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Abstract—Inter-Cell Interference Coordination (ICIC) is com-
monly identified as a key radio resource management mechanism
to enhance system performance of 4G networks. This paper
addresses the problem of ICIC in the downlink of cellular
OFDMA systems where the power level selection process of
resource blocks (RB) is apprehended as a sub-modular game.
The existence of Nash equilibriums (NE) for that type of games
shows that stable power allocations can be reached by selfish
Base Stations (BS). We put forward a semi distributed algorithm
based on best response dynamics to attain the NEs of the modeled
game. Based on local knowledge conveyed by the X2 interface in
LTE (Long Term Evolution) networks [1], each BS will first select
a pool of favorable RBs with low interference. Second, each BS
will strive to fix the power level adequately on those selected RBs
realizing performances comparable with the Max Power policy
that uses full power on selected RBs while achieving substantial
power economy. Finally, we compare the obtained results to an
optimal global solution to quantify the efficiency loss of the
distributed game approach. It turns out that even though the
distributed game results are sub-optimal, the low degree of system
complexity and the inherent adaptability make the decentralized
approach promising especially for dynamic scenarios.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is

widely accepted as the access scheme for 4G wireless stan-

dards thanks to its numerous merits. Because of the OFDM

orthogonality feature, the intra-cell interference is mostly

mitigated and can be ignored. However, for the inter-cell

interference (ICI), when the frequency resource is universally

reused in each cell of the system, users with bad channel

quality, in particular cell-edge users, can suffer from high

interference caused by neighboring cells. Proposing efficient

ways to hinder inter-cell interference is paramount ([2], [3],

[4], [5]). In this work, we propose to reduce ICI through

efficient Power Control. Power control does not only reduce

the impact of interfering signals by lowering their power

level (signals usually belonging to cell-center users), but it

can increase the power level on resource blocks that suffer

of bad radio conditions (usually RB allocated for cell-edge

users). Therefore, it is considered as a method for Inter-Cell

Interference Coordination (ICIC) [6].

Downlink power allocation in LTE systems can vary from

cell to cell and can be, in each cell, device specific. Several

works have proposed and studied Power Control algorithms

in OFDM systems. In [7], authors put forward a distributed

power control algorithm where each cell aims independently

at minimizing its own power consumption under users rate

constraints. Despite the absence of cooperation between the

different cells, the power allocation scheme takes into account

the interference due to the usage of the same resources in

neighboring cells. Power control is done iteratively according

to the proposed Bit Allocation Algorithm until the allocated

power levels remain invariant after two consecutive iterations.

In [8], a hybrid algorithm combines adaptive modulation along

with power control (i.e., the power level is increased when the

order of the modulation scheme decreases and vice versa). It

permits using high order modulation schemes at low Signal to

Noise Ratio values without degrading the system performance.

In [9], an Adaptive Power Control (APC) is proposed to

reduce inter-cell interference as excessively high transmission

power for center-cell users will degrade the performances of

edge-cell users. Hence, power level for cell-center users is

lowered at the profit cell-edge users. A Fair SINR strategy

is sought for where power is distributed among users in a

way to obtain the same Signal-to-Interference and Noise Ratio

(SINR) at the receiver. In [10], two power control algorithms

are proposed to automatically create soft fractional frequency

reuse (FFR) patterns in OFDMA based systems. The goal of

the proposed algorithms is to adjust the transmit powers of the

different RBs by systematically pursuing maximization of the

overall network utility. The first algorithm is semi-distributed

as it relies on gradient information exchanged periodically by

neighboring cells, whereas the second one is fully distributed

relying on a non-trivial heuristic. The work in ([11],[12])

builds upon the work in [10]. The work in [11] extends the

proposed algorithms for multi antenna OFDM systems with

space division multiple access. The work in [12] differs mainly

in the granularity of power control where the power is set on

a per-beam basis.

In general, central entities performing the task of interfer-

ence coordination with global knowledge should be avoided.

