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Abstract—HTTP is a successful Internet technology on top
of which a lot of the web resides. However, limitations with its
current specification have encouraged some to look for the next
generation of HTTP. In SPDY, Google has come up with such
a proposal that has growing community acceptance, especially
after being adopted by the IETF HTTPbis-WG as the basis
for HTTP/2.0. SPDY has the potential to greatly improve web
experience with little deployment overhead, but we still lack an
understanding of its true potential in different environments. This
paper offers a comprehensive evaluation of SPDY’s performance
using extensive experiments. We identify the impact of network
characteristics and website infrastructure on SPDY’s potential
page loading benefits, finding that these factors are decisive for
an optimal SPDY deployment strategy. Through exploring such
key aspects that affect SPDY, and accordingly HTTP/2.0, we feed
into the wider debate regarding the impact of future protocols.

I. INTRODUCTION

Web pages are increasing in complexity and size. The
HTTP Archive reports that the global average web page size
surpassed 1MB in April 2012 [1]. By January 2014, visiting
one of the top 1000 sites incurs, on average, 1607kB of web
page resources over 112 separate requests [1]. Such growth
has been fuelled by the emergence of advanced web-based
services (Web 2.0, SaaS cloud services, etc.), enhanced client
device capabilities (JavaScript browser runtimes, display), and
increased downlink speeds [4]. This growing complexity, how-
ever, can dramatically slow down page retrieval. Unfortunately,
this has negative consequences, and very real ones in the
case of commercial websites: most users cannot tolerate more
than 2 seconds of page load delay [20], and increments of
just 100ms on shopping websites can decrease sales by 1%
[18]. The converse is similarly true: decreasing delay can have
a powerful enhancing effect, with Google claiming to have
increased ad revenue by 20% through cutting 500ms from load
times. To reduce page load times, various extensions to HTTP
have been proposed. However, in practice, little progress has
been made, with many web servers, proxies and browsers being
slow to adopt these new tweaks (e.g. pipelining [10]).

In light of these observations, some have proposed devel-
oping a new web protocol. Such efforts include Microsoft’s
Speed+Mobility [27] and HTML5 Websockets; most promi-
nent, however, is Google’s SPDY [3]. This has already begun
to see deployment by prominent organisations such as Google,
Twitter, Akamai and Facebook, whilst also being adopted
as the base for HTTP/2.0 [13] by the HTTPbis Working
Group. Despite this, we still possess a limited understaning
of its behaviour, overheads and performance: does it offer a
fundamental improvement or just further tweaking? A number
of early stage studies have explored the topic in an attempt
to answer this question. They offer a range of results, with
some claiming significant gains and (curiously) others claiming

rather negative results. This paper seeks to resolve these issues
by analysing the circumstances under which SPDY improves
page load times and those where the opposite is true.

To achieve this, we perform a large-scale evaluation of
SPDY both in the wild and in a controlled setup. We crawl the
Alexa top 10k websites to discover those domains that have
deployed SPDY, finding that 208 of them (2.1%) in October’12
and 271 (2.7%) in April’13 support SPDY. Using some of these
websites, we execute a large number of probes to measure the
performance of SPDY in the wild. Confirming our suspicions,
we find highly variable results between different websites and
samples: SPDY has the potential to both benefit and damage
page load times. Motivated by this, we perform a large body
of controlled experiments in an emulated testbed to understand
the reasons behind these performance variations. We permute
different factors to identify how website types and network
characteristics affect SPDY behaviour. This offers insight to
guide SPDY deployment in terms of page design and provider-
side infrastructural decisions.

The rest of the paper is organised as follows. §II provides
background and highlights related work. §III describes our
measurement toolkit and environments. §IV presents the results
of comparing SPDY to HTTPS on live websites. We then
dissect the factors affecting SPDY in an emulated network
testbed, namely network characteristics (§V) and infrastructure
setup (§VI). §VII concludes and discusses future work.

II. BACKGROUND AND RELATED WORK

A. SPDY

SPDY is an application-layer web protocol that reuses
HTTP’s semantics [10]. As such, it retains all features in-
cluding cookies, ETags and Content-Encoding negotiations.
SPDY only replaces the manner in which data is written to
the network. The purpose of this is to reduce page load time,
which it does by introducing the following mechanisms:

• Multiplexing: A framing layer multiplexes streams over a
single connection, removing the need to establish separate
TCP connections for transferring different page resources.

• Compression: All header data is compressed to reduce the
overheads of multiple related requests.

• Universal encryption: SPDY is negotiated over SSL/TLS
and thus operates exclusively over a secure channel in
order to address the increasing amounts of traffic sent
over insecure paths (e.g. public WiFi).

• Server Push/Hint: Servers can proactively push resources
to clients (e.g. scripts and images that will be required).
Alternatively, SPDY can send hints advising clients to
pre-fetch content.

