On the controller placement for designing a
distributed SDN control layer

Yury Jiménez, Cristina Cervello-Pastor, and Aurelio J. Garcia

Abstract—The software-defined network (SDN) advocates
a centralized network control, where a controller manages
a network from a global view of the network. Large SDN
networks may consist of multiple controllers or controller
domains that distribute the network management between
them, where each controller has a logically centralized but
physically distributed vision of the network. In this context,
a key challenge faced by providers is to define a scalable
control network that exploits the benefits of SDN when used
in conjunction with efficient management strategies. Most of
the control layer models proposed are not concerned with
controller scalability, because they assume that commercial
controllers are scalable in terms of capacity (quantity of flows
processed per second). However, it has been demonstrated
that overloads and long propagation delays among controllers
and controllers-switches can lead to a long response time of
the controllers, affecting their ability to respond to network
events in a very short time and reducing the reliability of
communication.

In this work we define the principles for designing a
scalable control layer for SDN, and show the desired control
layer characteristics that optimize the management of the
network. We address these principles from the perspective
of the controller placement problem. For this purpose we
improve and evaluate our previous approach, the algorithm
called k-Critical. K-Critical discovers the minimum number
of controllers and their location to create a robust control
topology that deals robustly with failures and balances the
load among the selected controllers. The results demonstrate
the effectiveness of our solution by comparing it with other
controller placement solutions.

Index Terms—Software-defined network, controller scalabil-
ity, control layer, controller placement problem.

I. INTRODUCTION

ETWORK architectures such as Software-Defined Net-

working (SDN) in which the control plane is decoupled
from the data plane have been growing in popularity. Basi-
cally, the rationale behind this is to provide a more struc-
tured software environment for developing network-wide
abstractions while simplifying the data plane. SDN makes
networking functions available as programmable resources,
via a logically centralized controller, which manages and

The authors are with the Department of Telematics Engineering, Univer-
sitat Politecnica de Catalunya (UPC), Esteve Terradas, 7, 08860, Castellde-
fels, Spain, e-mails: {yury.jimenez;cristina;aurelioj.garcia} @entel.upc.edu.

This work has been supported by the Government of Catalonia through
a predoctoral FI scholarship and the Government of Spain through project
TEC2010-20527-C02-01.

ISBN 978-3-901882-58-6 (©) 2014 IFIP

operates a network (switches) from a global view of the
network.

In the SDN architecture, the controller has knowledge of
the network topology created by the forwarding devices that
it manages, and is responsible for configuring the forwarding
state on those devices through the control channel. This
managed state is a set of forwarding tables that provide
a mapping between packet header fields and actions to
execute on matching packets. This abstraction enables the
controller to easily enforce sophisticated flow-based traffic
management policies in the network.

Although decoupling control functions provides network
flexibility, this also brings scalability concerns [1] [2] [3].
Some concerns in SDN are related to the incremental load on
controllers and the controller communication to handle the
consistency of the network-state information among them.
These problems are not any different from those faced in the
design of traditional distributed networks. With the current
trend towards implementing SDN in large-scale networks,
the control layer composed of geographically separated
controllers with shared computational resources must satisfy
the performance of some metrics and must also be robust to
failures.

As SDN is unable to directly control the whole underlying
physical link resources, several aspects of the traditional
network operation can affect its performance. For instance,
failures in the underlying resources may lead to switches
being disconnected from the control layer, and controllers lo-
cated in a dense area of the network (with high connectivity)
can become the bottleneck in the network operation. Thus,
consideration is required of the technical and operational
characteristics of the physical network to design an efficient
and robust control layer.

In this work, some principles for building a scalable,
robust and balanced control layer are described from the per-
spective of the controller placement problem. We introduce
k-Critical [4], an algorithm that finds the minimum number
of controllers to satisfy a target communication between
controller and nodes, such as delay, latency, convergence
time, etc.

In addition, we demonstrate that a good selection of
controllers may not only balance the load among them, but
may also reduce the data loss in the control layer. As a
result, the selected controllers can efficiently distribute the
management duties between them to improve scalability of

the management process, where each controller operates on
its own abstract view of the network.

The remainder of the paper is organized as follows. In
Section II, we introduce some approaches that have been
proposed to alleviate the scalability problem in SDN. In
Section III, the principles for building a scalable control
layer are presented. In Section IV, some approaches for
solving the controller placement problem are described. In
Section V, k-Critical is explained in detail. Numerical
results of the methods presented, including our proposal are
shown in Section VI. Finally, conclusion and future work
are presented in Section VIL.