Therefore, our work belongs to the category of decentralized

ICIC that is sought for. Resorting to non-cooperative game

theory is quite suitable to model the way BSs compete in a

distributed manner for shared resources. Devising an optimal

power level selection scheme depends on the existence of Nash

equilibriums for the present game ensuring that the distributedISBN 978-3-901882-58-6 c© 2014 IFIP



coordination process will iteratively reach a stable state. In this

paper, we prove that the model at hand is a sub-modular game

(see [15], [14]). Such games have always a Nash Equilibrium

and it can be attained using a greedy best response type

algorithm (called algorithm I in both references). The result

of the devised coordination process in each cell will be the

power tuning on the least interfered RBs.

The rest of the paper is organized as follows. The system

model is given in Section II. In Section III, the framework of

the RB selection and power control schemes is described. The

power level selection scheme is presented as a non-cooperative

sub-modular game in Section IV where a semi distributed

learning algorithm based on best response dynamics is pre-

sented in subsection IV-C. Simulations results are portrayed

in Section V. The optimal centralized approach is given in VI

as a benchmark to evaluate the price of anarchy resulting from

a decentralized approach. Conclusion is given in Section VII.

II. THE SYSTEM MODEL

We consider a cellular network comprising M = {1, ...,m}
hexagonal BSs. Each BS can communicate with its 6 neigh-

boring BSs (using the X2 interface). We focus on the downlink

scenario in this paper. OFDMA is used as the multiple access

scheme. The time and frequency radio resources are grouped

into time-frequency Resource Blocks (RBs). RB is the smallest

radio resource block that can be scheduled to a mobile user.

Each RB consists of Ns OFDM symbols in the time dimension

and Nf sub-carriers in the frequency dimension (in LTE,

Ns = 7 and Nf = 12). The total number of RBs is denoted

by n and N = {1, .., n} represents the set of RBs. Both BSs

and mobile users have a single antenna each.

A. Data Rate on the Downlink

Hereafter, we compute the SINR perceived on the downlink

to derive the data rate per user on a given RB. The SINR

observed on RB k alloted to user u in BS i can be expressed

as follows:

SINRi,k,u =
P0 ·Gi · xi,k · ( 1

di
u,i

)β

P0 ·
∑

j∈M,
j 6=i

Gj · xj,k · ( 1
di
u,j

)β + PN

(1)

where P0 represents the maximal transmitted power per RB,

PN represents the thermal noise power per RB, Gi the antenna

gain of BS i, diu,j is the distance between BS j and user u
served by BS i and β is the path-loss factor varying between

2 and 6. Finally, xi,k is the discrete variable that represents a

fraction of the maximal transmitted power P0. Hence, xl
i,k =

P0 · xi,k is one of the possible Nl power levels in BS i on

RB k alloted to user u. It varies between xl
i,k = 0.0 where

RB k is not selected by BS i and xl
i,k = P0 where full power

is transmitted on that RB. However, our power control starts

after the selection of a pool of RBs in any BS i as will be

explained in the next section. Hence, xl
i,k 6= 0.0.

We denote by Di,k,u the data rate achieved by user u on

RB k in BS i given by what follows [16]:

Di,k,u =
W

Eb/N0
· SINRi,k,u,

where W is the bandwidth per RB. Given a target error

probability, it is necessary that Eb/N0 ≥ γ, for some threshold

γ which is user specific. The assumption of a constant Eb/N0

target is generally valid as long as the same type of modulation

is used for all data rates [17].

In any BS i, the cell will be logically divided into NZ

concentric discs of radii Rz , z = 1, ..., NZ , and the area

between two adjacent circles of radii Rz−1 and Rz is called

zone z, z = 1, ..., Nz . We assume that mobile users belonging

to the same zone z have the same radio conditions leading to

the same γz and to the same mean rate per zone Di,k,z on RB

k according to what follows:

Di,k,z =

W
γz

´ Rz

Rz−1

2rdr
R2

cell
rβ

·Gi · P0 · xi,k

P0 ·
∑

j∈M,
j 6=i

Gj · xj,k · 1
(di

z,j
)β

+ PN

=
(W
γz

R2−β
z −R

2−β
z−1

R2

cell

) ·Gi · P0 · xi,k

P0 ·
∑

j∈M,
j 6=i

xj,k · Gj

(δz
i,j

·Rcell)β
+ PN

(2)

where Rcell is the cell radius. As for interference, we adopt an

optimistic simplification where we only consider the impact of

BS j on BS i by replacing diu,j by diz,j = δzi,j ·Rcell which is

the distance between BS i and BS j (the value of δzi,j depends

on how far is BS j from zone z of BS i).

