfies the query [a, b] by checking whether the condition

fk(a)≤fk(dj)≤fk(b) holds. Fig. 2 shows the idea of our

privacy-preserving scheme.

Cloud ProviderOrganization Customer

(d1)k,…,(dn)k [fk(a), fk(b)]

dj [a, b] if and only if fk(a)   fk(dj)   fk(b)

fk(d1),…, fk(dn)

Fig. 2. Basic idea of privacy-preserving scheme

Next, we first present our order-preserving hash-based func-

tion and then discuss its properties. Second, we propose the

privacy-preserving scheme by employing this function. Third,

we propose an optimization technique to reduce the size of

the results after applying the hash-based function. Fourth, we

analyze the information leakage of our approach.

A. Order-Preserving Hash-based Function

In this paper, we propose an order-preserving hash-based

function fk. Let {x1, · · · , xN} denote the set that includes all

possible data items and ∆ denote a fixed value. Without loss of

generalization, we assume that for any two adjacent data items

xi and xi+1 (1 ≤ i ≤ N − 1), xi < xi+1 and xi+1 − xi = ∆.

Obviously, the number of all possible values is N and a value

xi (1 ≤ i ≤ N ) is equal to x1 + (i − 1) × ∆. For ease of

presentation, in the rest of the paper, we use [x1, xN ] to denote

the domain of these N data items and we consider only the

case of ∆ = 1. The function fk is

fk(xi) =

i
∑

q=1

hk(xq) (1)

where hk is a keyed hash function, such as keyed HMAC-

MD5 and keyed HMAC-SHA1. The intuition of designing

such order-preserving hash-based function is two-fold. First,

we leverage a normal hash function hk as the basic building

block such that the one-way property of hk prevents the

cloud provider from revealing the data items. Second, we

consider the result of hk as a positive integer and then calculate

fk(xi) by summing the hash results of all values that are

less than or equal to xi in the domain [x1, xN ] such that

if x1 ≤ xi1 < xi2 ≤ xN , fk(xi1 ) is less than fk(xi2 ). In

other words, fk is an order-preserving function for the values

in [x1, xN ]. More formally, the order-preserving hash-based

function fk satisfies the following two properties:

Order Preserving: Assume that hk(xq) is a positive integer

for any xq ∈ [x1, xN ]. For any xi1 , xi2 ∈ [x1, xN ], fk(xi1 ) <
fk(xi2 ) if and only if xi1 < xi2 .

Collision Resistance: Assume that hk(xq) is a positive

integer for any xq ∈ [x1, xN ]. For any xi1 , xi2 ∈ [x1, xN ],
it is impossible to find xi1 and xi2 where xi1 6=xi2 such that

fk(xi1 )=fk(xi2 ).

These two properties and the one-way property of hk allow

the cloud provider to process the encoded range queries over

the encoded data without revealing the values of the data and

queries. Note that these two properties are holds for any value

xi in the domain [x1, xN ]. If a value x 6∈ [x1, xN ], the two

properties may not hold.

In fact, the hash-based function fk can preserve any given

arbitrary order of values in the domain [x1, xN ] no matter

whether the condition x1 < · · · < xN holds. For example,

if the order of 3 data items 3, 5, 7 is defined as 5, 3, 7, then

fk(5) < fk(3) < fk(7). This property allows an organization

to revise any data item xi (xi ∈ [x1, xN ]) arbitrarily while

still preserving the order. We will discuss how to leverage this

property to prevent the statistical analysis of multi-dimensional

data in Section VI-A.

B. The Privacy-Preserving Scheme

The privacy-preserving scheme includes three phases, data

submission, query submission, query processing.

Data submission

The data submission phase concerns how an organization

sends its data to a cloud provider. Let d1, · · · , dn denote

the data items of an attribute in the private data of the

organization. Recall that [x1, xN ] is the domain of the attribute

and is the shared secret between the organization and its

customers. Particularly, this shared secret consists of three

values, the minimum value, x1, the maximum value, xN , and

the difference of two adjacent values in the domain, ∆. For

simplicity, we assume d1 < d2 < · · · < dn. If some data items

have the same value, the organization can simply represent

them as one data item annotated with the number of items

that share this value.