II. RELATED WORK

The controller scalability is related to its capacity to
handle a determined number of flows per second and its
response time to events, such as updating information on
controllers, response to a request, etc. These not only depend
on the capacity of the controllers for storage and processing,
but also of their placement in the network. In this section,
some approaches that have been proposed to alleviate the
scalability problem in SDN are described.

A. Logical Mechanisms

In order to address the limitations of controller scalability
and network-state consistency some strategies have been
considered in the controller software. For instance, in [2] the
authors propose a distributed system that runs on a control
platform called Onix. This distributed platform handles the
distribution and collection of information from switches
and distributes controls appropriately among various con-
trollers. In this approach, the applications are implemented
by reading and writing over a data structure that stores the
network state, called Network Information Base (NIB). Onix
proposes three strategies that can be used to improve the
controller scalability, which are partition, aggregation, and
consistency and durability. Partition allows control appli-
cations to divide the workload among controller instances,
keeping only a subset of the NIB in memory. Aggregation
allows the exposure of one subset of elements as an instance
of another Onix instance. Finally, consistency and durability
are ensured by using control applications for managing the
network state. In Onix, the NIBs operate asynchronously,
and no ordering or latency guarantees are given.

HyperFlow [5] is a control application that works with an
event propagation system. This application publishes events
that change the network state, and other controllers replay
the event to update the network state. In this way, the
information is kept consistent among the controllers. Both
the approaches of HyperFlow and DIFANE [6] introduce
new functionalities in switches to suppress frequent events
and to reduce the load on the controllers. Adding new
primitives to switches is undesirable because it breaks the
general principles of Software-Defined Networks (SDNs).

In order to limit the overload on the control layer in [7]
some events are managed by local controllers that are located
near the forwarding devices. For this purpose, the authors
present a distributed control plane composed of two levels
of hierarchy controllers. The bottom layer (local controllers)
is a group of controllers with no interconnection, and no
knowledge of the network-wide state, while the top layer
(root controller) is a logically centralized controller that
maintains the network-wide state.

These approaches consider network strategies implicit in
the controller structure to improve the controller scalability.
In general, these solutions consider that the control topology
is defined by geographical proximity among controllers and
switches.

B. System Design

The importance of controller placement is well established
[1] [8] [9] [10]. In [8] the authors show the implications
of changing the number of controllers for the latency be-
tween switches and controllers, and [9] develops different
algorithms to make placement decisions to maximize the
reliability of SDN. In [10] the authors describe the impli-
cations of the controllers view of the local network and
discuss the design of a distributed control plane. In [11]
it is demonstrated that the switch-over time depends on the
latencies between networking devices and the controllers. In
[12] the authors demonstrate that long propagation delays
among controllers limit the network convergence time, and
affect the controller ability to respond to network events in
a minimal time.

In general, most of these approaches ignore i) the con-
trol layer topology, ii) how many controllers are required
to satisfy network requirements and iii) the management
distribution among controllers.

III. PRINCIPLES FOR DESIGNING THE CONTROL LAYER

The control layer in SDNs may take any topology, in-
cluding that of a star, where a single controller manages
the network; a hierarchical architecture where controllers are
connected creating a mesh network; or even a ring composed
of a set of controllers that are managed using a distributed
hash table. Each one of these control layer topologies has
implicit limitations. However, regardless of the topology,
there are some general aspects, such as the distance both
among controller-switches and among controllers, as well
as the workload on each controller, that affect the ability of
the controllers to respond to network events [9].

A. Control layer

Here we consider the control layer as a virtual overlay
network that is constructed on top of the underlying physical
network, where every node forwards queries to the controller
through its control path. In this context, we address a

Applications Applications

A
E Northbound
.

East-West
<-- ===

A

Southbound

P a——

Fig. 1. Representation of the control layer from the NSFNet topology.

distributed control layer which is composed of a set of
trees rooted at controllers, such as in Fig. 1. Thus, each
controller in the control layer manages a set of nodes
that make up the tree. The paths between the controller
and each node in the tree are the control paths used to
exchange control information. Some protocols to coordinate
the operation among switches-controllers and also among
controllers are required in SDN. The protocol between
the controller and switches is referred to as southbound;
northbound refers to the communication among controller
and the application. The east-west protocol coordinates the
communication among the SDN controllers.

In this context, several aspects must be considered in
the control layer design, such as: how many controllers are
required, and where these controllers should be located in
the network in order to minimize the communication time
in the control layer and balance the load among controllers.