B. Cost Function

Our goal is to put forward an efficient power control

algorithm that enables each BS to set appropriately the

amount of transmitted power in order to satisfy serviced

mobile users. Satisfaction for a mobile user is defined here as

the minimization of the transfer time it perceives subsequent

to a given power level selection. However, the cost function

adopted is not only an image of transfer time but reflects

also global welfare by inflecting on BSs a punishment

proportional to the power level adopted. The goal is to select

power levels that minimize transfer time while steering away

BSs from excessively high power allocations that exacerbate

interference.

We denote by Ti,k,z the amount of time necessary to send a

data unit through RB k in BS i for users in zone z. In fact, the

delay needed to transmit a bit for a given user is the inverse

of the data rate perceived by this user:

Ti,k,z =
Ii,k,z
xi,k

(3)

where Ii,k,z is given by:

Ii,k,z =

∑
j∈M,
j 6=i

xj,k ·Hz
i,j + PN

Hi,z

(4)

where Hz
i,j =

P0Gj

(δz
i,j

·Rcell)β
captures distance-dependent

attenuation of power between BS j and zone z of BS i and

Hi,z = (W
γz

R2−β
z −R

2−β
z−1

R2

cell

) · P0Gi captures distance-dependent



attenuation of power inside zone z of BS i.

We denote by RBi
z the pool of RBs used by BS i users in

zone z. BS i will pay an amount αz per power unit transmitted

on a given RB k ∈ RBi
z . This power unitary cost can decrease

with the zone index to further protect users that are far away

from the antenna; or it can increase to favor cell-center users

in order to enhance overall performances.

Accordingly, the goal of the power control scheme proposed

in this paper is to minimize the following cost function in BS

i for RB k alloted to a user in zone z:

ci,k,z = κ · Ti,k,z + αz · P0 · xi,k, If RB k is used in zone z
(5)

= 0, If RB k is not used in zone z (6)

where κ is a normalization factor.

III. PROPOSED ICIC SCHEME

In this paper, we propose that each BS aggregates

information about transmit power levels in adjacent cells and

sets accordingly the pool of RBs to be used in any zone.

The RNTP (Relative Narrow-band Transmit Power) indicator,

received from neighboring BSs every 200 TTI (Transmit

Time Interval) through the X2 interface, advertises on which

RBs a neighboring BS will use a power level that surpasses

a given threshold. In any BS i, we associate with every

RB k a variable ai,k. This variable indicates the number of

neighboring BSs that advertised the use of that same RB k
with full power via the RNTP indicators (0 ≤ ai,k ≤ 6).

Thus, every BS i updates its variables ai,k approximately

every 200 TTI and makes use of those variables to update

the pool of selected RBs per zone as described in algorithm

1 where ni
z is the number of mobile users in zone z of BS i.

Recall that RBi
z is the pool of RBs reserved to users in zone z.

Algorithm 1 Selecting the pool of RBs per zone

1: Every 200 TTI

2: for i = 1 to m do

3: for k = 0 to n do

4: BS i updates the ai,k variables according to the

RNTP indicators.

5: The updated ai,k variables are sorted in ascending

order list Li.

6: for z = 1 to NZ do

7: The ni
z top values of Li are a reserved pool of

RBs for users in zone NZ − z (denoted by RBi
z)

and removed from the sorted list.

8: end for

9: end for

10: end for

The idea behind the algorithm is to reserve the pool of least

interfered RBs to users who are the furthest away from the BS

(the zones with the highest index). After selecting RBi
z , every

BS i proceeds to implementing the power control distributed

algorithm described in the following section and which is the

focal point of the paper. We assume that the scheduler has

already assigned users in a given zone z to RBs in RBi
z .

Afterwards, our proposed power control scheme endeavors to

find the optimal power levels on those allocated RBs. After

convergence of the latter, each BS i will obtain the optimal

power level P ∗
i,k,z to be assigned to RB k in zone z.

