
CREATE: CoRrelation Enhanced trAffic maTrix
Estimation in Data Center Networks

Zhiming Hu Yan Qiao Jun Luo Peng Sun Yonggang Wen
School of Computer Engineering, Nanyang Technological University, Singapore

Email: {zhu007, yqiao, junluo, sunp0003, ygwen}@ntu.edu.sg

Abstract—Understanding the pattern of end-to-end traffic
flows in Data Center Networks (DCNs) is essential to many
DCN designs and operations (e.g., traffic engineering and load
balancing). However, little research work has been done to obtain
traffic information efficiently and yet accurately. Researchers of-
ten assume the availability of traffic tracing tools (e.g., OpenFlow)
when their proposals require traffic information as input, but
these tools may generate high monitoring overhead and consume
significant switch resources even if they are available in a DCN.
Although estimating the traffic matrix between origin-destination
pairs using only basic switch SNMP counters is a mature practice
in IP networks, traffic flows in DCNs are notoriously more
irregular and volatile, while the large number of redundant
routes in a DCN further complicates the situation. To this end,
we propose to utilize the service placement logs for deducing
the correlations among top-of-rack switches, and to leverage the
uneven traffic distribution in DCNs for reducing the number
of routes potentially used by a flow. These allow us to develop
an efficient CoRrelation Enhanced trAffic maTrix Estimation
(CREATE) method that achieves high accuracy. We compare
CREATE with two existing representative methods through both
experiments and simulations; the results strongly confirm the
promising performance of CREATE.

I. INTRODUCTION

As data centers that house a huge number of inter-connected

servers become increasingly central for commercial corpo-

rations, private enterprises and universities, both industrial

and academic communities have started to explore how to

better design and manage the data center networks (DCNs).

The main topics under this theme include, among others,

network architecture design [1]–[3], traffic engineering [4],

capacity planning [5], and anomaly detection [6]. However,

little is known so far about the characteristics of traffic flows

within DCNs. For instance, how do traffic volumes exchanged

between two servers or top-of-rack (ToR) switches vary with

time? Which server communicates to other servers the most

in a DCN? In fact, these real-time traffic characteristics serve

as critical inputs to all above DCN operations; their absence

may hamper the developments of others.

Existing proposals in need of detailed traffic flow informa-

tion collect the flow traces by deploying additional modules on

either ToR switches [4] or servers [7] in small scale DCNs.

However, both methods require substantial deployments and

high administrative costs, and they are difficult to implement

*This work is supported in part by AcRF Tier 1 Grant RGC5/13.

thanks to the heterogeneous nature of the hardware in DCNs.1

More specifically, the switch-based approach, on one hand,

needs all the ToRs to support OpenFlow [9] and consumes a

substantial amount of switch resources to maintain the flow

entries.2 On the other hand, the server-based approach, which

requires instrumenting all the OS kernels of the servers or

VMs to support data collection, is unavailable in most data

centers [10] and is nearly impossible to be implemented

peacefully and quickly while supporting a lot of cloud services

in large scale DCNs.

It is natural then to ask whether we could borrow from

network tomography, where several well-known techniques

allow traffic matrices of IP networks to be inferred from

link level measurements (e.g., SNMP counters) [11]–[13].

As link level measurements are ubiquitously available in

all DCN components, the overhead introduced by such an

approach can be very light. Unfortunately, both experiments in

medium scale DCNs [10] and our simulations (see Sec. V-C)

demonstrate that all existing tomographic methods perform

poorly in DCNs. This attributes to the irregular behavior of

end-to-end flows in DCNs and the large quantity of redundant

routes between each pair of servers or ToR switches.

There are actually two major barriers to apply tomographic

methods to DCNs. One is the sparsity of traffic matrix

between ToR pairs. This refers to the fact that one ToR

switch may only exchange flows with a few other ToRs,

as demonstrated by [14]. This fact substantially violates the

underlying assumption of tomographic methods including, for

example, the amount of traffic a node (origin) would send to

another node (destination) is proportional to the traffic volume

received by the destination [11]. The other is the highly under-

determined solution space. In other words, a huge number of

flow solutions may potentially lead to the same SNMP byte

counts. For a medium size DCN, the number of end-to-end

routes is up to ten thousands [10] while the number of link

constrains is only around hundreds.

In this paper, we aim at conquering the aforementioned two

barriers and making traffic matrix (TM) estimation feasible

for DCNs, by utilizing the distinctive information or features

inherent to these networks. On one hand, we make use of the

service placement logs (from the resource scheduler in the

1A DCN may contain a lot of legacy switches or servers [8].
2To the best of our knowledge, no existing switch with OpenFlow support

is able to maintain so many entries in its flow table due to the huge number
of flows generated per second in each rack.ISBN 978-3-901882-58-6 c© 2014 IFIP

2

controller node of DCNs) to derive the correlations among

ToR switches, as our experiments demonstrate that racks

supporting the same service tend to exchange high traffic

volumes. The communication patterns between ToR pairs

inferred by such an approach are far more accurate than those

assumed by conventional traffic models (e.g., the gravity traffic

model [11]). On the other hand, by analyzing the statistics of

link counters, we find that the utilization of both core links

and aggregation links is extremely uneven. In other words,

there are a considerable amount of links undergoing very low

utilization during the particular time interval. This observation

allows us to eliminate the links whose utilization is under

a certain (small) threshold and to substantially reduce the

number of redundant routes. Combining the aforementioned

two methods, we propose CREATE (CoRrelation Enhanced

trAffic maTrix Estimation) as an efficient estimation technique

to accurately infer the traffic flows between ToR switch pairs

without requiring any extra measurement tools. In summary,

we make the following contributions in our paper.