• Content prioritisation: A client can specify the preferred
order in which resources should be transferred.ISBN 978-3-901882-58-6 c© 2014 IFIP



SPDY consists of two components. The first provides
framing of data, thereby allowing things like compression
and multiplexing. The framing layer works on top of secure
(SSL/TLS) persistent TCP connections that are kept alive as
long as the corresponding web pages are open. Clients and
servers exchange control and data frames, both of which
contain an 8 bytes header. Control frames are used for carrying
connection management signals and configuration options,
while data frames carry HTTP requests and responses. The
second component maps HTTP communication into SPDY
data frames. Multiple logical HTTP streams can be multiplexed
using interleaved data frames over a single TCP connection.

B. Related Studies

There are a number of preliminary studies on the perfor-
mance of SPDY. The first was a Google white paper [2] which
showed significant performance benefits over both HTTP (27-
60%) and HTTPS (39-55%). Somewhat conflicting accounts
followed from Akamai [22] and Microsoft [21]. Akamai’s test
showed a marginal benefit over HTTPS (4.5%) alongside a
decrease in performance (-3.4%) when compared to HTTP.
Microsoft offered slightly more positive results, but still did
not attain the high levels reported by Google.

An Internet Draft [31] found a mix of results highlighting
that SPDY’s performance is dependent on a number of factors.
Nevertheless, no further insight is offered into such variance.
More recent studies [22], [26], [29], [6], [9] reported that
SPDY provides minimal improvement, if any, over HTTP.
Such gain was found to increase for high latency connections
[29], [6], but is also reported to be lost over 3G networks
due to the interplay between different layers (browser, TCP,
cellular network) [9]. All these studies, however, were carried
out either via a SPDY/HTTP proxy between client and server
or on a single-server setup which offers no insight into the
effect of infrastructure parameters.

In light of the above findings, the only clear conclusion is
that SPDY has variable performance. Therefore, it is necessary
to ascertain exactly how network and/or infrastructural settings
affect SPDY’s performance.

III. MEASUREMENT METHODOLOGY

A. Measurement Toolkit

SPDY is designed to reduce page load time for end users.
We therefore focus on client-side measurements, for which we
have built a toolkit based on the Chromium browser. This is
the logical choice as Chromium constitutes Google’s reference
implementation of SPDY. Chromium also offers sophisticated
logging features that allow us to extract statistics via automated
scripting. We use Chromium 25 (running over Ubuntu Desktop
12.04.2) via the Chrome-HAR-capturer [5] package, which
interacts with Chromium through its remote debugging API. To
ensure authenticity, we maintained all of Chromium’s default
settings, apart from disabling DNS pre-fetching in order to
include DNS lookup time in all measurements.

When invoked, our measurement toolkit instructs
Chromium to fetch a particular webpage. Once this is
completed, the toolkit extracts detailed logs in the form of
HTTP Archives (HAR) and Wireshark network traces. It then

processes them to calculate metrics of interest. Traditionally,
page load time has been measured by the Document Object
Model (DOM) being fully loaded, (e.g. [29]). However, this
is not suitable for our purposes, as it also captures browser
processing time that is strictly HTML-related, e.g. arbitrating
the style hierarchy. Such factors are not relevant to SPDY, as
it solely deals with data transmission. Instead, we evaluate this
transport protocol by measuring the time spent performing
network interactions. Thus, we use an alternate metric which
we coin the Time on Wire (ToW), which is calculated from
the Wireshark traces as the period between the first request
and last response packets, giving us precise timestamps for
the page transmission delay.

Using this toolkit, we employ Chromium in a non-obtrusive
manner to retrieve a number of webpages in a range of different
environments. The collated measurements allow us to explore
the performance of SPDY. The rest of this section details the
environments we utilised the measurement toolkit in.

B. Measurement Setups

The measurements are separated into two groups, both
using the above toolkit. First, we briefly perform live tests,
probing real-world deployments to understand the level of
performance variation in existing deployments. Second, we
expand on these results using emulated network tests, creating
our own controlled SPDY deployment in a local testbed. The
latter allows us to analyse performance in a deterministic
fashion by varying and monitoring the impact of various key
factors (namely network conditions and website infrastructure
setup). In both cases, a large number of samples are taken to
ensure statistical significance. Overall, we have collected over
70,000 probes (12,000 live and 58,000 controlled).

1) Live Tests: First, we probe (from various vantage points)
web sites that have deployed SPDY in their infrastructures.
For this we implemented a crawler that probes the top 10k
Alexa websites1 recording their individual protocol support.
We then select the top 8 Alexa websites that implement
SPDY. We choose only the highest Alexa ranked website from
every distinct online presence and disregard similar sites (i.e.
facebook.com (#1) but not fbcdn.net (#202); google.com (#2)
but not google.co.in (#12), google.com.hk (#22), etc.; and so
on). The list is shown in Table I.