IV. NON-COOPERATIVE GAME FOR POWER CONTROL

Non-Cooperative game theory models the interactions be-

tween players competing for a common resource. Hence, it

is well adapted to ICIC modeling. Here, BSs are the decision

makers or players of the game. We define a multi-player game

G between the m BSs. The BSs are assumed to make their

decisions without knowing the decisions of each other.

The formulation of this non-cooperative game G =
〈M,S,C〉 can be described as follows:

• A finite set of players M = (1, ...,m) and a finite set of

RBs N = (1, ..., n).
• For each BS i, the space of strategies S is formed by the

Cartesian product of each set of strategies Si = Si,1 ×
...×Si,n, where n is the total number of RBs. An action

of a BS i is the amount of power xi,k sent on RB k. If

RB k ∈ RBi
z then Si,k = {x0

i,k, ..., x
Nl−1
i,k } where xj

i,k

is a fraction of P0, else Si,k = ∅. The strategy chosen

by BS i is then Xi = (xi,1, ..., xi,n). A strategy profile

X = (X1, ..., Xm) specifies the strategies of all players

and S = S1 × ...× Sm is the set of all strategies.

• A set of cost functions C = (C1(X), C2(X), ..., Cm(X))
that quantify players’ costs for a given strategy profile X
where Ci = (ci,1,z, ci,2,z, ..., ci,n,z) is the cost of BS i
with ci,k,z the cost of using RB k in zone z as given

in (5). As the frequencies alloted to different RBs are

orthogonal, minimization of cost ci,k,z on RB k is done

independently of other RBs. Hence, we denote by x−i,k

the strategies played by all BSs on RB k except BS i.

A. The Nash Equilibrium

In a non-cooperative game, an efficient solution is obtained

when all players adhere to a Nash Equilibrium (NE). A NE

is a profile of strategies in which no player will profit from

deviating its strategy unilaterally. Hence, it is a strategy profile

where each player’s strategy is an optimal response to the other

players’ strategies.

ci,k,z(xi,k, x−i,k) ≤ ci,k,z(x
′
i,k, x−i,k),

∀i ∈ M, ∀z ∈ NZ , ∀k ∈ RBi
z, ∀x

′
i,k ∈ Si,k

(7)

We turn to sub-modularity theory to show existence of Nash

equilibriums.

B. Sub-modular Game

S-modularity was introduced into the game theory literature

by Topkis [15] in 1979. S-modular games are of particular

interest since they have Nash equilibriums, and there exists

an upper and a lower bound on Nash strategies of each user



[18]. Furthermore, these equilibriums can be attained by using

a greedy best response type algorithm ([15], [14]).

Definition 4.1: Consider a game G = 〈M,S,C〉 with

strategy spaces Si ⊂ R
m for all i ∈ M and for all

z ∈ NZ , k ∈ RBi
z . G is sub-modular if for each i and k, Si,k

is a sublattice1 of R
m, and ci,k,z(xi,k, x−i,k) is sub-modular

in xi,k.

Definition 4.2: The cost function ci,k,z is sub-modular iff

for all x, y ∈ Si,k,

ci,k,z(min(x, y)) + ci,k,z(max(x, y)) ≤ ci,k,z(x) + ci,k,z(y)
(8)

Proposition 4.3: The cost function ci,k,z is sub-modular

for every BS i and zone z and every selected RB k ∈ RBi
z .

The proof of this proposition can be found in the appendix

of the paper A. Since Si,k is a single dimensional finite set,

Si,k is a compact sublattice of R. And as the cost function

ci,k,z is sub-modular for every BS i on every selected RB

k ∈ RBi
z , our game is indeed sub-modular.

C. Attaining the Nash Equilibrium

1) The Best Response Dynamics: The best response strat-

egy of player i is the one that minimizes its cost given other

players strategies. A best response dynamics scheme consists

of a sequence of rounds, each player i chooses the best

response to the other players strategies in the previous round.

In the first round, the choice of each player is the best response

based on its arbitrary belief about what the other players will

choose. In some games, the sequence of strategies generated

by best response dynamics converges to a NE, regardless of

the players initial strategies. S-modular games are part of those

games.