B. Load Distribution among controllers

One of the key functions of an SDN controller is to
establish flows. As such, the performance metrics associated
with an SDN controller are the flow setup time and the
number of flows per second that the controller can setup.
Flows can be configured proactively or reactively. In a
proactive flow setup, the switches know in advance what
to do with the flow received. In contrast, the reactive setup
occurs when the switch receives a flow that does not match
the flow table entries. In this case, the switch has to forward
the flow to the controller for processing. The time associated
with the reactive flow setup is the sum of the time it takes
to send the packet from the switch to the controller, the
processing time in the controller and the time it takes to send
the configuration message back to the switch. Assuming that
the controller is not a bottleneck and that it has information
about the service required, the total setup time can only be
affected by the distance between switch-controller. In [12], it
has been demonstrated that a long propagation delay limits
the network convergence time, and affects the controller
ability to respond to network events in a minimal time.
In this context, a good controller placement is essential in

order to i) distribute the load among controllers to avoid
the controller becoming congested and ii) minimize the
communication time between controller and switches. By
restricting the communication time among the switches and
the controller defined as D4, the response time may be
reduced and load distribution among controllers may be
balanced.

C. Connectivity among controllers

Large SDN networks operate on a global network view
that is logically centralized. However, control layer state
and logic must be physically distributed in order to achieve
responsiveness, reliability and scalability goals [13]. The
process of configuring changes over each controller imposes
overload and instability on the network.

In [13], the authors describe the impact of the physical
distribution of the control plane for the performance and
coordination of a control application logic. Regardless of
the strategies used to manage the network state consistency,
the connectivity among controllers determines the maximum
time required to update information among them. It is called
the window of inconsistency in [12]. This is a factor of delay
bounded by the farthest controllers in the network and the
load on controllers.

In this context, we consider that the communication delay
time between the controllers ¢ and j defined as D; ;) must
be a required constraint, D..,:. Consequently, the farthest
controllers in the network 7 and j satisfy the condition
D(i,j) < Deont-

IV. CONTROLLER PLACEMENT

In this section we briefly introduce two algorithms used
in clustering, k-Center and k-Median, which were adapted
in [4] to find the number of controllers required to satisfy
a delay time, D,..q. In these algorithms, it is considered that
any node in the network can be replaced by a controller.
Hence, the objective is to find the best controller placement.

Consider that the physical network is modeled by a graph
denoted by the tuple G = (V, E,C), where V = {1,... ,N'}
is the set of vertices, E is the set of edges, and
C ={Cy,...,Cy} defines the set of controllers, where
C C V. All solutions presented below require information
about distances between the N network nodes, d(z,7), in
order to compute the shortest paths (SP) between them.

A. k-Median problem

This solution finds the controller placement Cj from
the set of all possible controllers C' that minimize the
average propagation latencies between nodes and controllers,
d(v, Cy), using the Eq. (1).

1
Lavg = N Z d(U,Ck) (1)

veV

K-Median starts by identifying the shortest link d(3, j) in
the network, selecting node k£ as a candidate to become a
controller, k = {i,j}, which minimizes the average delay
Lgvg to the rest of the network. All nodes v for which
d(k,v) < Dy, are joined to the selected node k, creating
a cluster. The next step is to check if a node exists in
the cluster with better average delay than the node &, that
satisfies the D, for all nodes in the cluster. If a node n # k
exists that minimizes the Lg,,g, it is selected as a controller
and the cluster is updated. Otherwise, the node k is selected
as a controller. After that, the algorithm finds the nearest
node to the cluster, repeating the process. This algorithm
finishes when all nodes are included in a cluster.

B. k-Center problem

This approach finds the controllers so as to minimize the
maximum distance of the nodes v to their closest controller
CY, defined by (Eq. (2)).

kacente'r = glea&(CI{HE% d('U, Ck) (2)

At the beginning, this solution selects randomly a node &
in the network, creating a cluster with all nodes for which
d(k,v) < Dpeq. If there exists a node n in the cluster that
minimizes the delay to the nodes, it is selected as a controller
and the cluster is updated. Otherwise, the node k is selected
as a controller. After that, the algorithm finds the furthest
node on average to the cluster, repeating the process until
all nodes are included in a cluster.

V. K-CRITICAL

In this section, the algorithm to solve the controller
placement problem, k-Critical, is described in detail. This
algorithm: i) minimizes the number of controllers required
to cover a whole network and, ii) selects the controllers that
allow homogeneous and robust management trees to be built.
Here, we consider that a tree topology is robust if the loss of
management data due to node or link failures is minimized.
Moreover, it is homogeneous if the number of nodes along
the different branches is balanced. The resulting control layer
is a set of trees that satisfy the network requirements, in
which the root nodes are the controllers. Before describing
our algorithm, the idea behind tree robustness is explained.