To preserve data privacy, for each dj (1 ≤ j ≤ n),

the organization first encrypts it with its secret key k, i.e.,

(dj)k, and then applies the order-preserving hash-based func-

tion, i.e., fk(dj). Finally, the organization sends the en-

crypted data (d1)k, · · · , (dn)k as well as the hash results

fk(d1), · · · , fk(dn) to the cloud provider.
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Query submission

The query submission phase concerns how a customer sends

a range query to the cloud provider. When a customer wants

to perform a range query [a, b] on the cloud provider, it first

applies the order-preserving hash-based function to the lower

and upper bounds of the query, i.e., fk(a) and fk(b). Note that

a and b are also two values in [x1, xN ]. Finally, the customer

sends [fk(a), fk(b)] as a query to the cloud provider.

Query Processing

Upon receiving the query [fk(a), fk(b)], the cloud provider

processes this query on the n data items (d1)k, · · · , (dn)k by

checking which fk(dj) (1 ≤ j ≤ n) satisfies the condition

fk(a) ≤ fk(dj) ≤ fk(b). Based on the order preserving

property of the function fk, dj ∈ [a, b] if and only if

fk(a) ≤ fk(dj) ≤ fk(b). Thus, the cloud provider only needs

to return all encrypted data items whose hash values fk are in

the range [fk(a), fk(b)].

C. Analysis of Information Leakage

Given n data items d1, · · · , dn and a range query [a, b],
any precise privacy-preserving scheme should enable the cloud

provider to find out all the data items that satisfy the query

[a, b] without revealing the values of the data items from the

organization and the query from its customer. According to

this requirement, we have the following theorem.

Theorem 4.1: Given any precise privacy-preserving

scheme, if all possible results of range queries can be found

during the query processing phase, the cloud provider can

reveal the order of the original items.

Based on Theorem 4.1, our privacy-preserving scheme pre-

vents the cloud provider from revealing any other information

except the order of data items. for two reasons. First, the cloud

provider cannot reveal the values of the data and queries from

the hash results due to the one-way property of hk. Second,

the cloud provider cannot reveal these values by launching

statistical analysis because for any two data items dj1 and dj2
(1 ≤ j1 < j2 ≤ n), (dj1 )k 6= (dj2 )k and fk(dj1) 6= fk(dj2).
Recall that if some data items have the same value, the

organization represents them as one data item with the number

of items that share this value.

V. INTEGRITY PRESERVING FOR 1-DIMENSIONAL DATA

We present the first probabilistic integrity-preserving

scheme for 1-dimensional data, which allows a customer to

verify the integrity of a query result with a high probability.

The meaning of integrity preserving is two-fold. First, a

customer can verify whether the cloud provider forges some

data items in a query result. Second, a customer can verify

whether the provider deletes data items that satisfies the query.

The basic idea of the integrity-preserving scheme is to

encrypt neighborhood information for each data item such that

the neighborhood information of the data items in a query re-

sult can be used to verify the integrity of the query result. More

formally, let (M(dj))k denote the encrypted neighborhood

information for each data item dj (1 ≤ j ≤ n). To submit n
data items d1, · · · , dn to a cloud provider, the organization not

only sends the encrypted data items (d1)k, · · · , (dn)k and the

encoded data items fk(d1), · · · , fk(dn), but also sends the en-

crypted neighborhood information (M(d1))k, · · · , (M(dn))k.

Upon receiving a query [fk(a), fk(b)] from a customer, the

cloud provider first finds out the query result based on

the privacy-preserving scheme. Suppose that the data items

dj1 , · · · , dj2 (1 ≤ j1 ≤ j2 ≤ n) satisfy the query. The

cloud provider not only replies to the customer the query

result (dj1)k, · · · , (dj2)k, but also replies the encrypted neigh-

borhood information (M(dj1 ))k, · · · , (M(dj2))k. For ease of

presentation, let QR denote the query result, which includes

all the encrypted data items that satisfy the query, i.e., QR =
{(dj1)k, · · · , (dj2 )k}, and V O denote the verification object,

which includes the information for the customer to verify the

integrity of QR, i.e., V O = {(M(dj1))k, · · · , (M(dj2))k}.

To verify the integrity, the customer first decrypts the query

result and verification object, i.e., computes dj1 , · · · , dj2
and M(dj1), · · · ,M(dj2). Second, the organization checks

whether dj1 , · · · , dj2 satisfy the query and the overlapping

parts of the neighborhood information from every two adjacent

data items exactly match. If so, the customer concludes that the

query result includes all the data items that satisfy the query.