To reach the NE, [13] proposes the following greedy best

response algorithm built on an algorithm called algorithm I

in [14], [15]: there are T infinite increasing sequences T i
t for

t ∈ T and i = 1, ...,m. Player i uses at time T i
k the best

response policy (a feasible one) to the policies used by all

other players just before T i
k. This scheme includes in particular

parallel updates (when T i
t does not depend on t). Once this

user updates its strategy, the strategies of one or more other

users need not be feasible anymore. In [13], proof is given for

the following two results:

• If each player i either initially uses its lowest or largest

policy in Si, then the iterative algorithm converges mono-

tonically to an equilibrium (that may depend on the initial

state).

• If we start with a feasible policy, then the sequence of best

responses monotonically converges to an equilibrium: it

monotonically decreases in all components in the case of

cost minimizing in a sub-modular game.

BS i strives to find, for the pool of selected RBs in any zone

z, the following optimal power level:

P ∗
i,k,z = P0 · arg minxi,k

ci,k,z(xi,k, x−i,k),

1A is a sublattice of R
m if a ∈ A and a′ ∈ A imply a ∧ a′ ∈ A and

a ∨ a′ ∈ A

for P0 · xi,k ∈ {x0
i,k, ..., x

Nl−1
i,k }.

By definition, P ∗
i,k,z is a best response of BS i to the other

BSs strategies on RB k in zone z.

2) Distributed Learning of NE: In a real environment, a

best response type algorithm as the one proposed in ([14],

[15]) cannot be practically applied as every BS i needs to know

the policy of all other BSs x−i,k on every used RB k which

necessitates expensive signaling and hinders the benefits of

an efficient power control scheme. Fortunately, we can easily

render our algorithm distributed by making use of signaling

information already present in the downlink of an LTE system.

In fact, x−i,k (or equivalently xj,k ∀j 6= i) only intervene

in the total interference Ii,k,z endured on RB k in zone z
of BS i according to equation (4). In practice, mobile users

measure the channel quality based on pilots, i.e., Cell Specific

Reference Signals (CRS) that are spread across the whole band

independently of the individual users allocation. In particular,

interference can be easily inferred through the CQI (Channel

Quality Indicator) sent every TTI by the mobile users to

which RB k is attributed. However, the BSs should update

their transmission powers on selected RBs sequentially in a

predefined round robin fashion that need to be set once and

for all.

We present in Algorithm 2 the pseudo-code of our dis-

tributed power control scheme under best response dynamics

deemed DBR:

Algorithm 2 DBR Power Control Algorithm

1: t = 0, conv = 0
2: while conv = 0 do

3: for i = 1 to m do

4: for z = 0 to NZ − 1 do

5: for l = 0 to Nl − 1 do

6: BS i allocates in parallel all selected RB k ∈
RBi

z with power xl
i,k to a given mobile user,

7: Serviced mobile users send back CQI related to

their assigned RB k,

8: BS i infers the corresponding value of Ii,k,z(t)
and then computes ci,k,z(t) for allocated xl

i,k

9: end for

10: BS i computes P ∗
i,k,z(t) and attributes it to RB k

in zone z.

11: if |P ∗
i,k,z(t+1)−P ∗

i,k,z(t)| < ǫ {where ǫ is a very

small positive quantity} then

12: conv = 1
13: else

14: conv = 0
15: end if

16: end for

17: end for

18: t = t+ 1
19: end while

20: Output: Each BS i will obtain the optimal power level

P ∗
i,k,z to be assigned to RB k ∈ RBi

z .



V. SIMULATION RESULTS

We consider a bandwidth of 10 MHz with 50 RBs along

with the following parameters listed in the 3GPP technical

specifications TS 36.942: the mean antenna gain in urban

zones is 12 dBi. As for noise, we consider the following: user

noise figure 7.0 dB, thermal noise -104.5 dBm which gives

a receiver noise floor of PN = −97.5 dBm. We consider 9

hexagonal cells where each cell is surrounded with 6 other

cells. The distance between two neighboring BS is 1 Km. Max-

imum transmission power is 43 dBm (according to TS 36.814)

on the downlink. We set P0 = 10 Watts and xi,k for any BS

i on RB k belongs to {0.1, 0.2, 0.35, 0.5, 0.6, 0.7, 0.85, 1.0}.