A. Robust Tree

Network robustness is a property that will come from
paths, which ensure that communication remains in spite
of network failures, thus minimizing any data loss. Our
objective is to focus on selecting the controllers that allow
a robust control layer to be built.

Fig. 2 shows the resulting management trees obtained
from the NSFNet topology. These trees are built from
controllers found by k-Center, k-Critical and k-Median re-
spectively. If we consider the worst case when a failure

Fig. 2. Trees created from selected controllers for D,.cq = 24ms. The number at
the end of each branch is the delay in it.

occurs in the network, which is when the adjacent link to the
controller with highest number of nodes in the branch fails,
we found that tree (a) loses information from 6 nodes, tree
(b) from 4 nodes, and tree (c) from 7 nodes. So, as we can
see in Fig. 2, the shortest and load balanced paths reduce
the loss probability and bottlenecks in the tree.

B. K-Critical algorithm

In Algorithm 1, k-Critical is defined. The selection of the
controller placement depends on the network requirements
and the physical network characteristics. In order to select
the best controller placement, the nodes characteristics are
evaluated with respect to the network topology through
function . This function evaluates the potential controller
placement, which are called candidate nodes. The nodes that
are candidates to become a controller are the nodes that, due
to their location, satisfy the delay D, to nodes that are not
already managed by a controller. In this way, we guarantee
that the branches of the resulting trees will have a maximum
delay between nodes and the controller, limited by D;.c.

In the function 6, Eq. (3), the coefficient v weighs the
node connectivity and the path weight for each candidate
node, defined as v = Ln , where 0 < ~ < 1. It
involves £, defined as the maximum path length measured
in number of hops for the candidate node, and £, ., defined
as the maximum path length found among the candidate
nodes. Note that v takes the lowest value for the candidate
node with smallest diameter, and 1 for the candidates nodes
with the largest diameter.

6 = v x (node connectivity) + (1 — =) x (path weight) (3)

In Eq. 3 node connectivity relates the degree of the
candidate node to the node distribution in its branches in
1 hops. The path weight relates the maximum delay value

that the candidate node reaches when it is the root, with
respect to the D,..

Considering the physical network diameter allows the
selection of the candidate nodes with the best relation
between the delay and the node distribution in its branches.
The diameter of the control layer should be as small as
possible given that longer paths mean longer transmission
times and greater load on links. By evaluating the
characteristics of traditional spanning trees (e.g., shortest
path, fewest hops and minimum weight), it follows that
shortest branches with optimal connectivity reduce the
impact of the node failures, as shown in Fig. 2.

C. Load Distribution among controllers

In this approach, we discover the number of controllers
that are necessary, given that both applications and networks
have specific requirements (e.g., latency, delay, convergence
time, etc) and that satisfying these requirements depend on
both the number of controllers and their location in the
network. In Algorithm 1 the information about distances is
used to discover if one node alone is able to manage the
whole network satisfying the required delay, D,..,. If this
is not possible, a critical node is selected, ¢,. The critical
node is the furthest on average from the rest of the nodes in
the network. In consequence, the critical node restricts the
controller selection. This criterion minimizes the number of
controllers, and guarantees that all nodes in the network are
managed by the nearest controller. Thus, the management
of the whole network is guaranteed while satisfying the
required delay D(v, C;) < Dyeq, Where D(v, ¢x) is the delay
from a controller ¢, V¢, € C, to a node v. It also limits the
number of nodes to be managed for each controller.

The function 6 is defined as follows:

D,
N =k

The first term of the 6 function involves the number
of nodes in the network, N; the number of nodes that a
candidate node has covered at i hops, #;; and the node
degree, D,. The second term of this function evaluates the
maximum delay found from a node to the controller with
respect to Dy.q.

Consider the candidate nodes in Fig. 2 and assume that
all these have the same diameter £,,,,., so that the second
term of # function is annulled. By evaluating the # function
for these nodes, where N=14 y #; = 2, the following values
were obtained' 0, = ﬁ = 0.66, 0, = ﬁ = 0.8, and
0. = T = 0.37. Note that even though the nodes 9 and
6 have the same degree, the node distribution in the tree
created at node 6 is better and the highest function value is
obtained. In this way, the controller placement with the best
relation between the degree and the node distribution in its
branches is discovered.