Otherwise, the customer concludes that some data items in the

query result are forged or deleted by the cloud provider. Fig.

3 shows the basic idea of our integrity-preserving scheme.

Cloud ProviderOrganization Customer

(d1)k,…,(dn)k
[fk(a), fk(b)]

QR = {(dj1)k,…,(dj2)k}
(M(d1))k,…,(M(dn))k

VO = {(M(dj1))k,…, (M(dj2))k}

Assume dj1,…,dj2 [a, b]

Fig. 3. Basic idea of integrity-preserving scheme

Our integrity-preserving scheme guarantees to detect the

misbehavior of forging data items because the cloud provider

cannot insert fake data items into a query result without

knowing the secret key k. The scheme also allows a customer

to detect the misbehavior of deleting data items in a query

result with high probability. Furthermore, if the cloud provider

conducts the deletion operation multiple times, the detection

probability will increase significantly, i.e., approach 100%.

Next we present new data structures, bit matrices and local

bit matrices, and discuss their usage in integrity verification.

A. Bit Matrices and Local Bit Matrices

To define bit matrices and local bit matrices, we need to

first partition the data domain into multiple non-overlapping

buckets. For example in Fig. 4, we partition domain [1, 15] to

five buckets, B1 = [1, 3], B2 = [4, 6], B3 = [7, 10], B4 =
[11, 12], and B5 = [13, 15]. Second, we distribute the data

items into the corresponding buckets. Third, we assign a bit

value 1 to the buckets with data items, and assign a bit value

0 to the buckets without data items. Let B(dj) denote the

bucket that includes dj . A bucket is called the left nonempty

bucket of data item dj if the bucket is the left nearest bucket

of B(dj) that includes data items. Similarly, a bucket is called

the right nonempty bucket of data item dj if the bucket is the

right nearest bucket of B(dj) that includes data items. For
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example, for data item 7 in Fig. 4, B2 and B5 are the left and

right nonempty buckets of data item 7, respectively.

5

M(5)=2|011|1|1    M(7)=3|1101|2|1     M(13)=5|101|2|1

M(9)=3|1101|2|2     M(14)=5|101|2|2

1 3 6 10 12 15

7   9 13  14

0 1 1 0 1M= 

B1 B2 B3 B4 B5

Fig. 4. Example bit matrix and local bit matrices

Based on the above concepts, we define bit matrices and

local bit matrices as follows. The bit matrix of all data items,

M , is formed by the bit values of all buckets. In Fig. 4, the

bit matrix of the five data items is 01101, i.e., M = 01101.

The local bit matrix of a data item dj , M(dj), consists of four

parts: (1) the bucket id of B(dj); (2) a subset of the bit matrix,

which is formed by the bit values from its left nonempty bucket

to its right nonempty bucket; (3) the number of data items in

bucket B(dj); (4) a distinct integer to distinguish the local bit

matrix of dj from other data items in bucket B(dj). In Fig. 4,

the local bit matrix of data item 7 is 3|1101|2|1, i.e., M(7) =
3|1101|2|1, where 3 is the bucket id, 1101 is the subset of the

bit matrix, 2 is the number of data items in bucket B3, and

1 is the integer to distinguish M(7) from M(9). Intuitively,

the bit matrix denotes the abstract information of all the data

items, and the local bit matrix of a data item dj denotes the

abstract neighborhood information of dj .

Note that the usage of bucket partition in this paper is

different from that in previous work (e.g., [13], [14], [4]).

They leverage bucket partition to achieve privacy-preserving

query processing, while we use the bit values of buckets for

verifying the integrity of query results.

B. The Integrity-Preserving Scheme

This scheme includes four phases, data submission, query

submission, query processing, and query result verification.

Data submission

Let d1, · · · , dn denote the data items of an attribute from

the organization. The organization first partitions the data

domain to m non-overlapping buckets B1, · · · , Bm, and then

distributes d1, · · · , dn to these buckets. The bucket partition

is a shared secret between the organization and its customers.