The selected websites provide a range of resource sizes,
resource count, and domain count. In terms of their respective
delivery infrastructures, we note that all appear to use CDNs
with the exception of WordPress. We confirm this using
whois as well as other means (e.g. trying to directly access a
CloudFlare IP address with a browser yields an error message
from CloudFlare). It seems, unsurprisingly, that the employed
CDN dictates the supported SPDY version and the TCP Initial
Window (IW).2 We therefore posit that our results for these
sites are representative of the performance for other customers
of the same respective CDN.

1All Alexa ranks henceforth are of April 23,rd 2013.
2Note that increasing the IW size is another closely related component in

Google’s “Make the Web Faster” project. We determined IW by sending self-
crafted TCP packets, carrying out a successful handshake, followed by sending
a HTTP GET for a large resource (e.g. a static image). We then noted the
number of ensuing packets (which go unacknowledged) as the server’s IW.



TABLE I: Live SPDY-enabled Websites

Alexa SPDY Resources SPDY Av. RTT
Site Rank Rank Count Av. Size (kB) Domains Web Server Version CDN IW (ms)
Facebook 1 1 20 12.56 4 OpenCompute 2 Akamai 7 92
Google 2 2 7 41.29 2 Google Web Server 3 Google 7 8
YouTube 3 3 50 10.63 4 Apache 3 Google 7 8
Blogspot 11 4 31 5.03 6 Google Servlet Engine 3 Google 7 17
Twitter 13 6 7 46.40 3 Twitter Frontend 3 EdgeCast 10 158
WordPress 23 8 13 7.92 4 nginx 2 (none) 10 91
imgur 96 24 133 11.78 58 nginx 2 CloudFlare 10 8
youm7 485 65 270 11.07 54 nginx (via Varnish) 2 CloudFlare 10 150

Using our measurement toolkit, we periodically probe each
website using HTTP, HTTPS and SPDY. In this paper, we
focus on HTTPS as a baseline comparison as, like SPDY, it
encrypts its data. However, where possible, we also include
HTTP, considering that many websites have no interest in
securing their connections. In both cases, when HTTP and
HTTPS are used, we avoid bias by forcing Chromium to
pursue the Next Protocol Negotiation (NPN) handshake as
SPDY does. The probes are carried out for each website in
an alternating sequence of protocols with 2 seconds between
each run. For SPDY, we select the highest non-experimental
version that the server supports (listed in Table I). Tests were
carried out from different sites: Lancaster, Dublin, and Tokyo.
Due to space, we only discuss the Lancaster set as the other
results provide very similar outcomes. The Lancaster tests
ran on weekdays between 12pm and 5pm BST between 20
and 23/5/2013, totalling 1.06 million GET requests with 500
samples taken for each website and protocol combination.

2) Emulated Network Tests: The above live experiments
provide useful context to the current state of affairs, but
are somewhat limited in what they can tell us. Although
the comparison they provide is fair, it would be difficult to
definitely and neutrally ascertain SPDY’s performance as it is
subject to variations in the network, and tightly bound to the
particular deployment under test: its characteristics (e.g. web
server, SPDY module/proxy) and its status (e.g. server load).
To address these issues, we extend our tests by creating our
own SPDY deployment in an emulated testbed interconnected
via a LAN. This allows us to control the various network
parameters to understand how they impact performance.

Our testbed consists of a client and server setup. The client
runs our measurement toolkit and is connected via 100Mbps
Ethernet. We then emulate various network conditions: the
Linux tc utility is used to throttle bandwidth by shaping
traffic with Hierarchy Token Bucket queuing [8], and NetEm
[15] is used (at the server) to specify a deterministic round
trip time (RTT) and packet loss ratio (PLR). The server
runs Ubuntu Server 12.04 with Apache 2.2.22 web server
supporting both HTTP and HTTPS, as well as spdy/3 via the
mod spdy 0.9.3.3-386 module (the reference implementation
provided by Google). Using this server, we clone a set of SPDY
websites discovered in the wild; these are each intended to be
representative of a broader class of top Alexa websites3:

• Twitter: A simple page with few (7) resources (average
size 46.4KB). This is comparable to other top Alexa

3We plotted the resource count and size of the top 1000 Alexa sites, and
chose a website from each of the three prominent clusters in the graph (not
included due to space).

websites such as Google and Blogspot and their regional
versions, Wikipedia, and Soso (Chinese search engine).

• YouTube: A relatively complicated page, with a fair num-
ber (50) of resources (average size 10.63KB). Examples
of similar websites include Amazon’s regional websites,
AOL, Alibaba (Chinese e-commerce portal), About.com,
and DailyMotion.