Dinax (vy Ck)
Dreq

0=~ x +(1—79)x)

Algorithm 1 Controller selection algorithm k-Critical Node

Require: (A x N) SP Delay Matrix. Dy, < Req. Delay

C < Set of candidate nodes that satisfy Dyeq
if C # 0 then
for each node n € C to become a controller do
Evaluate 6
end for
Select the node n € C with the highest value in 0; ¢ =n
else
while there are nodes not belonging to the cluster do
Cn 4 Find the furthest node to the Cluster
Cr < Find the set of candidates nodes to manage ¢,
for each candidate node n € ¢ do
Evaluate 6
end for
Select the node n with the highest value in 0
Cluster, < Find from (AN x A) the nodes v that satisfy
d(v,n) < Dreq, where v ¢ Cluster
Cluster < Cluster U Clustery, C = C U n, Clustery, < 0,
G0
end while
end if

We seek to construct trees that are wide near the con-
trollers and narrow further away from them, where paths
have as few hops as possible in order to reduce the data
loss when nodes or links fail. The rationale is that failures
in shorter paths result in a lower data loss, and nodes
with higher degree provide a better distribution of nodes
on branches (see Fig. 2.b). For this purpose, the 6 function
in Eq. (4) weighs the tree-depth of a node in the network in
terms of hop count and the delay path by means of v. An
example is shown in Fig. 3.

(a) Network Topology and resulting trees.

1. Critical node is detected, Cn=13.
2. Candidate controller to manage Cn is defined by Cc={8, 10, 11, 12}.

@@g eo °@@ oe
83, B

(c) @ (e)

Op)=0.28; 0= 0,8+ (0.75) + 0.2 (“"”) 0.76; O=0.5; Oe)= 0.48

w

After evaluating each node in Cc through (eq. 3), the node 10 is selected as controller.

>

A cluster that contains the nodes that satisfy Dreq to the controller is created,
Cl={4,5,6,7,9,11,12,13}.

The critical node with respect to Cc is discovered , Cn=8.

o v

Node 2 is selected as controller. In addition, node 9 is selected as controller to satisfy Dmax.

~

. Each controller manages its nearest nodes, defining the trees shown in Fig. a.

Fig. 3. Discovering the controllers in network (a) using k-Critical.

D. Connectivity among controllers

The set of controllers found by Algorithm 1 guarantees
that every node is managed by at least one controller and
that the maximum delay between them is no higher than
Dreq. However, the delay among each pair of controllers,
Deont, 18 not guaranteed. We consider that a minimum
delay in the control layer must be guaranteed, that is,
Dreq + Deont < Dmaz- This delay, Dy,q, may be defined
based on the requirement of the applications or services to
be provided by the network.

Algorithm (2) checks if the distance among the set of
selected controllers defined as C' = {C1,...C}} is satisfied.
Otherwise, it finds the required controllers that satisfy the
given constraint in the control layer.

To minimize the number of controllers to be added, the
critical controller or the furthest controller on average to the
set of controllers in C, must be identified. After that, the
candidate nodes that can become controllers and that also
minimize the distance to the other controllers are identified
and evaluated by means of 6, selecting as controller the node
with the highest value. This process continues until Dy, is
satisfied for each pair of controllers.

In order to restrict the D.,,: requirement, an initial con-
dition was defined in Algorithm (2). This condition limits
the D.ont in the control layer to %, where D,,, is the
maximum delay in the network. This condition, together
with the criterion used to select the controllers, guarantees
that the minimum number of controllers is added.

The idea behind this approach is to find intermediate
controllers that allow network management information to
be distributed to the controllers in C' satisfying Dr.,. Be-
sides guaranteeing a D.,,¢ in the control layer, adding
intermediate controllers also creates a hierarchical layer.
These controllers are the upper controller that maintain the
network state managed by the lower ones, and therefore are
responsible for updating network changes in the control layer
satisfying Deont-

VI. ANALYSIS AND RESULTS

In this section we show the implications of the con-
troller selection in the control topology performance in
terms of delay, data loss, node management distribution
among controllers and average tree-depth. For this purpose,
we randomly generated three network categories: sparse,
medium and dense networks. These networks were generated
using the software described in [14]. Then we evaluated
the performance and robustness of the trees built at the
controllers selected and for each one of the presented
solutions for each one of the network categories. Nodes
in sparse networks have between 1 and 10 neighbors; in
medium networks between 20 and 30 neighbors, and in
dense networks between 40 and 50 neighbors. For each
category we generated 100 networks which consist of 100

Algorithm 2 Controller selection
Require: (A x N) SP Delay Matrix. Dcont — Delay required
among controllers. Dy,q, < Maximum delay in network.