Various power unitary costs (αz) were tested and for each

scenario 400 simulations were run where in each cell a random

number of users is chosen in every zone corresponding to

a snapshot of the network state. Performances are compared

against Max Power policy where full power P0 is used on all

RBs and against Random policy where power levels are set

at random. For every simulation, 100 runs of Random policy

were made. Further, for each simulation instance, the same

pool of RBs per zone is given for the three policies DBR, Max

Power policy and Random policy. Hence, results only assess

the impact of power control. Only two zones are taken into

account: zone 1 which stands for cell-center users located at a

distance smaller than R0 = 0.5Km and zone 2 stands for cell-

edge users located at a distance ranging between R0 = 0.5Km
and R1 = Rcell = 1Km. We assume that for cell-center users,

64-QAM modulation is used while for cell-edge users, 16-

QAM modulation is used.

In Figure 1, we depict the total transfer time per zone

Tz =
∑

i∈M

∑
k∈RBi

z
Ti,k,z for cell-center and cell-edge users

as a function of various power unitary costs (α1;α2) for

DBR and Max Power Policy. In most scenarios, we aimed

at favoring cell-edge users by lowering the power unitary

cost in comparison to that of cell-center users. We notice

as expected that the improvement in one zone as compared

to the Max Power policy is obtained at the expense of the

other zone. This fact is highlighted in the lowest sub-figure

where the relative deviation DevT =
TDBR
z −TMaxPower

z

TDBR
z

∗ 100
is displayed. Further, we see that the improvement in one zone

does not strictly depend on how low its power unitary cost is

but on how low it is relatively to the other zone: despite the

fact that no power unitary cost is inflected on cell-edge users

in scenario (1;0), the total transfer time is greater than that of

scenarios (2;0.2) or (4;0.2).

We denote by T the global transfer time given by:

T =
∑

i∈M

2∑

z=1

∑

k∈RBi
z

Ti,k,z (9)

In Figure 2, we depict the global transfer time T as a

function of power unitary cost for DBR, Max Power policy and

Random policy. Except for (0.2;3) and (4;0.2) where there is a

large discrepancy between the power unitary cost of one zone

in comparison with the other, performances of DBR and Max

Power policy are equivalent for all other scenarios. However,

(a) Cell-center Users

(b) Cell-edge Users

(c) Relative Deviation

Figure 1. Transfer Time per zone as a function of power unitary cost for DBR
vs. Max Power Policy

DBR permits a considerable power economy in comparison

with Max Power policy as we can see in Figure 3 where the

relative deviation, denoted DevP , between the total power

consumed in DBR and total power consumed in the Max

Power policy is displayed as a function of power unitary

cost. We can clearly see that the highest the power unitary

cost is, the highest the power economy and vice versa. The

best performances are reached when the same (high) power

unitary cost is assigned for both zones in scenarios (2;2) and

(3;3) where power economy vary from 70% till 80% while

the total transfer time is slightly lower than that in the Max



Power policy. As for the Random policy, we can see that

performances are mediocre.

Figure 2. Total Transfer Time as a function of power unitary cost for DBR
vs. Max Power Policy and Trivial Policy

Figure 3. Power Economy

In Figure 4, we report the mean convergence time as a

function of power unitary cost. We note that DBR attains

NE faster than 110 TTI and hence before the exchange of

new RNTP messages (sent every 200 TTI) which is a very

appealing characteristic.

Figure 4. Convergence Time

VI. THE PRICE OF ANARCHY

In this section, we quantify the loss in efficiency suffered

when a distributed scheme is adopted rather than a central-

ized optimization which is commonly known as the price of

anarchy.

A. Optimal Centralized Approach

Unlike the distributed approach where precedence is given

to the interests of each individual BS, power control may be

performed in a way that favors the overall system performance.