• We pioneer in using the service placement logs to deduce

the correlations of ToR switch pairs, and we also propose

a simple method to evaluate the correlation factor for

each ToR pair. Our traffic model, assuming that ToR

pairs with a high correlation factor may exchange higher

traffic volumes, is far more accurate for DCNs than

conventional models used for IP networks. This is so

because different services rarely communicate with each

other while servers have greater chance to exchange data

if they host the same service [15].

• We innovate in leveraging the uneven link utilization in

DCNs to remove potentially redundant routes. As both

our experiments and those presented in [16] show that

link utilization can be very uneven with a few links carry-

ing a dominating fraction of traffic, we may consider links

with very low utilization as non-existent without affecting

much the accuracy of TM estimation. In fact, eliminating

these lowly utilized links can effectively lessen the re-

dundant routes in DCNs, resulting in a more determined

tomography problem. Moreover, we also demonstrate that

changing a low-utilization threshold has an effect of

trading estimation accuracy for its complexity.

• We propose CREATE as an efficient method to infer the

TM for DCNs with high accuracy. This new algorithm

first calculates a prior assignment of traffic volumes for

each ToR pairs using the correlation factors. Then it

removes lowly utilized links and operates only on a sub-

graph of the DCN topology. It finally adapts a quadratic

programming to determine TM under the constraints of

the tomography model, the correlation-enhanced prior

assignments, and the reduced DCN topology.

• We validate CREATE with both experiments on a rela-

tively small scale testbed and extensive large scale simu-

lations in ns-3. All the results strongly demonstrate that

our new method outperforms two representative traffic

estimation methods on both accuracy and running speed.

The rest of the paper is organized as follows. We first survey

the related work in Sec. II. Then we formally describe our

problem in Sec. III. Sec. IV analyzes the traffic data in real

DCNs and reveals the two observations on ToR correlations;

we also present our CREATE method for TM estimation

in the same section. We evaluate CREATE using both real

testbed and different scales of simulations in Sec. V, before

concluding our paper in Sec. VI.

II. RELATED WORK

As data center networking has recently emerged as a hot

topic for both academia and industry, numerous studies have

been conducted to improve its performance [1]–[6]. However,

little work has been devoted to the traffic measurement,

although the awareness of traffic flow pattern is a critical input

to all above network designs or operations. Most proposals,

when in need of traffic matrices, rely on either switch-based

or server-based method to obtain them.

The switch-based method (e.g., [4]) adopts programmable

ToR switches (e.g., OpenFlow [9] switch) to record flow data.

However, this method may not be feasible for three reasons.

First, it incurs a high switch resource consumption to maintain

the flow entries. For example, if there are 30 servers per rack,

the default lifetime of a flow entry is 60 seconds, and on

average 20 flows are generated per host per second [17], then

the ToR switch should be able to maintain 30 × 60 × 20 =
36, 000 entries, while the commodity switches with OpenFlow

support such as HP ProCurve 5400zl can only support up to

1.7k OpenFlow entries per linecard [7]. Secondly, hundreds of

controllers are needed to handle the huge number of flow setup

requests. In the above example, the number of control packets

can be as many as 20M per second. And a NOX controller

can only process 30,000 packets per second [17]; thus it needs

about 667 controllers to handle the flow setups. Finally, not

all the ToR switches are programmable in DCNs with legacy

equipments, while the data center owners may not be willing

to pay for upgrading the switches.

The server-based method requires a special module to be

inserted into the OS kernel on each server to support flow

data collection [7], [18]. Also, the heterogeneity of data center

servers may also complicate the problem: dedicated modules

may need to be prepared for different servers and their OSs.

Moreover, adding this module does cost server resources to

perform flow monitoring. Finally, similar to the switch-based

approach, the willingness of the data center owner to upgrade

all servers may yet be another obstacle.

Network tomography has long been an important and ef-

ficient approach to obtain traffic information in IP networks.

For example, tomogravity [11] adapts the gravity model to

get the prior TM and SRMF [12] is shown to perform better

than others when the TM is low rank. One study that has

partially motivated our work is [10]: it investigates the nature

of DCN traffic on a single MapReduce data center and poses

the question whether traffic matrices can be inferred from link

counters by tomographic methods. In a way, the answer given

in [10] is negative due to the fundamental differences between

3

Fig. 1. An example of conventional data center network architecture,
suggested by Cisco [21].

DCNs and IP networks, which invalidate the assumptions

made by conventional tomographic methods [11], [12]; we

explain these in Sec. I as two obstacles. We have proposed

methods to get the coarse-grained TM in [19], [20], but we

hereby aim to overcome these obstacles and hence make a

fine-grained TM estimation viable in DCNs.

III. DEFINITIONS AND PROBLEM FORMULATION

We consider a typical DCN as shown in Fig. 1. It consists

of N Top-of-Rack (ToR) switches, aggregation switches, and

core switches connecting to the Internet. There are R services

running in this DCN. Note that our method is not confined

to this commonly used DCN topology; it accommodates other

more advanced topologies also, e.g., VL2 [2], fat-tree [1], as

will be shown in our simulations.

