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Abstract—Content-Centric Networking (CCN) is an entirely
novel networking paradigm, in which packet forwarding relies
upon lookup operations on content names directly instead of
fixed-length host addresses. The unique features of CCN names,
i.e., variable length, huge cardinality, and hierarchical structure,
introduce new challenges that could hinder the deployment of
such a new architecture at the Internet scale. In this paper, we
make an in-depth study of characteristics of large-scale CCN
names, and propose a simple yet efficient CCN-customized name
lookup engine (named by TB2F), which capitalizes the strengths
of Tree-Bitmap (TB) and Bloom-Filter (BF) mechanisms, while
counteracts their main limitations. To this end, TB2F splits CCN
prefix into a constant size T-segment and a variable length B-
segment with a relative short length, which are treated using TB
and BF, respectively. Furthermore, an optimal length of the T-
segment is found to improve the lookup efficiency. Experimental
comparisons with respect to the reference Name Prefix-Trie and
Bloom-Hash have been also carried out. The results show that
TB2F properly configured has good scalability and efficiency by
(i) speeding up lookup operations and reducing the false positive
rate with respect to Bloom-Hash; (ii) requiring less memory than
Name Prefix-Trie; (iii) achieving a low overhead in updating
operations in the large scale case.

Index Terms—Name Lookup; Content-Centric Networking;
Tree-Bitmap; Bloom Filter

I. INTRODUCTION

Motivated by significant changes witnessed in the usage of

the Internet, Content-Centric Networking (CCN) [1] emerges

as a novel Information-Centric Networking (ICN) [2] [3]

paradigm, focusing on what rather than where the content is.

Named Data Networking (NDN) [4], as a derived project of

CCN, is developing worldwide. In contrast to the host-centric
IP rationale, CCN adopts hierarchical content names to rule

forwarding operations instead of fixed host addresses [5]. In

this way, it becomes potentially possible to get rid of “host
IP address” in traditional networking primitives and to obtain

several advantages such as: (i) native support to multicast and

mobility; (ii) content level security; (iii) reduction of servers’

load, also thanks to in-network caching; (iv) simplified interop-

erability among content distribution systems and applications.

However, it is also facing with some challenges to be solved

for the practical deployment at the Internet scale.

In CCN, each router/node is equipped with three specific

components: Forwarding Information Base (FIB), Pending
Interest Table (PIT) and Content Store (CS) [1]. The FIB is

used to specify the faces which packets can be forwarded

through; the PIT holds all “not yet satisfied” requests that

have forwarded towards potential data sources but have not

receive a response; the CS is the cache memory, where a copy

of contents retrieved in the past are stored to answer future

requests. When a node is willing to retrieve a content, it sends

an Interest packet, indicating the name of the desired content.

At each hop, forwarding decisions depend upon the outcome

of lookup operations of the requested name in the FIB, PIT

and CS tables. In case there is no matched content in the

CS, the PIT is updated to keep track of the face the Interest
arrived from. Then, the Interest is forwarded to the next hop

(if required) after having looked up the FIB to search for the

most appropriate outgoing face(s). Once a router/node has the

content that matches the requested Interest, Data packet(s) will

be returned back to the requesting node in the reverse path

activated by the Interest. Besides, the CCN-based router may

cache the Data packet(s) in CS, making itself as a provider

for the following Interest requests.

Recently, some researchers have argued that current router

technologies cannot meet the requirements of CCN [6][7][8].

Unlike fixed-length IP addresses (i.e., 32 bits for IPv4 and

128 bits for IPv6), content names in CCN are variable length
strings with a hierarchical structure, consisting of a sequence

of delimited components. These emerging features of CCN

names bring several unprecedented challenges in a practical

large-scale use. Firstly, longest prefix matching (LPM) in CCN

must match a prefix at the end of one component of the

name, rather than at any digit as in IP address. Secondly,

more complex lookup mechanisms are needed to adapt to the



variable-length of content names. Thirdly, CCN forwarding

tables (i.e., FIB) will be much larger than IP ones, because

the cardinality of the set of content names can be many orders

of magnitude larger than the one of IP addresses. Google

has reported that the number of URLs exceeded to 1 trillion

in 2008 [9]. Nevertheless, there are only about 800 million

routable hostnames for all websites by the end of 2013 [10].