• imgur: A complicated page, with a large number (133) of
images and flash (average size 11.78KB). Similar web-
sites include QQ (Chinese messaging website), TaoBao
(equivalent to eBay), The NY Times, CNN, and MSN.

The described setup enables us to have a single server-
side SPDY implementation and a single SPDY-capable web
browser, which rules out software discrepancies (note that we
also later use multiple servers). This method also allows us to
control the network characteristics in order to experiment with
SPDY under different network conditions. Moreover, server
and connection load are also controlled. Using this testbed,
we apply the same methodology as in the live experiments,
generating repeated page requests for the chosen webpages
using HTTPS and SPDY. The exact details of the parameters
investigated will be presented in §V and §VI.

IV. LIVE RESULTS

We begin by performing experiments with existing deploy-
ments of SPDY. The aim here is not an exhaustive study but,
rather, to form a general idea of the benefits being gained by
some of those who have so far adopted SPDY. To achieve this,
each website in Table I is probed 500 times to calculate its
ToW. Figure 1 displays the cumulative distribution functions
(CDFs) of these measurements, and Table II summarises them.
Note that the HTTP results are not included for websites that
redirect such requests to HTTPS.

Confirming our analysis of past studies, the results are not
conclusive. We find no clear winner among the three protocols.
Instead, we observe large performance variations between
different websites, as well as between different samples for
the same website. We find that notable improvements are,
indeed, gained in some cases. On average, ToW is reduced by
7% for Facebook, 4.7% for YouTube, and 9.7% for youm7.
The biggest winner is the Twitter front-page, with an average
ToW reduction of 10.6%. This, however, is not a universal
observation. In other cases, improvements are far more modest;
for example, imgur only achieves a meager improvement of
0.8%. Moreover, we find websites that suffer from their use
of SPDY; an average ToW increase of 6.0% for Blogspot and
15.1% for Wordpress. Ironically, the biggest sufferer is Google
with a 20.2% increase in ToW for their search homepage.
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Fig. 1: ToW of Live SPDY-enabled Websites

There is certainly no one-size-fits-all operation with SPDY,
as all websites alternate between SPDY and HTTP optimality.

TABLE II: Gain in ToW for Live SPDY-enabled Websites

Average Gain in ToW
Site (SPDY over HTTPS)
Facebook 7.0%
Google -20.2%
YouTube 4.7%
Blogspot -6.0%
Twitter 10.6%
WordPress -15.1%
imgur 0.8%
youm7 9.7%

These experiments therefore raise some interesting (yet
serious) questions. From a research perspective, one might ask
why these notable variations occur? From an administrator’s
perspective, the next logical question would then be how
to maximise the benfit of deploying SPDY? The remainder
of this paper now explores these questions using emulated
experiments. Whereas the live experiments limit our control
to the client-side, emulated experiments allow us to dissect all
aspects to understand the causes of such variations.

V. INVESTIGATING THE NETWORK EFFECT

To explore SPDY’s performance variations, we now per-
form controlled experiments. We aim to understand the effect
of different network conditions on the performance gains of
SPDY over HTTPS. We mirror the representative websites
(Twitter, YouTube, imgur) by employing wget to retrieve
all resources (images, stylesheets, scripts, etc.) and converting
their links accordingly. We measure ToW under a variety of
delay, bandwidth, and loss settings. As a guideline, we use
typical cellular network conditions due to SPDY’s focus on
mobile communications [30].

A. Delay

First, we inspect the impact that round trip time (RTT) has
on SPDY’s performance. In a real environment, this varies a
lot between different requests due to client locations and path
characteristics [17]. To remove any variance, we fix bandwidth
(BW) at 1Mbps4 and Packet Loss Ratio (PLR) at 0%, whilst
changing the RTT between the client and server in a range
from 10ms to 490ms. Following this, we perform 20 requests
for each website using each configuration with both SPDY and
HTTPS. The results are presented in Figure 2 as the average
percentage improvement in ToW of SPDY over HTTPS.
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Fig. 2: Effect of Round Trip Time (BW=1Mbps, PLR=0%).

In contrast to the live experiments, we see that SPDY
always achieves better performance than HTTPS in this setup.
With low RTTs, these benefits are marginal: requests with
RTTs below 150ms achieve under 5% improvement on aver-
age. These benefits, however, increase dramatically as the RTT

4Internationally, cellular connectivity speeds hover around 1Mbps [4], [28].



goes up. In the best case (490ms RTT for YouTube), SPDY
beats HTTPS by 21.26%. The results effectively highlight the
key benefit of SPDY: stream multiplexing. As RTT goes up, it
becomes increasingly expensive for HTTPS to establish sep-
arate connections for each resource. Each HTTPS connection
costs one round trip on TCP handshaking and a further two on
negotiating SSL setup. SPDY does this only once (per server)
and hence reduces such large waste by multiplexing streams
over a single connection. By inspecting the HAR logs, we find
that SPDY saves between 66% and 94% of SSL setup time,
creating significant gains in high delay settings.