We denote by Xi⇀j the traffic sent from the i-th ToR to the

j-th ToR and by Xi↔j the volume of traffic exchanged be-

tween the two switches. Given the volatility of DCN traffic, we

further introduce Xi⇀j(t) and Xi↔j(t) to represent values of

these two variables at discrete time t.3 Note that although these

variables would form the TM for conventional IP networks,

we actually need more detailed information for the DCN

traffic pattern: the routing path(s) taken by each traffic flow.

Therefore, we split Xi↔j(t) on all possible routes between the

i-th and j-th ToRs. Let X(t) = [X1(t), X2(t), · · · , XP (t)]
represents the volumes of traffic on all possible routes be-

tween ToR pairs, where P is the total number of the routes.

Consequently, the traffic matrix X = [X(1),X(2), · · · ,X(T)],
where T is the total number of time periods, is the one we

need to estimate.

The observations that we utilize to make the estimation are

the SNMP counters on each port of switches. Basically, we

poll the SNMP MIBs for bytes-in and bytes-out of each port

every 5 minutes. The SNMP data obtained from a port can

be interpreted as load of the link with that port as one end;

it equals to the total volume of the flows that traverse the

corresponding link. In particular, we denote by ToRin
i and

ToRout
i the total “in” and “out” bytes at the i-th ToR. We

represent links in the network as L = {L1, L2, · · · , LM},
where M is the number of links in the network. Let B =
{B1, B2, · · · , BM} denote the bandwidth of the links, and

3Involving time as another dimension of the TM was proposed earlier in
[12], [13].

TABLE I
COMMONLY USED NOTATIONS

Notation Description

N The number of ToR switches in the DCN

M The number of links in the DCN

P The number of routes in the DCN

R The number of services running in the DCN

T The number of time periods

A Routing matrix

L L = [Li]i=1,··· ,M , where Li is the i-th link

B B = [Bi]i=1,··· ,M , where Bi is the bandwidth of Li

Y Y = [Yi]i=1,··· ,M , where Yi is the load of Li

Ki The number of server belonging to the i-th rack

Xi⇀j The traffic send from the i-th ToR to the j-th ToR

Xi↔j The traffic exchanged between the i-th and j-th ToRs

X X = [Xr]r=1,··· ,P , where Xr is the traffic on the r-th
routing path

X̄r The prior estimation of the traffic on the r-th routing path

ToRin
i The total “in” bytes of the i-th ToR

ToRout
i The total “out” bytes of the i-th ToR

S S = [Sij]i=1,··· ,R;j=1,··· ,N , where Sij is the number of
servers under the j-th ToR that run the i-th service

Corr ij The correlation coefficient between the i-th and j-th ToR.

θ Link utilization threshold

Y(t) = {Y1(t), Y2(t), · · · , YM (t)} denote the traffic loads of

the links at discrete time t, and Y = [Y(1),Y(2), · · · ,Y(T)]
becomes the load matrix. 4

An extra piece of information that we require is the service
placement logs recorded by controllers of a DCN. We analyze

the service placement logs in the controller nodes in a DCN,

and get the service placement matrix S = [Sij] with rows

corresponding to services and columns representing the ToR

switches. In particular, Sij = k means that there are k servers

under the j-th ToR running the i-th service in the DCN. We

also denote by Kj the number of servers belonging to the j-th

rack. These quantities will be used to compute the correlation

coefficient between different ToRs in Sec. IV.

As there are a lot of available routes between any of two

ToR switches, the correlation between traffic assignment X(t)
and link load assingment Y(t) can be formulated as

Y(t) = AX(t) t = 1, · · · , T, (1)

where A denotes the routing matrix, with rows corresponding

to links and columns indicating routes between ToR switches.

Ak� = 1 if the �-th route traverses the k-th link; Ak� = 0
otherwise. In this paper, we aim to efficiently estimate the

TM X using the load matrix Y derived from the easy-collected

SNMP data. Our commonly used notions are listed in Table I,

where we drop time indices for brevity.

Although (1) is a typical system of linear equations, it is

impractical to solve it directly. On one hand, the traffic pattern

in DCNs is practically sparse and skew [14]. Fig. 2, adopted

from [14], plots the traffic normalized volumes between ToR

switches in a DCN with 75 ToRs. The sparse and skew nature

4We only consider intra-DCN traffic in this paper. However, our CREATE
method can easily take care of DCN-Internet traffic by considering the Internet
as a “special rack”.

4

From Top of Rack Switch

T
o

 T
o

p
 o

f
R

a
c
k
 S

w
it
c
h

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. The TM across ToR switches reported in [14].

of TM in DCNs can be immediately seen from the figure: only

a few ToRs are hot and most of their traffic goes to a few other

ToRs. On the other hand, as the number of unknown variables

is much more than the number of observations, the problem is

highly under-determined. For example in Fig. 1, the network

consists of 8 ToR switches, 4 aggregation switches and 2 core

switches. The number of possible routes in A is more than

100, while the number of link load observations is only 24.

Even worse, the difference between these two numbers grows

exponentially with the number of switches (i.e., the DCN

scale). Consequently, directly applying tomographic methods

to solve (1) would not work, and we need to derive a new

method to handle TM estimation in DCNs.

IV. DESIGN OF CREATE

As directly applying network tomography to DCNs is in-

feasible due to the rich connections between different ToRs,

we propose two procedures to pre-process the input data such

that the tomographic methods can be applied. We shall first

introduce the rationale of the pre-processing procedures, then

we present our CREATE method that combines these two

procedures with a fine-tuned tomographic algorithm.