C' < controllers previously selected k <— Number of controllers
in C.

if Deons > Hmez then
D . = Dmas
cont — k+1
end if

while @(Ci,C’j) > Deont do
Cn < Find the furthest node in the Controller cluster
Cr < Find the candidates nodes to manage ¢, where C, ¢ C
and minimize the delay to C'
for each candidate node n € ¢, do
Evaluate 6
end for
Select the node n with the highest value in 6
Cup < CUCK, G, < 0
end while

nodes with the edge distance uniformly distributed between
1 and 10 km.

The controllers were found for different delay values in
the range of microseconds. The results presented in this
section are the average results obtained for each network
category evaluated. MATLAB was used to evaluate the
algorithms and their performance.

In Fig. 4, 5 and 6, the number of controllers found for
each defined D, in each network category is shown.

In order to compare the effect that the controllers se-
lected have over control topology, a quantitative analysis to
determine the number of optimal controllers was applied.
Based on the maximum delay time reached for each network
category, we found that the optimal number of controllers is
the one that has the best cost/benefit relation. In other words,
it is the maximum number of controllers for which adding
another controller results in negligible delay reduction.

For sparse networks (Fig. 4), a significant delay range
—from 23pus to 60us— is covered when 5 controllers are
considered. This is the same number of controllers for all
methods. The benefit of using 5 controllers is a considerable
delay reduction in comparison with using fewer controllers.
The maximum delay (60us) is reduced by more than a third.
We consider that this is an appreciable delay reduction,
given that this network category has a low connectivity.
Consequently, 5 controllers are considered as optimal.

Fig. 5 shows the number of controllers found for a specific
delay range in medium connectivity networks. As can be
seen, the maximum delay reached (35us) is significantly
lower than for sparse networks (approximately a half). This
is a logical result, because networks with high connectivity
have a small diameter. For this network category we found
that the delay decreases when from 1 to 3 controllers are
considered. But just considering 3 controllers halved the
maximum delay time (17us) for all methods. Therefore, we
consider that the optimal number of controllers to manage

70

60 k—Critical | .. |
k-Center
— k-Median
» 50F 8
ks
]
€ 401 8
o
o
5
o 30r]
Qo
£
Z 5k Optimal number]
of controllers
10 q
- O S,
0 ‘ i — : :
0 10 20 30 40 50 60

Delay (microseconds)

Fig. 4. Number of controllers for all possible delay ranges in generated
networks with sparse connectivity .

this network category is 3.

As was to be expected, for dense networks the maximum
delay in a tree is reduced (27us) (Fig. 6) in comparison with
the maximum delay for the medium network category. Fig. 6
shows that there are two points for which the delay reduction
is significant, i.e., 1 and 5 controllers. As can be seen (Fig. 6)
when only one controller manages the network, trees with a
Dreq between 20us and 26ps can be built. Note that the
delay reduction is negligible when 2, 3 or 4 controllers
are considered compared with using just 1. A significant
delay reduction is reached when 5 controllers manage the
network, which reduces the maximum delay by half. In
order to select the optimal number of controllers for dense
networks, we have taken as a reference the delay reached
for the optimal number of controllers selected for medium
and sparse network categories, 17us and 23us, respectively.
If we consider this delay interval as optimal (17us to 23us),
we can say that just 1 controller is a good selection in terms
of delay for dense networks, since trees with 20us can be
built. Nevertheless, using just 1 controller implies that it
has to handle the information from all the network, which
may be inefficient. We consider that this is not a problem,
since some approaches may be considered for processing
information efficiently (e.g., parallel processing) when just
1 controller has to manage the whole network.

The presented results indicate that using more controllers
than the optimal number or using a poor controller location,
reduces slightly the delay compared with the cost of adding
more controllers.

A. Expected data loss

We consider that in tree topology networks the failure
of a node is equivalent to the failure of the link to its
parent. This is true for every node in the tree except the
controllers, which we assume will not fail. This is because

80

k—Critical
k-Center
— k-Median

70+

SRl

50 1

4o0r 1

30

Number of Controllers

Optimal number
of controllers I

0 5 10 15 20 25 30 35
Delay (microseconds)

Fig. 5. Number of controllers for all possible delay ranges in generated
networks with medium connectivity.