We do so by introducing a centralized approach, where a

central controller assigns the power levels of each BS in order

to minimize the total network cost. This total network cost is

given by the sum of the costs for all BSs. Note that due to

the orthogonality of the frequencies alloted to different RBs,

minimization of the total network cost is done independently

for each RB. Hence, the centralized approach consists in

solving a set of optimization problems given by Pk for each

k ∈ RBi
z and denoted in the following:

(Pk) : minimize C(xi,k) =
∑

i∈M

∑

z∈Nz

ci,k,z

(10a)

xi,k = {0.1, 0.2, 0.35, 0.5, 0.6, 0.7, 0.85, 1.0}, ∀i ∈ M.
(10b)

Pk are integer non-linear optimization problems that are

typically hard to solve [22]. Therefore, we start by relaxing

the integrality constraints on xi,k, i.e., we assume that 0 <
xi,k ≤ 1 for all i ∈ M and k ∈ RBi

z . After relaxing the

integrality constraints, the obtained optimization problems P̂k

are non-linear convex problems given hereafter:

(P̂k) : minimize C(xi,k) =
∑

i∈M

∑

z∈Nz

ci,k,z (11a)

0 < xi,k ≤ 1, ∀i ∈ M. (11b)

The convexity property of the P̂k optimization problems

enables to efficiently solve large instances using for example

an interior point method. However, the challenge remains in

recovering the integer solution of the original problems Pk.

In what follows, we consider a basic approach that rounds

towards infinity the solution of the relaxed problems P̂k. Let

us denote by {x∗
i,k, i ∈ M} the optimal solution vector of

the original problem Pk for each k ∈ N , Pk, {x̂i,k, i ∈ M}

the optimal solution vector of the relaxed problem P̂k, and

{⌈x̂i,k⌉, i ∈ M} the rounded vector, we can easily write:

C(x̂i,k) ≤ C(x∗
i,k) ≤ C(⌈x̂i,k⌉). (12)

Although we do not directly compute the optimal integral

solution, equation (12) provides a bounding interval and thus

gives us insights on the price of the anarchy. In the following,

we compare the performances of the distributed approach with

the rounded solution (an upper bound on the solution obtained

by the original problem) thus we get an upper bound on the

price of anarchy.



B. Simulation Results

In Figure 5, we illustrate the global transfer time T (given

by (9)) necessary to send a data unit for all users as a function

of the system load for DBR, the Optimal policy, and the Max

Power policy. We see that the performances of DBR and the

Optimal policy are equivalent and that they slightly outper-

forms the Max Power approach that systematically resorts to

full power which degrades the SINR and in turn increases the

transfer time.

Figure 5. Global Transfer Time as a function of power unitary cost for DBR,
Max Power and Optimal policies

However, the power economy made in the optimal approach

as compared to DBR tempers its benefits as we can see from

Figure 6, where the relative deviation between the total power

in DBR (respectively in the Optimal policy) and the Max

Power policy is displayed as a function of power unitary

cost. It is obvious that the optimal policy saves up much

more power than the decentralized approach even in high load

whereas the power economy in DBR withers slowly as load

increases. Nevertheless, the slight discrepancy between the

global transfer time in DBR and the Optimal policy which

the primary goal sought for and the low degree of system

complexity of the decentralized approach makes it still an

attractive solution.

VII. CONCLUSION

In this paper, the power levels are astutely set as part of the

LTE Inter Cell Interference coordination process. We proposed

a semi distributed algorithm based on best response dynamics

to reach NEs in a time coherent with the RNTP signaling time.

The DBR algorithm takes into consideration both income of

transfer time and punishment of power wastage. Numerical

simulations assessed the good performances of the proposed

approach in comparison with a policy that services active

users with full power. More importantly, considerable power

saving can be realized. Furthermore, the performance of the

proposed algorithm was analyzed by simulations with respect

to the efficiency loss compared to a centralized optimization. It

turns out, although the power economy realized by the optimal

(a) DBR Policy

(b) Optimal Policy

Figure 6. Power Economy as a function of power unitary cost for DBR and
Optimal policies

centralized approach is much higher, the discrepancy in terms

of transfer time is negligible. Hence, as efficient power control

can be realized based on local information only, the efficiency

loss is largely counterbalanced by a high degree of flexibility

and relatively low convergence time.