A. Traffic Characteristics of DCNs

To motivate our design principles of CREATE, we focus

on analyzing the traffic characteristics of real DCNs. As

mentioned earlier, several proposals including [14], [22] have

indicated that the TM of DCN ToRs is very sparse. More

specifically, for each ToR in a DCN, it only exchanges data

flows with a few other ToRs rather than most of them. For

instance, in Fig. 2, we can see that each ToR is exchanging

major flows with no more than 10 out of 74 other ToRs; the

remaining ToR pairs either share very minor flows or not

at all. If we could figure out the cause of this sparsity, we

would be able to adjust the prior estimation of a TM to make

tomographic algorithms work.

According to the literature, as well as our experience with

our own data center, the sparse nature of TM in DCNs may

originate from the correlation between traffic and service. In

other words, racks running the same services have higher

chances to exchange traffic flows, and the volumes of the

flows may be inferred by the number of instances of the

shared services. Bodı́k et al. [15] have analyzed a medium

scale DCN and claimed that only 2% of distinct service pairs

communicates with each other. Moreover, several proposals

such as [23], [24] allocate almost all virtual machines of

the same service under one aggregation switch to prevent

traffic from going through oversubscribed network elements.

Consequently, as each service may only be allocated to a few

racks and the racks hosting the same services have a higher

chance to communicate with each other, it naturally leads to

sparse traffic matrices between DCN ToRs. To better illustrate

this phenomenon in our DCN, we collect the socket level logs

in each server to form the ground truth of the TM. We show

the placement of services in 5 racks using the percentage

of servers occupied by individual services in each rack in

Fig. 3(a), and we depict the traffic volumes exchanged between

these 5 racks in Fig. 3(b). Clearly, the racks that host more

common services tend to exchange greater volumes of traffic

(e.g., racks 3 and 5 whose more than 50% of the traffic flows

are generated by the “Hadoop” service), whereas those do not

share any common services rarely communicate (e.g., racks 1

and 3). So our first observation is the following:

Observation 1: The TM between DCN ToRs is very

sparse, but, fortunately, the pattern can be inferred

by the service placements, thanks to the correlation

between traffic and service.

Although using service placements can infer the skewness

in the TM, the existence of multiple paths between every

ToR pair still persists. Interestingly, literature does suggest that

some of these routing paths can be removed to simplify the

DCN topology by making use of link statistics. According to

Benson et al. [16], the link utilizations in DCNs are rather low

in general. They collect the link counts from 10 DCNs ranging

from private DCNs, university DCNs to Cloud DCNs and

reveal that about 60% of aggregation links and more than 40%

of core links have low utilizations (e.g. in the level of 0.01%).

To give more concrete examples, we retrieve the data sets

publicized along with [16], as well as the statistics obtained

from our DCN, then we draw the CDF of core/aggregation

link utilizations in three DCNs for one representative interval

selected from several hundred 5-minutes intervals in Fig. 3(c).

As shown in the figure, more than 30% of the core links in

a private DCN, 60% of core links in an university DCN and

more than 45% of aggregation links in our testbed DCN only

have the utilizations less than 0.01%.

Due to the low utilization of certain links, eliminating

them will not affect much the estimation accuracy but will

greatly reduce the possible routes between two racks. For

instance, in an conventional DCN shown in Fig. 1, eliminating

a core link will reduce 12.5% of the routes between any two

ToRs, while cutting an aggregation link halves the outgoing

paths from any ToR below it. Therefore, we may significantly

reduce the number of potential routes between any two ToRs

by eliminating the lowly utilized links. Although this may

come at a cost of slightly losing actual flow counts, the

5

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5
0

20

40

60

80

100

Data Center RacksP
er

ce
n

t
o

f
S

er
ve

rs
 p

er
 S

er
vi

ce

Database Multimedia Hadoop Web Others

(a) Percentages of servers per service in our
DCN. Only services in 5 racks are shown.

Rack1

Rack2

Rack3

Rack4

Rack5

Rack1 Rack2 Rack3 Rack4 Rack5

 0

0.2

0.4

0.6

0.8

1

(b) The traffic volume from one rack (row) to another
(column) with the service placement in (a).

0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

Link Utilization

C
D

F

private_core
university_core
testbed_aggregation

(c) Link utilizations of three DCNs, with “private”
and “university” from [16] and “testbed” being our
own DCN.

Fig. 3. Characterizations of DCN traffics. (a) and (b) indicate service-traffic correlations, while (c) demonstrates low utilization of a large fraction of links.

overall estimation accuracy should be improved thanks to the

eliminating of the ambiguity in the actual routing path taken

by the major flows. So another of our observations is:

Observation 2: Eliminating the lowly utilized links

can greatly mitigate the under-determinism of our

tomography problems in DCNs; it thus has the

potential to increase the overall accuracy of the TM

estimation.