Although LPM has been heavily studied for IP lookup, most

of proposed solutions become inefficient if applied to CCN

names directly.

To tackle this inextricable challenge, the scalable and effi-

cient name lookup solutions are researched herein, aiming at

paving the way to the practical development of CCN routers

at the Internet scale. The main contributions are as follows:

(i) We conceived a totally novel name lookup engine,

TB2F, which leverages consolidated Tree-Bitmap (TB) [11]

and Bloom-Filter (BF) [12] solutions. In TB2F, the CCN prefix

is split into a constant size T-segment and a variable length

B-segment. Due to the high aggregation of T-segments, T-

segments can be processed using TB structure time-efficiently.

Instead, B-segments will be handled using BF structure space-

efficiently. In detail, TB2F is made of a novel hybrid Data

Structure TB2F-DS, a Parallel Lookup process TB2F-PL, and

a Differentiated Update scheme TB2F-DU.

(ii) We made practical considerations based on large-scale

names datasets and proposed a theoretical analysis of TB2F

in terms of computational complexity, false positive rate (fpr),

aggregation and updating ratio. Based on such an analysis, we

deduce that these metrics depend on the length of T-segment

directly. Further, we proposed a methodology for discovering

the optimal length of T-segments, able to minimize the lookup

time subject to an affordable memory cost and fpr.

(iii) We performed extensive experimental evaluations to

validate the TB2F approach in comparison to two state-of-

the-art solutions, namely, Name Prefix-Trie [13] and Bloom-

Hash [14]. The results illustrate that, if properly configured,

TB2F enables to capitalize the strengths of TB and BF by

(i) speeding up the lookup and reducing the false positive rate

with respect to Bloom-Hash; (ii) consuming less memory with

respect to Name Prefix-Trie; (iii) reducing the overhead of

updating with respect to both two solutions.

The rest of the paper is organized as follows: Section II

introduces the problem statement and details our novel name

lookup solution. Some practical considerations and theory

analysis for the proposed solution are presented in Section III.

Extensive experiments are compared and analyzed in Section

IV. Section V discusses the related work. Finally, concluding

remarks and future works are presented in Section VI.

II. PROBLEM STATEMENT AND OUR PROPOSAL: TB2F

A. Problem statement

We consider a practical scenario: there are at least 107

names stored in the forwarding table, which should support

millions of lookups per second [15]. How to design a lookup
engine for CCN names, which supports to store massive entries
and enables to lookup at high speed in such large-scale

TABLE I
KEY NOTATIONS

Notations Definition

N , m Set of requesting names, and its total number;

P Set of prefixes entries stored in forwarding table (FIB);

D,Q Data structure and lookup algorithm for P;

M (·) Memory space function;

T (·) Lookup time consumption function;

U (·) Updating overhead function;

F (·) False positive rate function;

qTi ,ζTqi T-segment for a requested name qi, and its length;

qBi ,ζBqi B-segment for a requested name qi, and its length;

τ ,t0 Request time interval, and observing time instant;

scenarios? To formalize the problem, we consider herein the

case of a router that receives m Interest messages, within a

time interval τ , each one asking for a given content name,

then the requesting rate is m/τ . Table I lists key notations

in this paper. Accordingly, let N denote the set of names,

{n1, n2, n3 · · ·nm}, that were requested at the router during

τ , and P be the set of total prefix entries, {p1, p2, p3 · · · pk},

pre-stored in the forwarding table (e.g., FIB) at the observing

time instant of t0. Let D denote the data structure adopted for

storing P , then the occupying memory space for P will be

expressed as a function of D and P , which is M (D,P).
Starting from this premise, the lookup problem can be

translated in a process of membership queries: assuming we

want to request the content by name q, ∀q ∈ N , the longest

prefix in P for q should be determined with a name lookup

algorithm, Q, and the corresponding forwarding face(s) should

be returned in a short time interval T (N ,P,D,Q) (shorter

than m/τ ); if no prefix matches, the default face is returned.