Second, the organization computes the local bit matrix for

each data item and then encrypts them with its secret key

k, i.e., computes (M(d1))k, · · · , (M(dn))k. Third, the or-

ganization sends to the cloud provider the encrypted local

bit matrices (M(d1))k, · · · , (M(dn))k as well as encrypted

data items (d1)k, · · · , (dn)k and the encoded data items

fk(d1), · · · , fk(dn).
Query submission

To perform a range query [a, b], a customer sends [fk(a),
fk(b)] as the query to the cloud provider.

Query Processing

Upon receiving [fk(a), fk(b)], the cloud provider computes

QR as in Section IV-B. Here we consider how to compute V O.

If QR = {(dj1)k, · · · , (dj2)k} (1 ≤ j1 ≤ j2 ≤ n), V O =
{(M(dj1))k, · · · , (M(dj2))k}; if QR = ∅, which means that

there is a data item dj1 (1 ≤ j1 ≤ n) such that dj1 < a ≤

b < dj1+1, then V O = {(M(dj1))k, (M(dj1+1))k}. Finally,

the cloud provider replies QR and V O.

Query Result Verification

Upon receiving the query result QR and the verification

object V O, the customer decrypts them, and then verifies

the integrity of QR as follows. First, the customer verifies

whether each item in QR satisfies the query [a, b]. Second,

the customer verifies whether the cloud provider deletes any

data item that satisfies the query. Let {(dj1)k, · · · , (dj2 )k} be

the correct query result and Bg1 , · · · , Bgt be the buckets which

include at least one data item in the query result. Let QR be

the query result from the cloud provider. Suppose the cloud

provider deletes a data item (dj)k that satisfies the query, i.e.,

(dj)k ∈ {(dj1)k, · · · , (dj2)k}, and dj ∈ Bgs (1 ≤ s ≤ t). We

consider the following four cases.

Case 1: When QR 6= ∅, if Bgs ⊆ [a, b], the deletion of (dj)k
can be detected for two reasons. First, if Bgs only includes one

data item dj , deleting (dj)k can be detected because the local

bit matrices of data items in Bgs−1
or Bgs+1

show that Bgs

should include at least one data item. Second, if Bgs includes

multiple data items, deleting (dj)k can be detected because the

local bit matrices of other data items in Bgs have the number

of data items in Bgs . In Fig. 4, given a range query [4,11], the

correct query result is {(5)k, (7)k, (9)k}, and the verification

object is {(M(5))k, (M(7))k, (M(9))k}. Deleting (7)k in B3

can be detected because based on M(9), the customer knows

that B3 includes two data items.

Case 2: When QR 6= ∅, if Bgs 6⊆ [a, b], deleting (dj)k cannot

be detected because the customer does not know whether Bgs∩
[a, b] includes data items. Considering the example in Case 1,

deleting (5)k cannot be detected because the customer does

not know whether B2 ∩ [4, 11] includes data items.

Case 3: When QR = ∅, if B(dj1 ) ∩ [a, b] = ∅ and

B(dj1+1) ∩ [a, b] = ∅, the deletion of (dj)k can be detected

because M(dj1) or M(dj1+1) shows that bucket Bgs between

B(dj1) and B(dj1+1) includes data items, and hence, condi-

tion dj1 < a ≤ b < dj1+1 does not hold. In Fig. 4, given

a range query [3,5], the correct query result is {(5)k}. If

the cloud provider replies QR = ∅ and V O = {(M(7))k},

deleting (5)k can be detected because the customer knows that

B2 includes data items based on M(7), and these data items

are closer to the query [3,5] than 7.

Case 4: When QR = ∅, if B(dj1) ∩ [a, b] 6= ∅ or

B(dj1+1)∩ [a, b] 6= ∅, the deletion of (dj)k cannot be detected

because the customer does not know whether B(dj1 )∩[a, b] or

B(dj1+1)∩ [a, b] includes data items. In Fig. 4, given a range

query [9,12], the correct query result is {(9)k}. If the cloud

provider replies QR = ∅ and V O = {(M(7))k, (M(13))k},

deleting (9)k cannot be detected because the customer does

not know whether B(3) ∩ [9, 12] includes data items.