There is also a notable variation between the different
webpages. For Twitter and YouTube, SPDY’s ability to multi-
plex is well exploited by retrieving Twitter’s 7 resources and
YouTube’s 50 resources in parallel. YouTube is by far the
greatest beneficiary with an average improvement of 13.81%
over HTTPS, whilst Twitter comes second with 6.87%. The
benefits for Twitter are less pronounced because there are
fewer streams that can be multiplexed, therefore reducing the
benefits of SPDY over HTTPS’s maximum of 6 parallel TCP
connections (note that this limit of six is hard coded, based on
the amendment [16] to the limit set by RFC 2616 [10]).

Perhaps more interesting, though, is the fairly steady be-
haviour exhibited by imgur across all delay values. At first,
one would imagine imgur to benefit greatly from SPDY due
to its ability to multiplex imgur’s large number of resources
(133). However, performance is very subdued: its overall
average is 1.32%. To understand this, we inspect the HAR
logs to see what is occurring ‘under the bonnet’. Figure 3
depicts a breakdown of the HTTPS and SPDY retrieval times
for Twitter and imgur at RTT=490ms and BW=2Mbps. We
choose this particular subset of our experiments as it provides
network conditions where both websites achieve equal SPDY-
induced improvement (≈15%), and hence provides a fair
comparison. The figure shows the fraction of time spent in the
five key stages of page retrieval: connect, send, wait, receive
and SSL. We notice that the make-up of these retrievals is
remarkably different. As expected, HTTPS spends a lot of
time in the connect and SSL phases, establishing TCP and SSL
connections (respectively). This increases for imgur, which has
19 times as many resources as Twitter. On the other hand,
SPDY greatly reduces the connect and SSL stages but spends
a huge proportion of time in wait. This phase begins when
the browser issues a request for a resource, and ends when
an initial response is received back. The receive phase is time
spent receiving the response data until it is loaded into the
browser’s memory. In the case of SPDY, wait includes not
just the network latency between the client and server but also
the time requests are blocked until multiplexed onto the wire.
For imgur, SPDY cuts connect time by 94% but inflates wait
time by more than 9 times. As emulated RTT was the same
for both protocols, it appears that this inflation in wait time
is an unfortunate product of SPDY’s multiplexing, but we are
unable to exactly ascertain why multiplexing is creating this
much delay. In other words, SPDY’s savings in establishing
new connections is compromised with multiplexing overhead
for highly complex webpages served over a single connection.

B. Bandwidth

Next, we inspect the impact that client bandwidth has on
performance. Once again, this parameter spans a wide range
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Fig. 3: Breakdown of HAR Times for Twitter and imgur at
RTT=250. SPDY spends 49% in Wait for Twitter, and 97%
for imgur due to its high resource count.

of values across the globe [25], [4]. This time we fix RTT
at 150ms and PLR at 0.0%, while setting client bandwidth to
values between 64Kbps and 8Mbps. A first in first out tail-drop
queue of 256 packets length is used to emulate commodity
routers commonly used as residential and public gateways [19],
[12]. The results are presented in Figure 4.
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Fig. 4: Effect of Bandwidth (RTT=150ms, PLR=0%).

This graph reveals a very different story to that of delay.
Confirming the findings of the live experiments, we see that
SPDY does have the potential to lower performance, and sig-
nificantly so. This occurs with a clear trend that favours lower
capacities. At 64Kbps, on average, clients witness a 5.75%
improvement over HTTPS, compared to a 22.24% decrease at
8Mbps. Initial impressions suggest that bandwidth variations
have a larger detrimental impact on SPDY’s performance.

We now have two dimensions of impact — RTT and
bandwidth — where SPDY prefers high delay, low bandwidth
(<1Mbps) environments. As previously discussed, the reason
behind SPDY’s sensitivity to RTT is relatively easy to measure
by inspecting the HAR logs. However, its relationship with
bandwidth is rather more complicated. To understand this,
we turn our attention to the network traces. We find that
the separation between RTT and bandwidth is not particularly
distinct. This is because HTTPS tends to operate in a somewhat
network-unfriendly manner, creating queueing delays where
bandwidth is low. The bursty use of HTTPS’ parallel connect-
ions creates congestion at the gateway queues, causing upto



3% PLR and inflating RTT by upto 570%5. In contrast, SPDY
causes negligible packet loss at the gateway.