Besides, we will refer to U (D) and F (Q) to denote the

overhead of updating for D, and be the false positive rate

during the processing of Q, respectively.

Our aim is to design a fairly simple D and an efficient Q for

minimizing the lookup time as well as improving its scalability

for a large-scale CCN name space (i.e., 107 at least). In a more

formal way, this problem can be expressed as follows:

min
N ,P,D,Q

T (N ,P,D,Q)

subject to |N | >> 1, |P| >> 1,

M (D,P) � σ,

U (D) � δ,

F (Q) � ϕ.

(1)

where σ is the maximal available memory, δ and ϕ are

acceptable thresholds on updating overhead and false positive

rate, respectively.

B. TB2F-DS: data structure

In this section, we present a novel hybrid data structure for

CCN name lookup, named by TB2F-DS, which is motivated

by the following three practical observations:

(1) Tree-Bitmap is a compressed multi-bit Trie data struc-

ture which supports fast lookups. However, its performance
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Fig. 1. Framework for TB2F-DS: (a) CCN names samples; (b) Tree-Bitmap and Bloom Filters; (c) Example of TB2F-DS with Stride Length of 2.

degrades linearly as the tree depth increases and this drawback

makes TB unsuitable for unbounded CCN names.

(2) Bloom-Filter is a space-efficient probabilistic data struc-

ture which supports set membership queries. However, the

false positive rate of a BF could become unacceptable in

presence of a large set of names (as in CCN).

(3) The structure of CCN names is hierarchical. Statistically,

if two different names are taken the probability that they will

differ in the first components is much lower than in the last

ones (detailed in Sec. III (c)). This feature can be fruitfully

exploited by processing the first components of names using

TB to avoid the high memory cost. Contrariwise, the rest of

the name is better fitted to BF.

To overcome the drawbacks of TB and BF as well as

capitalize their strengths, we propose to split each CCN name

prefix into two parts. The first part, named by T-segment, is

bounded with a certain number of components, and the rest

belongs to the second one, named by B-segment. For ease of

description, we first give a definition of Split Level.
Definition 1 (Split Level): For a CCN name ni, a split

scheme L is adopted to split ni into an ordered set of two

segments, T-segment n′
i and B-segment n′′

i . We define Split

Level (SL) for L as the number of components in n′
i.

Example: If the SL for a given L is 3, the name

“a/b/c/d/e/1” will be split into “a/b/c” as its T-segment and

“d/e/1” as its B-segment.

The framework of TB2F-DS is illustrated in Fig.1. Fig.

�
Fig. 2. Diagram of TB2F-DS.

1(a) lists a set of CCN name samples. Fig. 1(b) presents the

traditional data structures of TB and BF respectively. Fig.1(c)

shows a simple diagram of TB2F-DS. In TB2F-DS, all T-

segments are stored using TB, constructing the T-segment
Tree, while B-segments are inserted into a sequence of mini

Counting BFs (mCBFs) [12][16], each of which is linked to

the corresponding node of T-segment Tree. The association

between T-segment Tree and mCBFs is implemented using a

pointer for “children” of one node. In other words, mCBFs

become leaves of T-segment Tree, which makes it possible to

not bring much extra complexity in implementing TB2F-DS.

The diagram of TB2F-DS is detailed in Fig. 2. In the T-

segment Tree, there are two kinds of bitmaps for each node.

One bitmap is for all the internally stored prefixes and the

other one is for the external pointers. All the children of a

given node are stored contiguously, which allows us to use

just one pointer for all of them (i.e., each child node can be

found using an offset from the single pointer)1. This yields

a remarkable reduction of the memory requirements. On the

other hand, k hash functions are adopted to compute the hash

value for B-segments, which guides to fill the corresponding

mCBF, equipped with c counters and b bits for each counter.

In one extreme case, TB2F-DS supports to use a global CBF

for all B-segments, which can be implemented more easily.