B. CREATE Architecture

Based on these two observations, we design CREATE as

a novel TM estimation method for DCNs. In a nutshell, we

periodically compute the service correlations between different

ToRs and eliminate lowly utilized links. This allows us to

perform network tomography under a more accurate prior TM

and a more determined system (with fewer routes). To the best

of our knowledge, CREATE is the first practical algorithm for

accurate traffic inference in DCN. As shown in Fig. 4, it takes

three main steps to estimate the TM for DCN ToRs. First

Fig. 4. The CREATE architecture.

of all, CREATE calculates the correlation coefficient between

different ToRs based on the service placement logs. Secondly,

it eliminates the lowly utilized links to reduce redundant routes

and narrow the space of potential TM suggested by the load

vector Y(t). Finally, it takes the SNMP counters and the

correlation coefficients as input to estimate the TM between

different ToRs. We shall first give more details about these

steps, and then present a working example.
1) Building Blocks of CREATE: The first step stems from

Observation 1: we design a novel way to evaluate the

correlation coefficient between two ToRs, leveraging on the

easily obtained service placement logs. We use Corr ij to

quantity the correlation between the i-th and j-th ToRs, and

we calculate it as follows:

Corr ij =

R∑
k=1

[(Ski×Skj)/(Ki×Kj)] i, j = 1, · · · , N, (2)

where the concerning quantities are derived from the service

placement logs, as defined in Sec. III.

The second step is then motivated by Observation 2. We

collect the SNMP link counts and compute the link utilization

for each link. If the link utilization of a link is below a certain

threshold θ, we consider the flow volumes of the routes that

pass the link as zero, which effectively removes this link from

the DCN topology. As a result, the number of variables in the

equation system (1) can be substantially reduced, resulting

in a more determined tomography problem. On one hand,

this thresholding sets non-zero link counts to zero, possibly

resulting in estimation errors. On the other hand, it removes

redundant routes and mitigates the under-determinism of the

tomography problem, potentially improving the estimation

accuracy. In our experiments, we shall try different values of

the threshold to see the trade-off between these two sides.

In the last step, we take the correlation coefficients and the

reduced DCN topology as input to estimate the TM through

a prior based tomography method. More specifically, we first

compute Xi↔j as the volume of traffic between ToRi and

ToRj based on the correlations by the following procedure.

Xi⇀j = ToRout
i × Corr ij∑N

k=1 Corr ik
i, j = 1, · · · , N,

Xi↔j = Xi⇀j +Xj⇀i i, j = 1, · · · , N.

Due to symmetry, Xi⇀j can also be computed through ToRin
j .

In order to compute the prior TM, we estimate the traffic

volumes on each route by dividing the total number of bytes

between two ToRs equally on every route connecting them.

The reason for this equal share is the widely used ECMP [25]

in DCNs; it by default selects routing paths between two

switches with equal probability on each. The computed prior

TM will give us a good start in solving a quadratic program-

ming problem to determine the final estimation. We describe

the detailed algorithm in Sec. IV-C.

6

As our TM estimation takes the time dimension into ac-

count (to cope with the volatile DCN traffics), one may

wonder whether the correlation coefficients [Corr ij] have to

be computed for each discrete time t. In fact, as it often

takes a substantial amount of time for servers to accommo-

date new services, the service placements will not change

frequently [15]. Therefore, once [Corr ij] are computed, they

can be used for a certain period of time. Recomputing these

coefficients are needed only when a new service is deployed

or an existing service is quit. Even under those circumstances,

we only need to re-compute the coefficients between the ToRs

that are affected by service changes.

2) A Working Example: Fig. 5(a) presents an example to

illustrate how CREATE works. The three colors represent three

services deployed in the data center as follows:

• service1: server2(rack1), server12(rack6),
• service2: server4(rack2), server6(rack3), server13,14(rack7),
• service3: server8(rack4), server10(rack5).

The correlation coefficients between the ToR pairs are shown

in Table II. Fig. 5(b) is the result of reducing lowly utilized

TABLE II
CORRELATION COEFFICIENTS OF THE WORKING EXAMPLE

ToR Pairs 1:2-5 1:6 1:7,8 2:3 2:4-6 2:7 2:8 3:7 4:5

Corr. Coef. 0 0.25 0 0.25 0 0.5 0 0.5 0.25

links through thresholding, hence we can estimate the traffic

volumes on the remaining paths from one ToR to another.

More specifically, ToR2 is related to ToR3 and ToR7 under a

coefficient 0.25 and 0.5, respectively. So if ToR2 totally sends

out 10000 bytes during the 5 minutes interval, the traffic sent

to ToR3 and ToR7 should be 10000∗0.25/(0.25+0.5) = 3334
and 10000 ∗ 0.5/(0.25 + 0.5) = 6667, respectively. After

eliminating the lowly utilized links, there is only one route

from ToR2 to ToR7. So the prior estimation of the traffic

volume on that route is indeed 6667, the estimated traffic

sent from ToR2 to ToR7. A similar situation applies to ToR2

and ToR3. The estimated prior TM is then fed to the final

estimation, as discuss later in Sect. IV-C.

C. The Algorithm Details

We use pseudocode to present our CREATE method in

Algorithm 1. The algorithm takes the routing matrix A,

bandwidth vector B, load vector Y, service placement matrix

S, the ToR SNMP counts, and the link utilization threshold θ
as the main inputs, and it returns the traffic vector X. As the

algorithm runs for every time t, we drop the time indices.

After computing the correlation coefficients in line 1, we

remove the lowly utilized links and the related routes. In

particular, we check every link if its utilization is below θ
(lines 3) and we update Pij (the set of routes between the

i-th and j-th ToRs) by removing the routes that contain low

utilized links (line 6); we also update A, X and Y by removing

the corresponding rows and components. Then we compute

the prior traffic vector X̄ using ToRout
i , ToRout

j and the

correlation coefficients. Lines 9–11 compute the volume of

(a) Before reducing the lowly utilized links.

(b) After reducing the lowly utilized links

Fig. 5. Four different line styles represent four flows and three different
colors represent three services.