The cloud provider can break integrity verification if and

only if it can distinguish Cases 2 and 4 from other two

cases. Distinguishing these two cases is equivalent to know-

ing which data items belong to the same bucket. However,

such information cannot be revealed by analyzing the en-

crypted data items (d1)k, · · · , (dn)k , the encoded data items
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fk(d1), · · · , fk(dn), and the encrypted local bit matrices

(M(d1))k, · · · , (M(dn))k. Because for any two data items

dj1 and dj2 (1 ≤ j1 < j2 ≤ n), (dj1 )k 6= (dj2)k,

fk(dj1 ) 6= fk(dj2 ), and (M(dj1 ))k 6= (M(dj2))k . Thus, the

cloud provider can only randomly delete the data items in the

query result and hope that such deletion will not be detected.

VI. QUERY OVER MULTI-DIMENSIONAL DATA

A. Privacy for Multi-dimensional Data

The data of organizations and the queries of customers are

typically multi-dimensional. For example, a medical record

typically includes patient’s name, birthday, age, etc. A z-

dimensional data item D is a z-tuple (d1, · · · , dz) where

each dr (1 ≤ r ≤ z) is the value for the r-th dimension

(i.e., attribute). A z-dimensional range query consists of z
sub-queries [a1, b1], · · · , [az, bz] where each sub-query [ar, br]
(1 ≤ r ≤ z) is a range over the r-th dimension.

We extend our privacy-preserving scheme for one-

dimensional data to multi-dimensional data as follows. Let

D1, · · · , Dn denote n z-dimensional data items, where

Dj = (d1j , · · · , d
z
j ) (1 ≤ j ≤ n). First, the orga-

nization encrypts these data with its secret key k, i.e.,

computes (D1)k, · · · , (Dn)k. Second, for each dimension

r, it applies our order-preserving hash-based function fkr
,

i.e., computes fkr
(dr1), · · · , fkr

(drn), where kr is the se-

cret key of the order-preserving hash-based function for

the r-th dimension. Last, it sends the encrypted data

items (D1)k, · · · , (Dn)k, and fk1
(d11), · · · , fk1

(d1n), · · · ,
fkz

(dz1), · · · , fkz
(dzn) to the cloud provider. When a cus-

tomer wants to perform a query ([a1, b1], · · · , [az, bz]),
it applies the order-preserving hash-based function fkr

on the lower and upper bounds of each sub-query

[ar, br] and sends [fk1
(a1), fk1

(b1)], · · · , [fkz
(az), fkz

(bz)]
to the cloud provider. The cloud provider then compares

fkr
(dr1), · · · , fkr

(drn) with [fkr
(ar), fkr

(br)] for each dimen-

sion r, to find out the query result QR. Considering 5 two-

dimensional data items (1,11), (3,5), (6,8), (7,1) and (9,4),

given a range query ([2,7],[3,8]), the query result QR is

{(3, 5)k, (6, 8)k}.

To prevent the attack of statistical analysis, the data sent

from the organization to the cloud provider should satisfy the

following two conditions. First, for any 1 ≤ j1 6= j2 ≤ n,

(Dj1)k 6= (Dj2)k. To satisfy this condition, if multiple data

items have the same value for each dimension, the organization

can simply represent them as one data item annotated with

the number of these items. Second, along each dimension r,

for any 1 ≤ j1 6= j2 ≤ n, fkr
(drj1) 6= fkr

(drj2 ). To satisfy

this condition, the organization needs to revise the data items

with the same value for the dimension r. Recall the arbitrary

order-preserving property of fkr
. It allows the organization to

arbitrarily revise data items while still preserving the order of

these items in the hash results. In our context, if drj1 = drj2 ,

the organization can concatenate a distinct number for each

of them, i.e., drj1 |0 and drj2 |1, and then apply the hash-based

function fkr
.

B. Integrity for Multi-dimensional Data

To preserve the integrity of multi-dimensional data, the

organization builds multi-dimensional local bit matrices.

We first present the data structures, multi-dimensional bit

matrices and local bit matrices, and then discuss the usage in

integrity verification for multi-dimensional data. Considering

the example in Fig. 5(a), we partition the data domain into

4 × 6 = 24 buckets. Then, we distribute the data items,

D1, · · · , D5, into the corresponding buckets. We assign a bit

value 1 or 0 to each bucket to indicate whether the bucket

includes data items or not. Let B(dj) denote the bucket that

includes dj . A bucket is called the r-th left nonempty bucket of

data item dj (1 ≤ r ≤ z) if the bucket is the left nearest bucket

of B(dj) that includes data items for the r-th dimension.

Similarly, a bucket is called the r-th right nonempty bucket

of data item dj if the bucket is the right nearest bucket of

B(dj) that includes data items for the r-th dimension. In Fig.