APPENDIX

A. Proof of sub-modularity

Our goal is to prove that the cost function ci,k,z is sub-

modular for every BS i and zone z and every selected RB

k ∈ RBi
z .

Proof: We begin by defining the set A1 such that

A1 = {xj,k, yj,k ∈ Sj,k|xj,k < yj,k, j 6= i} and A2

such that A2 = {xj,k, yj,k ∈ Sj,k|xj,k > yj,k, j 6= i}.

Accordingly, the inequality in (8) gives the following for

x = (xj,k, j = 1, ...,m) and y = (yj,k, j = 1, ...,m) where

xj,k, yj,k ∈ Sj,k:

κ ·
∑

j 6=i

min(xj,k, yj,k)H
z
i,j + PN

Hi,zmin(xi,k, yi,k)
+ αzP0min(xi,k, yi,k)

+ κ ·
∑

j 6=i

max(xj,k, yj,k)H
z
i,j + PN

Hi,zmax(xi,k, yi,k)
+ αzP0max(xi,k, yi,k)

≤ κ ·
∑

j 6=i

xj,kH
z
i,j + PN

Hi,zxi,k

+ κ ·
∑

j 6=i

yj,kH
z
i,j + PN

Hi,zyi,k

+ P0αz(xi,k + yi,k)
(13)



We notice in (13) that P0αz(min(xi,k, yi,k) +
max(xi,k, yi,k)) = P0αz(xi,k + yi,k) and PN · (m −
1)( 1

min(xi,k,yi,k)
+ 1

max(xi,k,yi,k)
) = PN · (m− 1)( 1

xi,k
+ 1

yi,k
)

where m is the total number of BSs. Thus, inequality (13)

simplifies to:

∑

j 6=i

min(xj,k, yj,k)H
z
i,j

min(xi,k, yi,k)
+
∑

j 6=i

max(xj,k, yj,k)H
z
i,j

max(xi,k, yi,k)

≤
∑

j 6=i

xj,kH
z
i,j

xi,k

+
∑

j 6=i

yj,kH
z
i,j

yi,k

(14)

Using the sets A1 and A2, inequality (14) is re-written as

follows:

∑

j∈A1

xj,kH
z
i,j

min(xi,k, yi,k)
+

∑

j∈A2

yj,kH
z
i,j

min(xi,k, yi,k)

∑

j∈A1

yj,kH
z
i,j

max(xi,k, yi,k)
+

∑

j∈A2

xj,kH
z
i,j

max(xi,k, yi,k)

≤
∑

j∈A1

xj,kH
z
i,j

xi,k

+
∑

j∈A2

xj,kH
z
i,j

xi,k

+
∑

j∈A1

yj,kH
z
i,j

yi,k
+

∑

j∈A2

yj,kH
z
i,j

yi,k

(15)

Here, before going further, we need to distinguish two cases:

• Case 1: xi,k < yi,k. In this case, inequality (15) gives the

following:

∑

j∈A1

xj,kH
z
i,j

xi,k

+
∑

j∈A2

yj,kH
z
i,j

xi,k

∑

j∈A1

yj,kH
z
i,j

yi,k
+

∑

j∈A2

xj,kH
z
i,j

yi,k

≤
∑

j∈A1

xj,kH
z
i,j

xi,k

+
∑

j∈A2

xj,kH
z
i,j

xi,k

+
∑

j∈A1

yj,kH
z
i,j

yi,k
+

∑

j∈A2

yj,kH
z
i,j

yi,k

(16)

After some simplifications, inequality (16) gives what

follows:

∑

j∈A2

(xj,k − yj,k)H
z
i,j(

1

yi,k
−

1

xi,k

) < 0 (17)

The latter inequality is obviously true as xj,k >
yj,k, ∀j 6= i in A1 and xi,k < yi,k.

• Case 2: xi,k > yi,k. Similarly to case 1, inequality (15)

simplifies to:

∑

j∈A1

(yj,k − xj,k)H
z
i,j(

1

yi,k
−

1

xi,k

) > 0 (18)

The latter inequality is obviously true as yj,k >
xj,k, ∀j 6= i in A2 and xi,k > yi,k.
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