90
k—Critical
80 4
k-Center
70k — k-Median| |
2 60 4
k)
2
S 501 1
o
ks
g 40 q
5
Zz 30 8
Optimal number
201 of controllers 8

0 5 10 15 20 25 30
Delay (microseconds)

Fig. 6. Number of controllers for all possible delay ranges in generated
networks with high connectivity.

independently of the network topology, if the controller
fails, the control over the managed nodes is lost while the
control is reassigned. Note that the expected data loss d;
for a node 7 depends on the number of nodes n; that are
rooted at it, and on the probability that the node ¢ fails. If
we consider that every node in the tree topology 7} has
the same loss probability, the expected data loss d; can be
calculated by Eq. (5):

1
diZmAZ ni, ©)

where N is the number of nodes in the network and V' (7T})
are the nodes in the tree T7..

~
o

mk-Median 1
E k-Center
E== kCrtical | |

N (5] P 2] @
=] =1 I=3 =] =1

Expected Nodes managed by controllers

o

o

Type of Network

Fig. 7. Average nodes managed by controller.

B. Analysis

In this section we compare the characteristics of the tree
topologies built from controllers selected for each one of
the presented methods. This analysis is done for the optimal
number of controllers found for each network category. The
maximum number of nodes managed by the controllers
selected from each method is shown in Fig. 7. The maximum
number of nodes managed by controllers are averaged over
the 100 random graphs in the respective categories. Fig. 7
shows that for sparse and medium connectivity networks the
controllers selected by k-Critical have better node distribu-
tion than the other solutions. The results obtained for dense
networks is not shown, because just 1 controller manages
the whole network for all cases.

Fig. 8 shows the average tree-depth obtained from con-
trollers selected for each method. We observe from Fig. 7
and Fig. 8 that the node distribution among controllers
affects the tree-depth. For instance, the trees created from the
controllers found by k-Median have the worst node distribu-
tion, and as a consequence have the longest paths. For the
dense network category, when only 1 controller is required,
k-Critical has the best node distribution among branches,
and consequently the resulting trees are the shortest ones.

Fig. 9 shows the expected data loss on trees built from
the selected controllers. For each network category, the
data loss parameter is computed using Eq. (5). From the
obtained results we can see clearly the relation among node
distribution, tree-depth and data loss. The shortest trees have
the lowest data loss, which is the case for trees created from
the controllers selected by k-Critical. On the other hand, the
longest trees have the highest data loss, as shown in the case
of k-Median in Fig. 9.

Fig. 10 shows the maximum delay of the trees obtained
for each network category. As shown, k-Critical improves
the robustness for networks with high connectivity but, as
a consequence, the delay of the branch cannot be improved

NN k-Median
k-Center
E—— k-Critical |{

Average Tree-Depth
w

.
.

M m
Type of Network

Fig. 8. Average depth on control topology.

o

.

Expected Data Loss

.

F A

Sparse

Medium Dense

Type of Network

Fig. 9. Expected data loss on randomly generated networks.

in comparison with other methods. However, it is < Dy.,.
Thus, k-Critical improves the tree robustness at the expense
of delay.

25

NN k-Median

E= kCritical

_

Expected Link Delay

05r

L

|

M m
Type of Network

Fig. 10. Expected link delay on control topology.

Even though the trees created from controller placement
by k-Center and k-Critical have similar characteristics in
terms of tree-depth and nodes managed by controllers, the
resulting trees built at controllers selected by k-Critical
reduces considerably the data loss for all the network cate-
gories, as can be seen in Fig. 9. K-Center has good results
on average, but not as good as k-Critical. This is because k-
Center does not have any initial criteria to select the potential
candidate nodes to become controller.

As shown, k-Critical makes the best controller selection in
general. The good results obtained using k-Critical are due
to the criterion to select the first controller. This selection
depends on the worst node in the network in terms of delay,
the critical node. On the other hand, k-Median does not
obtain a good performance because the initial criteria to
select the controller is not efficient.

The computational complexity for each one of the con-
troller placement solutions evaluated is O(nk). In general,
finding a controller requires checking the shortest distances
of the n nodes in the network. Therefore, the computational
complexity for finding one controller is defined by O(n).
This process has to be repeated until & controllers are
discovered.

VII. CONCLUSIONS

Previous work has shown the implications of the place-
ment controller problem in some network parameters. How-
ever, these studies have not taken into consideration the load
distribution among controllers, nor have they focused on
the control network topology built from controllers. In this
work we have compared some controller placement solutions
and have evaluated the implications of controller selection
in the resulting control layer. We have demonstrated that
the number of controllers selected, as well as their location,
determine the network performance. As can be seen from the
results obtained, a poor controller selection can affect con-
siderably the control network robustness,which affects the
network operation (e.g., long recovery time after failures).
On the other hand, using more than the optimal number of
controllers can be inefficient and costly, because the delay
improvement is negligible. From the results obtained, we
can see that the optimal number of controllers depends
on the physical network characteristics and the network
requirements. We have found that the criterion used to select
the first controller is crucial in defining the control layer
topology and therefore its performance. A good controller
selection allows the network to balance load and respond to
events in the shortest time possible.