The direct benefits of using many mCBFs (with a simple T-

segment associated allocation scheme) instead than a unique

CBF are to reduce the scale for each mCBF, thus alleviating

the difficulty of finding perfect hash functions that remain

valid for a universal name space and to avoid the chaos of

association between T-segment and B-segment.

In this structure, the SL parameter plays a fundamental role

on the efficiency of TB2F-DS. Firstly, the depth of the T-

segment tree is bounded by the SL, which, as a consequence,

directly benefits the processing time and occupying space.

Secondly, all names with less than SL components will not

be mapped in an mCBF at all. It can reduce the number of

items inserted into the mCBFs, accordingly, lowers the fpr.

Furthermore, it is worth noting that hash computing for a long

1It is noted that T-segment Tree is not necessary to be a binary tree. An
encoding method can be used to resolve the issue of unbounded children.



A1

...A1 A2 A3 Tree-Bitmap

. . .

.

. 

.
 .  

.  
.

1

.

. 

.
 M

at
ch

   
 V

ec
to

r

L
on
ge
st
Su
b-
pr
ef
ix

2

3

mCBF
Pointer

Mini-Counting Bloom Filters Hash Table Check

Name Reading & Separation Trie-based Lookup &Hash Computing Membership Query in mCBF Hash Check Forwarding
Faces

mCBF Pointer Returns

Trie-based Lookup
Hash Computing

Fig. 3. (a) Diagram of TB2F-PL; (b) Compositions of time consuming in lookup process.

string is expensive, a cut by SL components may improve

processing speed in mCBFs.

To sum up, TB2F-DS provides a simple but powerful data

structure for CCN names lookup. We get three promising

promotions: (1) TB2F-DS transfers the long-unbounded names

to be short-bounded, suitable for using TB; (2) TB2F-DS

accelerates the hash computing and lowers the fpr in mCBFs;

(3) TB2F-DS does not bring much extra space consumption,

if configure SL properly, which makes TB2F space efficient.

The next section will provide an experimental analysis of the

suitability of TB2F-DS to large-scale CCN scenarios.

C. TB2F-PL: parallel lookup process

TB2F enables to provide fast processing thanks to a parallel

lookup process (TB2F-PL). It is a fact that frequently hash

computing for strings is a time-consuming operation in CBF.

To reduce the lookup time consumption, an available solution

is to preprocess the hash value of each string before using it.

In CCN, all hierarchical names are carried in the Interest and

Data packets, and different routers may adopt different hash

functions. Thus, it is very difficult to obtain the hash values

of each substring before the lookup starting. Fortunately,

TB2F-PL allows to process two segments in parallel due

to the decoupling of T-segment and B-segment. Thus, hash

computing for all possible substrings of B-segment can be pre-

processed in parallel during the T-segment matching. To some

extent, this operation ensures the hash values of B-segment

are prepared well when the B-segment’s lookup starts, which

can save the total lookup time.

The parallel lookup process is detailed in Fig. 3(a). Assum-

ing ∀qi in N with a length ζqi (here we use the length to

indicate the number of components of prefix), we will refer to

as qTi and qBi to indicate its T-segment and B-segment with a

length of ζTqi and ζBqi , respectively. First, qTi is looked up along

the T-segment Tree. In the meantime, the hash computing for

all substrings of qBi is conducted. If the longest matching

prefix p′i for qTi is found and its length is shorter than the SL,

the forwarding face will be returned. In this case, the lookup

terminates. On the other hand, if the length of p′i is equal to SL,

one corresponding pointer to an mCBF is returned. With the

knowledge of hash values of substrings, the qBi is then looked

up in this mCBF. After the membership queries for these

Algorithm 1: The insertion of an entry in TB2F-DU
1: procedure InsertEntry(Prefix x)

2: (xT , xB)←GetSeparation(Prefix x); //split the prefix

3: if mCBF ptr ←Lookup(xT ) then
4: Locate the split mCBF by mCBF ptr;