Algorithm 1: CREATE Algorithm

Input: A, B, Y, S, {ToRout
i |i = 1, · · · , N}, θ

Output: X
1 [Corr ij]← Correlation(S)
2 for k = 1 to M do
3 if Yk/Bk ≤ θ then
4 forall the r ∈ Pij do
5 if r contains Lk then
6 Pij ← Pij − {r}; Adjust A, X and Y

7 for i = 1 to N do
8 for j = i+ 1 to N do
9 Xi⇀j ← ToRout

i ∗ Corr ij/(
∑

1≤k≤N Corr ik)

10 Xj⇀i ← ToRout
j ∗ Corr ij/(

∑
1≤k≤N Corrkj)

11 Xi↔j ← Xi⇀j +Xj⇀i

12 forall the r ∈ Pij do X̄r ← Xi↔j/|Pij | ;

13 X← QuadProgram(A, X̄,Y)
14 return X

traffic exchanged between the i-th and j-th ToRs, and line 12

assigns the traffic to each routes between the two ToRs equally.

Finally, the algorithm applies a quadratic programming to

refine X̄ to obtain X subject to the constraints posed by Y
and A (line 13).

Here we provide more details on the computation involved

in QuadProgram. Basically, we want to obtain X that is

closest to X̄ but satisfies the tomographic conditions. This

7

problem can be formulated as follows:

Minimize ‖X− X̄‖+ ‖AX−Y‖
s.t. ‖AX−Y‖ ≥ 0

where ‖ · ‖ is L2-norm of a vector. To tackle this problem, we

first compute the deviation Ỹ = Y − AX̄, then we solve the

following constrained least square problem to obtain the X̃ as

the adjustments to X̄ for offsetting the deviation Ỹ.

Minimize ‖AX̃− Ỹ‖ (3)

s.t. μX̃ ≥ −X̄
We use a tunable parameter μ, 0 ≤ μ ≤ 1 to make the tradeoff

between the similarity to the prior solution and the precise fit

to the link loads. The constraint is meant to guarantee a non-

negative final estimation X̂. Finally, X̂ is obtained by making

a tradeoff between the prior and the tomographic constraint as

X̂ = X̄+ μX̃. According to our experience, we take μ = 0.8
to give a slightly more bias towards the prior.

Obviously, The dominant running time of the CREATE

algorithm is spent on QuadProgram(A, X̄,Y), whose main

component (3) is equivalent to a non-negative least squares
(NNLS) problem. The complexity of solving this NNLS is

O(M2 + P 2), but can be reduced to O(P logM) though

parallel computing in a multi-core system [26].

V. EVALUATION

We evaluate our CREATE both in a testbed and by simula-

tions in this section.

A. Experiment Settings
We implement CREATE together with two representative

TM inference algorithms:

· Tomogravity [11] is known as a classical TM estimation

algorithm that performs well in IP networks. In contrast to

CREATE, it assumes traffic flows in the networks follow

the gravity traffic model, that traffic exchanged by two

ends is proportional to the total traffic on the two ends.

· Sparsity Regularized Matrix Factorization (SRMF for

short) [12] is a state-of-art traffic estimation algorithm.

It leverages the spatio-temporal structure of traffic flows,

and utilizes the compressive sensing method to infer TM

by rank minimization.

These algorithms serve as benchmarks to evaluate the perfor-

mance of CREATE under different network settings.
We quantify the performance of the three algorithms using

four metrics: Relative Error (RE), Root Mean Squared Error
(RMSE),Root Mean Squared Relative Error (RMSRE) and

the computing time. RE is defined for individual elements as:

REi = |Xi − X̂i|/Xi, (4)

where Xi denotes the true TM element and X̂i is the corre-

sponding estimated value. RMSE and RMSRE are metrics to

evaluate the overall estimation errors:

RMSE =

√√√√ 1

Nx

Nx∑
i=1

(
Xi − X̂i

)2

, (5)

RMSRE(τ) =

√√√√ 1

Nτ

Nx∑
i=1,Xi>τ

(
Xi − X̂i

Xi

)2

. (6)

Similar to [11], we use a τ to pick up the relative large traffic

flows since small ones may not be important for engineering

DCNs. Nx is the number of elements in the ground truth X
and Nτ is the number of elements Xi > τ .

B. Testbed Evaluation

1) Testbed Setup: We use a testbed with 10 switches and

about 300 servers as shown in Fig. 6 for our experiments.

And the architecture for this testbed DCN is a conventional

tree similar to Fig. 1. The testbed hosts a variety of services

and part of which has been shown in Fig. 3(a). We gather the

service placement logs and SNMP link counts for all switches.

We also record the flows exchanged between servers by setting

linux iptable rules in each server (not a scalable approach) to

form the ground truth of TM between ToRs. The data are all

collected every 5 minutes.

(a) The outside view of our DCN. (b) The inside view of our DCN.

Fig. 6. Hardware testbed with 10 racks and more than 300 servers.

2) Testbed Results: Fig. 7(a) plots the CDF of REs of

the three algorithms. Clearly, CREATE performs significantly

better than another two: it can accurately estimate the volumes

of more than 78% traffic flows. As the TM of our DCN may

not be of low rank, SRMF performs similarly to tomogravity.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

CREATE
SRMF
Tomogravity

(a) The CDF of RE.

0 600 1200 1800 2400 3000 3600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ (Mb)

R
M

SR
E

CREATE
SRMF
Tomogravity

(b) The RMSRE under different τ

Fig. 7. The CDF of RE and RMSRE of the three algorithms on testbed.