We show that k-Critical selects the controllers by con-
structing a robust control layer in response to network
disturbances. This is because the physical characteristics
of the network are taken into account when selecting the
controllers. This solution can also be used to find the best
controller location when a network needs to be extended or

the load needs to be reallocated. We consider that a scalable
control layer design combined with efficient management
strategies can exploit the benefits of SDN.

Turning our attention to future work, we are interested
in defining how the tree topology is built from the selected
controllers taking into account several network performance
metrics. This is because selecting the shortest paths between
controller-nodes is not the best option for improving the
load and the robustness of the control layer. In addition,
a mechanism for load migration among the controllers must
be defined.

REFERENCES

[1] S. Yeganeh, and Y. Ganjali. “Kandoo: a framework for efficient and
scalable offloading of control applications”, proceedings of the first
workshop on Hot topics in software defined networks ACM SIGCOMM
2010 conference (HotSDN ’12), pp. 19-24, 2010.

[2] T. Koponen, M. Casado, N. Gude, and et al. “Onix: A Distributed

Control Platform for Large-scale Production Networks,”, Proceedings

of the 9th USENIX conference on Operating systems design and

implementation (OSDI’10), USENIX 2010, pp.1-6, 2010.

M. Reitblatt, N.Forter, J. Rexford and et al. “Consistent updates for

software-defined networks: change you can believe in!”, The 10th

ACM Workshop on Hot Topics in Networks (HotNets), ACM New York,

ISBN:978-1-4503-1059-8, USA, Nov. 2011.

[4] Y. Jiménez, C. Cervell6-Pastor, and J. Garcia. “Defining a Network

Management Architecture”, the 21st IEEE International Conference

on Network Protocols proceedings, PhD Forum, Germany, October 7-

11, 2013.

A. Tootoonchian and Y. Ganjali. “Hyperflow: a distributed control plane

for openflow”, Proceedings of the 2010 internet network management

conference on Research on enterprise networking (INM), pages 3, 2010.

[6] M. Yu, M. J. Freedman, and J. Wang. “Scalable flow-based networking

with DIFANE”, proceedings of the ACM SIGCOMM 2010 conference,

pp. 351-362, 2010.

S. Yeganeh, A. Tootoonchian, and Y. Ganjali. “On Scalability Software-

Defined Networking,”, IEEE Communication Magazine, vol.51 , Issue

2, pp. 136 - 141, ISSN 0163-6804, Feb. 013.

B. Heller, R. Sherwood, N. McKeown. “The Control Placement

Problem”, The first workshop on Hot topics in Software Defined

Networks (HotSDN ’12)., ACM New York, ISBN: 978-1-4503-1477-0,

USA 2012.

[9] Y. Hu, W. Wang, X. Gong and et al. “On placement of controllers in
software-defined networks”, The Journal of China Universities of Post
and Telecommunications, vol. 19, no 2, pp. 92-97, Oct. 2012.

[10] S. Schmid and J. Suomela. “Exploiting Locality in Distributed SDN
Control”, ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN), Hong Kong, China, Aug. 2013.

[11] K. Nguyen, Q. Tran Minh, and S. Yamada “A Software-Defined Net-
working approach for Disaster-Resilient WANS”, 22nd International
Conference on Computer Communications and Networks (ICCCN).,
ICCCN2013, ISBN: 978-1-4673-5774-6, Nassau, Bahamas, 2013.

[12] A. Tootoonchian, Y. Ganjali, M. Casado, and et al. “On controller
Performance in Software-Defined Networks,”, In USENIX Workshop
on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE). April. 2012.

[13] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann
“Logically centralized?: state distribution trade-offs in software defined
networks”, Proceedings of the first workshop on Hot topics in software
defined networks (HotSDN ’12)., ACM New York, pp. 1-6. ISBN: 978-
1-4503-1477-0, New York, USA, 2012.

[14] M. Bastian, S. Heymann, and M. Jacomy “Gephi: an open source
software for exploring and manipulating networks”, Proceedings of In-
ternational AAAI Conference on Weblogs and Social Media (ICWSM).,
pp. 361-362. California, USA, 2009.

3

—

[5

—_

[7

—

[8

—_