The network friendly behaviour of SPDY is particularly
interesting as Google has recently argued for the use of a larger
IW for TCP [7]. The aim of this is to reduce round trips and
speed up delivery — an idea which has been criticised for
potentially causing congestion. One question here is whether
or not this is a strategy that is specifically designed to operate
in conjunction with SPDY. To explore this, we run further
tests using IW={3, 7, 10, 16} and bandwidth fixed at 1Mbps
(all other parameters as above). For HTTPS, it appears that the
critics are right: RTT and loss increase greatly with larger IWs.
In contrast, SPDY achieves much higher gains when increasing
the IW without these negative side effects. It therefore seems
that Google have a well integrated approach in their “Make
the Web Faster” project. Interestingly, we observe that the key
reason that this increase in RTT and loss adversely affects
HTTPS is that it slows down the connection establishment
phase, creating a similar situation to that presented earlier
in Figure 2. Obviously, this congestion also severely damages
window ramping over the HTTPS connections. We can tangi-
bly observe this by inspecting the client’s TCP window size,
which scales far faster with SPDY than any one of the parallel
HTTPS connections; this alone leads to an average of ≈10%
more throughput than that of HTTPS.

While this explains SPDY’s superior performance at low
bandwidths, it does not explain its poor performance as ca-
pacities increase. As soon as bandwidth becomes sufficient to
avoid the increased congestion caused by HTTPS, the benefits
of SPDY begin to diminish. This is particularly the case for
websites with fewer resources, like Twitter. To understand this,
we breakdown the operations performed by SPDY and HTTPS.
Figure 5 presents the results for YouTube as an example.
Again, the two protocols have very different constitutions.
HTTPS spends a large proportion of its time in the connect
phase, setting up TCP and SSL. In contrast, SPDY spends
the bulk of its time in the wait phase. Deep inspection reveals
streams blocking until the connection is free to transmit. In line
with our previous findings, this highlights that SPDY does not
always do an effective job of multiplexing. Whereas, previ-
ously, this was caused by the complexity of the webpage, here
it appears that high capacity transmission is also a challenge.
Thus, as bandwidth increases, HTTPS can amortise the costs of
TCP and SSL setup by exploiting the higher raw throughput
afforded by opening parallel TCP sockets. We also observe
that this situation occurs particularly when dealing with larger
resources (e.g. images in Twitter), as window size can be
scaled up before each connection ends in HTTPS. In contrast,
SPDY appears to struggle to fill TCP’s pipe as the server waits
for new requests for each object from the client. Indeed, the
Wireshark traces show TCP throughput reductions between 2%
and 10% in the case of SPDY due to this problem compared
to that of the parallel HTTPS connections. It would therefore
seem that SPDY’s default use of a single TCP connection
might be unwise in circumstances of high bandwidth.

5We also experimented with different gateway queue sizes. Generally,
increasing queue size caused longer delays and more loss: upto a 920% RTT
increase and 5% PLR with a 512 packets queue size, but only 296% maximum
RTT inflation and 1% PLR with a queue of 64 packets.
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C. Packet Loss Ratio

Finally, we inspect the impact of packet loss on SPDY’s
performance. We fix RTT at 150ms and BW at 1Mbps, varying
packet loss using the Linux kernel firewall with a stochastic
proportional packet processing rule between 0 and 3%6. Figure
6 presents the results.
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Fig. 6: Effect of Packet Loss (RTT=150ms, BW=1Mbps).

Immediately, we see that SPDY is far more adversely
affected by packet loss than HTTPS is. This has been antic-
ipated in other work [26] but never before tested. It is also
contrary to what has been reported in the SPDY white paper
[2], which states that SPDY is better able to deal with loss.
The authors suggest because SPDY sends fewer packets, the
negative effect of TCP backoff is mitigated. We find that SPDY
does, indeed, send fewer packets (upto 49% less due to TCP
connection reuse). However, SPDY’s multiplexed connections
persist far longer compared to HTTPS. Thus, a lost packet
in a SPDY connection has a more profound setback on the
long term TCP throughput than it would in any of HTTPS’
ephemeral connections, the vast majority of which do not last
beyond the TCP slow start phase [24]. Furthermore, packet
loss in SPDY affects all following requests and responses that
are multiplexed over the same TCP connection. In contrast,
a packet loss in one of the parallel HTTPS connections

6Reports of cellular packet loss vary: ≈ 0.2%–1.9% in the US, 2–3% in
Europe, and ≥ 3% in other regions [14]. It is also quite high for WiFi [23].
We therefore consider 0–3% to be an appropriate parameter range.



would not affect the other connections, neither concurrent nor
subsequent (assuming HTTP pipelining is not used, which is
commonly the case). In essence, HTTPS ‘spreads the risk’
across multiple TCP connections. On average, we found that
SPDY’s throughput is affected by packet loss up to 7 times
more than HTTPS (all experiments were performed using the
default Linux CUBIC congestion avoidance algorithm).