5(a), B(D2) is the 1-th left nonempty bucket of data item D3.
Based on the above concepts, we define bit matrices and

local bit matrices as follows. The bit matrix of all data items,
M , is formed by the bit values of all buckets. In Fig. 5(a), the
bit matrix of the five data items

M =















0 1 0 0
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1
0 0 0 0















The local bit matrix of a data item Dj , M(Dj), consists of

four parts: (1) the bucket id of B(Dj); (2) a subset of the

bit matrix, which is formed by the bit values of the buckets

within a rectangle, which includes its left and right nonempty

buckets for each dimension; (3) the number of data items in

bucket B(Dj); (4) a distinct integer to distinguish the local

bit matrix of Dj from other data items in bucket B(Dj). In

Fig. 5(b), the local bit matrix of D3 is

M(D3) = ID|





0 0 1
0 1 0
1 0 1



 |1|1

where ID is the bucket id of B(D3).
The integrity-preserving scheme for z-dimensional data

(z > 1) is similar as that for 1-dimensional data.

Here we only show an example. Consider the five data

items D1:(d
1
1, d

2
1), · · · , D5:(d

1
5, d

2
5) in Fig. 5. The or-

ganization sends to the cloud provider the encrypted

data items (D1)k, · · · , (D5)k, encrypted local bit matri-

ces (M(D1))k, · · · , (M(D5))k , and the encoded data items

fk1
(d11), · · · , fk1

(d15), fk2
(d21), · · · , fk2

(d25). Given a range

query that includes two data items D2 and D3 in Fig. 5(c),

the cloud provider replies to the customer the query result

QR = {(D2)k, (D3)k} and the verification object V O =
{(M(D2))k, (M(D3))k}.

Next, we analyze the detection probability for multi-
dimensional data. Let B1, · · · , Bm denote the multiple non-
overlapping buckets, and ([l1i , h

1
i ], · · · , [l

z
i , h

z
i ]) denote a z-

dimensional bucket Bi (1 ≤ i ≤ m). A bucket Bi is called a
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Fig. 5. The example 2-dimensional bit matrix and local bit matrices

single-value bucket if for each dimension r (1 ≤ r ≤ z), lri =
hr
i . Let [xr

1, x
r
Nr

] denote the domain for each dimension r. Let

e(X) denote the frequency of the data item X : (x1, · · · , xz).
The detection probability of a deletion operation by cloud
providers can be computed as

Pr =

∑m

i=1

∏z

r=1
(lri − x

r
1 + 1)(xr

Nr
− h

r
i + 1)

∑

X∈Bi
e(X)

∑n

j=1

∏z

r=1
(drj − xr

1
+ 1)(xr

Nr
− drj + 1)

(2)

Theorem 6.1: Given any n z-dimensional data items

D1, · · · , Dn, the maximum detection probability of a dele-

tion operation is Prmax = 100% if and only if each data

item Dj (1 ≤ j ≤ n) forms a single-value bucket, i.e.,

([d1j , d
1
j ], · · · , [d

z
j , d

z
j ]).

Theorem 6.2: Given n z-dimensional data items

D1, · · · , Dn, the minimum detection probability of a

deletion operation is

Prmin =
n

∑n

j=1

∏z

r=1
(drj − xr

1
+ 1)(xr

Nr
− drj + 1)

(3)

if and only if there is only one bucket

([x1
1, x

1
N1

], · · · , [xz
1, x

z
Nz

]).
The calculation of the detection probability in Equation 2

and the proofs of Theorems 6.1 and 6.2 are similar to the 1-

dimensional case. Finding optimal bucket partition for multi-

dimensional data is an interesting yet difficult problem and

will be discussed in further work.

VII. EVALUATION

We evaluated the efficiency and effectiveness of our privacy

and integrity preserving scheme for both 1-dimensional and

multi-dimensional data. In terms of efficiency, we measured

the data processing time for organizations, and the space cost

and query processing time for cloud providers. In terms of

effectiveness, we measured whether the experimental detection

probability of deletion operations by cloud providers is con-

sistent with the theoretical analysis in VI-B. Our experiments

were implemented in Java 1.6.0 and carried out on a PC

running Linux with 2 Intel Xeon cores and 16GB of memory.