We then study these algorithms with respect to the

RMSREs in Fig. 7(b). It is natural to see the RMSREs of all

three algorithms are non-increasing in τ , because estimation

algorithms are all subject to noise for the light traffic flows, but

they normally performs better for heavy traffic flows. However,

CREATE still achieves the lowest RMSRE for all values of

τ among the three. As our experiments with real DCN traffic

are confined by the scale of our testbed, we will conduct more

experiments with larger DCNs through simulations in ns-3.

8

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

CREATE
SRMF
Tomogravity

(a) The CDF of RE

0 500 1000 1500 2000 2500
0.2

0.4

0.6

0.8

1

1.2

τ (Mb)

R
M

SR
E

CREATE
SRMF
Tomogravity

(b) The RMSRE under different τ

0 0.06 0.12 0.18 0.24 0.3
0.9

1

1.1

1.2

1.3x 10
4

θ

R
M

SE

(c) The RMSE under different θ.

Fig. 8. The CDF of RE (a), the RMSRE (b), and the RMSE (c) of the three algorithms for estimating TM under conventional tree architecture.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

CREATE
SRMF
Tomogravity

(a) The CDF of RE

0 200 400 600 800
0.5

1

1.5

2

τ (Mb)

R
M

SR
E

CREATE
SRMF
Tomogravity

(b) The RMSRE under different τ

0 0.03 0.06 0.09 0.12 0.15
2

2.1

2.2

2.3

2.4

2.5

2.6x 10
4

θ

R
M

SE

(c) The RMSE under different θ.

Fig. 9. The CDF of RE (a), the RMSRE (b), and the RMSE (c) of the three algorithms for estimating TM under fat-tree architecture.

C. Simulation Evaluations

1) Simulation Setup: We adopt both the conventional data

center architecture [21] and fat-tree architecture [1] as our

experimental topologies. For the conventional tree, there are

32 ToR switches with 20 servers in per rack, 16 aggregation

switches, and 3 core switches. And for fat-tree, we use

k = 8 levels with the same number of ToR switches as the

conventional tree, but with 32 aggregation switches, 16 core

switches and 4 servers per rack. The link capacities are all set

to be 1Gbps. We could not conduct simulations on BCube [3]

because it does not arrange servers into racks. It would be an

interesting problem to study how to extend our proposal for

estimating the TM for servers in BCube.

We install both on-off and bulk-send applications in ns-3.

We randomly deploy services in a DCN. The packet size is set

to be 1400 bytes, and the flow sizes are randomly generated

but following the characteristics of real DCNs [6], [10], [16].

For instance, 10% of the flows contributes to about 90% of

the total traffic in DCN [2], [4]. We use TCP flows in our

simulations [27], and apply the widely used ECMP [25] as

the routing protocol.

We record the total number of bytes and packets that enter

and leave every port of each switch in the network every 5

minutes. We also record the total bytes and packets of flows

on each route in the corresponding time periods as the ground

truth. For every setting we run simulations for 10 times.

To evaluate the computing time, we measure the time period

starting from when we input the topologies and link counts

to the algorithm until the time when all TM elements are

returned. All three algorithms are implemented by Matlab

(R2012b) on 6-core Intel Xeon CPU @3.20GHz, with 16GB

of memory and the Windows 7 64-bit OS.

2) Simulation Results: Fig. 8(a) compares the CDF of REs

of the three algorithms under conventional tree architecture

and we set θ = 0.001. The advantage of CREATE over the

other two algorithms stems from the fact that CREATE can

clearly find out the ToR pairs that do not communicate with

each other. Tomogravity has the worst performance because

it gives each ToR pair a communication traffic whenever

one of them has “out” traffic and the other has “in” traffic,

thus introducing non-existing positive TM entries. SRMF

obtains the TM by rank minimization, so it performs better

than tomogravity when our random traffic does lead to low

rank TM. The worse performance of SRMF (compared with

CREATE) may be its over-fitting of the sparsity in eigenvalues,

according to [10].

We study the RMSREs of the three algorithms under

different τ in Fig. 8(b). Again, CREATE exhibits the lowest

RMSRE and a (expectable) reducing trend with the increasing

of the τ , while the other two remain almost constant in τ . In

Fig. 8(c), we then study how the RMSE changes with the

threshold θ of link utilizations, which is an important parame-

ter to fine-tune the performance of CREATE. As we can see in

this figure, when we gradually increase the threshold, RMSE
does slightly decrease until the sweet point θ = 0.12. While

the improvement on accuracy may be minor, the computing

time can be substantially reduced as we will show later.

Fig. 9 evaluates the same quantities as Fig. 8 but under

fat-tree architecture, which has even more redundant routes.

We set θ = 0.001. Since TM in fat-tree DCNs is far more

9

TABLE III
THE COMPUTING TIME (SECONDS) OF THE THREE ALGORITHMS UNDER

DIFFERENT SCALES OF DCNS

Switches Links Routes

Computing Time

CREATE Tomo- SRMF

θ =0.001 θ =0.01 gravity

51 256 7360 0.54 0.51 2.54 1168.22

102 320 46272 8.12 7.81 73.59 -

204 1024 381312 813.23 614.67 1654.46 -

sparse, the errors are evaluated only against the non-zero

elements in TM. In general, CREATE retains its superiority

over others in both RE and RMSRE. The effect of θ becomes

more interesting in Fig. 9(c) (compared with Fig. 8(c)); it

clearly shows a “valley” in the curve and a sweet point around

θ = 0.03. This is indeed the trade-off effect of θ mentioned

in Sec. IV-B1: it trades the estimation accuracy of light flows

for that of heavy flows.