It is also important to note that the probability of packet
loss is higher in SPDY. According to [11], the probability of
experiencing loss increases in proportion to the position of the
packet in a burst chain. Hence, the chance of experiencing a
packet tail drop is much higher for longer lived connections
such as SPDY’s. Thus, not only does SPDY react badly to
packet loss, the chance of it experiencing loss is also higher.
This is effectively highlighted in Figure 6; imgur, which has
the longest transfer time (by far), exhibits extremely poor
performance under packet loss.

Finally, these results indicate that SPDY may not perform
that well in mobile settings, one of its key target environments
[30]. Whilst both SPDY’s high delay and low bandwidth
support is desirable in this environment, the benefits can be
undone by relatively low levels of packet loss (e.g. 0.5%).

VI. IDENTIFYING THE IMPACT OF THE INFRASTRUCTURE

The previous section has investigated the performance of
SPDY under different network conditions between a single
client and server. However, our original crawling of the Alexa
Top 10k highlighted a tendency for providers to implement
a practice known as domain sharding. This is the process of
distributing page resources across multiple domains (servers),
allowing browsers to open more parallel connections to down-
load page resources. Figure 7 presents a CDF of the number
of shards we discovered. We find that apart from front-
less domains (such as CDN endpoints like akamaihd.net),
all websites employ some degree of domain sharding. Here,
we investigate domain sharding in order to understand the
implications of this infrastructural design choice on SPDY.
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A. Number of Shards

To inspect the impact of sharding, we recreate the earlier
experimental setup but mirror the webpages across multiple
servers, as occurs in real setups. We consider 7 shards, i.e.
servers, an appropriate upper limit as our measurements find
that 70 of the top 100 Alexa websites have 7 or fewer shards.

Each shard is configured as in §III-B2. In order to control the
number of shards per experiment, we use a script to adapt the
HTML to configurations between 1 and 7 shards. The client is
configured with 1Mbps bandwidth, 150ms RTT and 0% PLR.
Figure 8 presents the results of 100 runs at each configuration.
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Fig. 8: Effect of the Number of Shards

We first note that sharding distinctly decreases SPDY’s gain
for YouTube and imgur. As the number of shards increases,
so does the maximum number of parallel HTTPS connections.
SPDY, too, is forced into creating multiple parallel TCP conn-
ections (one to each server). Hence, both protocols are allowed
to capitalise on increased parallelism. However, the benefits
achieved by HTTPS outweigh those of SPDY as the former
gains 6 new TCP connections per shard, a large performance
boost that, in essence, offers SPDY-like multiplexing. This,
therefore, reduces the overall improvement offered by SPDY.
Another ramification of sharding evident from the examples of
YouTube and imgur, is that as SPDY opens more connections,
it multiplexes fewer streams per connection. This diminishes
the returns of multiplexing which is SPDY’s main competitive
advantage over HTTPS. This suggests, based on findings in
§V-B, that increasing the servers’ IW would give SPDY an
advantage and the potential to tip the balance in its favour.

The case of Twitter provides a different insight. Here, fairly
steady results are achieved across all sharding levels. SPDY
gains marginal improvements over HTTPS by reducing the
number of round trips, which is dictated by the number of
resources in a page. For such a page with only 7 resources,
SPDY saves between one and two round trips at 1 shard
(depending on whether all resources were requested together
or at different times as the page is rendered). With more
shards, the number of round trips that SPDY potentially saves
is reduced to only one, if any, due to its reduced ability to
multiplex. Whereas, in the case of HTTPS, more shards means
fewer resources (and hence fewer parallel connections) per
shard. This has the effect of gradually decreasing HTTPS’
parallelism as the number of shards increase, hence allowing
SPDY to continue to retain an edge.

In summary, we deduce that SPDY loses its performance
gains as a website is sharded more. However, these negative
results are not ubiquitous and vary remarkably depending on
the number of page resources. This raises a few questions about
SPDY deployment. Are the benefits enough for designers and
admins to restructure their websites to reduce sharding? What
about third party resources that cannot be consolidated, e.g.
ads and social media widgets? Can SPDY be redesigned to



multiplex across domains? Is proxy deployment [26] rewarding
and feasible as a temporary solution? The success of SPDY
(and thereupon HTTP/2.0) is likely to be dependent on the
answers to precisely these questions.

B. Number of Multiplexed Streams

So far, we have seen that sharding can create a significant
challenge to SPDY’s performance by forcing it into HTTP-
like behaviour and by limiting its ability to perform stream
multiplexing. To further inspect this, we now directly study
the impact of this multiplexing by artificially changing the
maximum number of streams allowed per connection. This
allows us to control exactly the degree of multiplexing afforded
by SPDY. We vary this value from 1 to 100 (which is the
default in Apache, as recommended by the SPDY draft [3])
whilst mirroring the three websites on a single server. We
perform these retrievals for a variety of RTTs. We choose to
vary RTT because of the discovery that many of the bandwidth
impacts are actually products of the inflated RTTs caused by
queuing. Bandwidth is fixed at 1Mbps and PLR at 0%.