A. Evaluation Setup

We conducted our experiments on a real data set, Adult,

and five synthetic datasets. The Adult dataset is from the

UCI Machine Learning Repository [12] and has been widely

used in previous studies. It contains 45222 records. We chose

three attributes in this dataset, Age, Education, and Hours-

per-week. Note that Education is a categorical attribute and

we mapped each Education value to a distinct integer. The

domains of these three attributes are [17, 90], [1, 16], and

[1, 99], respectively. The five synthetic datasets are generated

by randomly choosing 102, 103, · · · , 106 data items from five

domains [0, 103], [0, 104], · · · , [0, 107], respectively. For our

order-preserving hash-based function fk, we used HMAC-

MD5 with 128-bit keys as the basic hash function hk. We

used the DES encryption algorithm to encrypt both data items

and local bit matrices.

B. Results for 1-dimensional Data

We employed the synthetic datasets to evaluate the effi-

ciency and effectiveness of our scheme for 1-dimensional data.

For each synthetic dataset, given different number of buckets,

we first computed the optimal partition and the maximum

detection probability, and then we implemented our scheme

using the optimal partition. We also generated 1,000 random

range queries to measure the total processing time for cloud

providers and verify query result integrity for customers. To

process the query, we used the binary search algorithm to find

out the query result. Let n denote the number of data items

in a dataset and m denote the given number of buckets. Note

that if all data items form single-value buckets, the detection

probability is 100%. The rest buckets are empty buckets and

the number of these buckets is n+ 1. Thus, the total number

of buckets can be computed as 2n+ 1. In other words, given

m = 2n + 1, the output of our optimal algorithm should be

these 2n + 1 buckets. Based on this observation, we define

partition ratio as m/(2n+1). The partition ratio helped us to

normalize the results of our optimal partition algorithm for

different datasets. Fig. 6 shows the normalized results for

the five synthetic datasets. We observed that the detection

probability increases with the partition ratio and if partition

ratio is equal to 1, i.e., m = 2n+ 1, the probability becomes

1, which confirms the above discussion.

To check whether the experimental detection probability is

consistent with the theoretical analysis, for each dataset, we

randomly deleted a data item in each query result and then

computed the percentage of query results that were detected

by our integrity-preserving scheme. Note that this percentage

is the experimental detection probability. Fig. 7 shows that the
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experimental detection probability is close to the theoretical

line, which demonstrates the correctness of our analysis.

Figures 8 and 9 show the data processing time and space

cost for the five synthetic datasets, respectively. Note that the

horizonal and vertical axes in these figures are in logarithmic

scales. In Fig. 8, we observed that the data processing time

is less than 300 seconds for 105 data items. Although for

one million data items, the data processing time is about 50

minutes, which is reasonable for real applications because the

data processing is a one-time offline procedure. In Fig. 9, we

observed that the space cost grows linearly with the number

of data items in a dataset. A cloud provider needs 33MB to

store one million data items from an organization.
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Fig. 10 shows the total processing time of 1,000 queries for

the five synthetic datasets. Processing 1,000 queries over one

million data items only takes 2 seconds.
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C. Results for Multi-dimensional Data

We employed the Adult dataset to evaluate the efficiency

and effectiveness of our scheme for multi-dimensional data.

The experimental results show that the data processing time

for this dataset is 104 seconds, the space cost is 1.5MB, and the

total processing time of 1,000 random queries is 3.5 seconds.

Due to the absence of the optimal partition algorithm for

multi-dimensional data, we arbitrarily partitioned the Adult

dataset to different sets of buckets. The results show that

the experimental detection probability is consistent with the

theoretical analysis for multi-dimensional range queries.

VIII. CONCLUSION

We propose a privacy and integrity preserving scheme

for multi-dimensional range queries in cloud computing. To

preserve privacy, we propose an order-preserving hash-based

function to encode the data from an organization and the

queries from its customers such that a cloud provider can

process encoded queries over encoded data without knowing

the actual values. To preserve integrity, we propose the first

probabilistic integrity-preserving scheme for range queries.

This scheme employs a new data structure, local bit matrices,

which allows customers to verify query result integrity with

high probability. We conducted extensive analysis and evalu-

ation. The results demonstrate effectiveness and efficiency of

our scheme. Our future work will consider data updating and

optimal bucket partitioning for multi-dimensional data.
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