Tab. III lists the computing time of the three algorithms

under conventional tree architecture. Obviously, CREATE per-

forms much faster than both tomogravity and SRMF. While

both CREATE and tomogravity have their computing time

grow quadratically with the scale of the DCNs, SRMF often

cannot deliver a result within a reasonable time scale. In fact,

if we slightly increase θ, we may further reduce the computing

time, as shown in Tab. III. In summary, our algorithm both has

a higher accuracy and faster running speed compared to the

two state-of-art algorithms.

VI. CONCLUSION

To meet the increasing demands for detailed traffic charac-

teristics in DCNs, we make the first step towards estimating

the traffic matrix (TM) between all ToR switches in a DCN,

relying on only the easily accessible SNMP counters and the

service placement logs. We pioneer in applying tomographic

methods to DCNs by overcoming the barriers of solving the

ill-posed linear system in DCN for TM estimation. We first

obtain two major observations on the rich statistics of DCNs

traffic. The first observation reveals that the TMs between

ToRs of DCNs are extremely sparse, and the traffic patterns

can be roughly inferred from service placement logs. The other

observation argues that eliminating a part of links with low

utilization can greatly increase both overall accuracy and the

efficiency of TM estimation. Based on these two observations,

we develop a new TM estimation method CREATE which is

applicable to most prevailing DCN architectures without any

additional infrastructure support. We validate CREATE with

both hardware testbed and simulations, and the results show

that CREATE outperforms the two well-known TM estimation

methods on both accuracy and efficiency.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proc. of ACM SIGCOMM, 2008,
pp. 63–74.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proc. of ACM SIGCOMM, 2009, pp. 51–62.

[3] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers,” in Proc. of ACM SIGCOMM,
2009, pp. 63–74.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in Proc.
of USENIX NSDI, 2010.

[5] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM
Placement and Routing for Data Center Traffic Engineering,” in Proc.
of IEEE INFOCOM, 2012, pp. 2876–2880.

[6] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures
in Data Centers: Measurement, Analysis, and Implications,” in Proc. of
ACM SIGCOMM, 2011, pp. 350–361.

[7] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead Dat-
acenter Traffic Management Using End-host-based Elephant Detection,”
in Proc. of IEEE INFOCOM, 2011, pp. 1629–1637.

[8] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis,” in Proc. of ACM SoCC, 2012, pp. 7:1–7:13.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
Nature of Data Center Traffic: Measurements & Analysis,” in Proc. of
ACM IMC, 2009, pp. 202–208.

[11] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast Accurate
Computation of Large-scale IP Traffic Matrices from Link Loads,” in
Proc. of ACM SIGMETRICS, 2003, pp. 206–217.

[12] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
Compressive Sensing and Internet Traffic Matrices,” in Proc. of ACM
SIGCOMM, 2009, pp. 267–278.

[13] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci,
M. Crovella, and C. Diot, “Traffic Matrices: Balancing Measurements,
Inference and Modeling,” in Proc. of ACM SIGMETRICS, 2005, pp.
362–373.

[14] K. Srikanth, P. Jitendra, and B. Paramvir, “Flyways To De-Congest Data
Center Networks,” in Proc. of ACM HotNets, 2009.

[15] P. Bodı́k, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving Failures in Bandwidth-Constrained Datacenters,”
in Proc. of ACM SIGCOMM, 2012, pp. 431–442.

[16] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in Proc. of ACM IMC, 2010, pp. 267–280.

[17] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX
to the Datacenter,” in Proc. of HotNets, 2009.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained
Traffic Engineering for Data Centers,” in Proc. of ACM CoNEXT, 2011,
pp. 8:1–8:12.

[19] Y. Qiao, Z. Hu, and J. Luo, “Efficient Traffic Matrix Estimation for Data
Center Networks,” in Proc. of IFIP Networing, 2013, pp. 1–9.

[20] Z. Hu, Y. Qiao, and J. Luo, “Coarse-Grained Traffic Matrix Estimation
for Data Center Networks,” Computer Communications, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2014.02.016

[21] C. D. C. Infrastructure, “2.5 Design Guide,” 2007. [Online]. Available:
http://goo.gl/kBpzgh

[22] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Aug-
menting Data Center Networks with Multi-Gigabit Wireless Links,” in
Proc. of ACM SIGCOMM, 2011, pp. 38–49.

[23] H. Ballani, P. Costa, T. Karagiannis, and A. I. Rowstron, “Towards
Predictable Datacenter Networks.” in Proc. of ACM SIGCOMM, 2011,
pp. 242–253.

[24] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang, “Secondnet: A Data Center Network Virtualization
Architecture with Bandwidth Guarantees,” in Proc. of ACM Co-NEXT.
ACM, 2010, pp. 15:1–15:12.

[25] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” United
States, 2000.

[26] Y. Luo and R. Duraiswami, “Efficient Paraller Non-Negative Least
Square on Multi-core Architectures,” SIAM Journal on Scientific Com-
puting, vol. 33, no. 5, pp. 2848–2863, 2011.

[27] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center Tcp (DCTCP),” in
Proc. of ACM SIGCOMM, 2010, pp. 63–74.