In Figure 9, the average improvement in ToW (over
HTTPS) for each multiplexing degree is displayed as a trend
line, whilst the ToW reduction over different RTT values is
shown as a heatmap to elicit more generalisable results. In all
cases, SPDY’s multiplexing has the potential to improve the
ToW. For YouTube and imgur, we see a direct relationship
between these benefits and the level of multiplexing afforded
by SPDY. Here, these benefits plateau at 10 streams for
YouTube and at 30 for imgur. In contrast, the results for Twitter
remain relatively steady for all levels of multiplexing.

To explore the different results for each page, we inspect
the nature of their resources, as well as SPDY’s recorded
behaviour when accessing them. We confirm that these results
are a product of the complexity of the webpages in terms of
their resources. Twitter benefits little from increasing the multi-
plexing degree, as it only possesses 7 resources, i.e. no further
benefits can be achieved when multiplexing beyond this level.
The inverse case is found with YouTube (50 resources) and
imgur (133 resources), which clearly can exploit multiplexing
levels beyond 7 streams. Preventing this from happening has
dire ramifications: when allowing SPDY to multiplex fewer
than 6 streams for YouTube and imgur, it performs worse
then HTTPS. This therefore confirms the negative impact that
sharding will have on SPDY’s deployment, where multiplexing
capabilities could be severely undermined. We found these
observations to be true for even more complicated websites,
e.g. the New York Times website (148 resources).

To better understand the relationship between performance
and page complexity, we perform regression analysis to look
at the multiplexing level (m) required to outperform HTTPS
for a website with a given number of resources (r). This is
done for all websites under test in addition to three other
websites we experimented with. We find that m ≈ r/4, with
a very strong fit (R2 = 0.98537, p-value= 8.0684 × 10−5).
This is not a robust model and is not intended to be so; it
effectively highlights the impact that page type will have on
SPDY’s performance. Another interesting point here is that
intuition would perhaps lead towards a r/6 relationship, due to
the maximum number of parallel HTTPS connections. Instead,
m is found to be of greater value. We are not able to pinpoint
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Fig. 9: Effect of the Number of Multiplexed Streams per SPDY
Connection over Varying RTTs.

the reasons behind this, but it could be attributed to SPDY’s
multiplexing overheads diagnosed in §V.

VII. CONCLUSIONS & FUTURE WORK

SPDY provides a low-cost upgrade of HTTP, aiming to
reduce page load times leading to improved user experience.
To do this, it introduces a variety of new features, including
stream multiplexing and header compression. Currently, the be-
haviour and performance of SPDY are quite poorly understood,
exacerbated by the often conflicting results reported by various
early stage studies. Our own live experiments confirmed these
observations, highlighting SPDY’s ability to both decrease and
increase page load times.



We therefore turned our efforts to identifying the condi-
tions under which SPDY thrives. We found that SPDY offers
maximum improvement (over HTTPS) when operating in chal-
lenged environments. We concluded that stream multiplexing
is at the heart of SPDY’s performance, allowing it to deal
with low bandwidth and high delay situations far better than
HTTPS. This feature minimises the number of round trips
required to fetch resources. It also facilitates more disciplined
congestion control, allowing SPDY to outshine HTTP on
low bandwidth links. This also helps support further network
enhancements such as increasing TCP’s IW. On the other
hand, SPDY’s multiplexed connections last much longer than
HTTP’s, which makes SPDY more susceptible to loss and the
subsequent issues with TCP backoff.

We also investigated the impact of infrastructural deci-
sions on SPDY’s performance, namely the prevalent practice
of domain sharding. We observed that SPDY’s benefits are
reduced in sharded environments where SPDY is prevented
from maximising on multiplexing. We predict this could have
palpable implications on website design and deployment strate-
gies, especially considering that ultimate shard consolidation is
practically extremely difficult due to third party resources. Fi-
nally, we observed throughout our experiments that page type
has huge influence on SPDY’s performance: SPDY favours
pages with more and larger resources, as opposed to pages
with a very large number of small resources which induces
perceptible multiplexing overheads.

Trying to anatomise all aspects pertaining to a protocol
like SPDY is a daunting task that is beyond the scope of
any one paper. We have explored only a subset of SPDY’s
overall parameter space. Our future work intends to expand to
experiment with alternate network configurations and different
page characteristics, and to further inspect some of the find-
ings (e.g. multiplexing overheads) in further detail. We also
plan to study other SPDY features such as Server Push and
Hint. Finally, this work should feed into the wider discussion
regarding HTTP/2.0, and the future of the web.
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