5: Position in mCBF: j←hi(x
B); //hash computing

6: Increment counter for j: Cj←Cj+1; // updating CBF

7: elseif Node ptr ←Lookup(xT ) then
8: Locate the leaf multi-bit node contains an insertion;
9: Bits in internal Bitmap: bi←1; //updating TB
10: Bits in external Bitmap: be←1;

11: if xB �= NULL;
12: Locate the new allocated mCBF;

13: Position in mCBF: j←hi(x
B); //hash computing

14: Increment counter for j: Cj←Cj+1;
15: end if
16: end if
17: end procedure

possible substrings, a match vector is returned, which indicates

the longest matching substring p′′i for the qBi . Combining

with p′i, we can easily obtain the longest matching prefix

pi ← 〈p′i, p′′i 〉 for the entire name qi. At last, a hash check for

the next hop forwarding face is conducted. Note that default

faces will be returned if no match is returned. A detailed

timeline for time consumptions of TB2F-PL is illustrated in

Fig. 3(b). It will be used as a ground for the theoretical and

experimental analysis carried out in next sections.

D. TB2F-DU: differentiated update scheme

TB2F provides flexible update process with low overhead

thanks to a differentiated update scheme (TB2F-DU), which

takes full advantage of the low updating frequency of T-

segment Tree as well as the simplified hash computing in

mCBFs. The update process is triggered when new entries

arrive in the FIB and replace the expired ones. This updating

operation in TB2F-DU includes insertion and deletion opera-

tions in both the T-segment Tree and the mCBFs.

Entry insertion (Algorithm 1): When a new entry has to be

added to the TB2F-DS, three cases have to be considered: (i)

only the T-segment has to be updated (i.e., the name has less

than SL components); (ii) the entry just requires an update of

one mCBF (i.e., the T-segment Tree already maps the former

components of the name); (iii) both the T-segment Tree and the

mCBF have to be updated. Accordingly, upon an insertion, if

the length of the inserting name is less than SL, we just update



Algorithm 2: The deletion of an entry in TB2F-DU
1: procedure DeleteEntry(Prefix x)

2: (xT , xB)←GetSeparation(Prefix x); //split the prefix

3: if mCBF ptr ←Lookup(xT ) then
4: Locate the split mCBF by mCBF ptr;

5: Position in mCBF: j←hi(x
B); //hash computing

6: Increment counter for j: Cj←Cj -1; //updating CBF

7: elseif Node ptr ←Lookup(xT ) then
8: if xB == NULL;
9: Locate the leaf multi-bit node contains a deletion;
10: Bits in internal Bitmap: bi←0; //updating TB
11: Bits in external Bitmap: be←0;
12: end if
13: end if
14: end procedure

TABLE II
DATASET COLLECTIONS

URL Datasets Value Names Dataset Value

Baidu URLs ∼1, 960, 000 Crawling URLs ∼14, 800, 000

DMOZ URLs ∼3, 240, 000 CCN names3 ∼200, 000, 000

the T-segment Tree, no need to make any operation in mCBFs.

Otherwise, the T-segment Tree is queried to discover whether

a possible match does exist. If the match exists then we are

in the second case otherwise we are in the third one. In the

second case, it is just required to update the mCBF (using an

addition operation on the CBF) pointed by the leaf node of

the T-segment Tree. Instead, if we are in the third case, the T-

segment Tree is renewed to account for the new entry and the

corresponding mCBF is updated with an addition operation.

Entry deletion (Algorithm 2): In parallel with the insertion,

three cases are considered in the deletion process, (i) the

updating of one mCBF when the length of name is bigger

than SL; (ii) the updating of the T-segment Tree when the

length of name is smaller than SL and (iii) the updating of

both them when one T-segment has no B-segment following

after deleting a B-segment. In the first case, one corresponding

mCBF for a given x should be found before, then it carries

out a deletion in mCBF by decreasing the associated counters

by 1. In particular, if one corresponding mCBF cannot be

returned, we believe the name to be deleted does not exist

in TB2F-DS originally. In the second case, one leaf multi-bit

node in T-segment Tree should be updated by renewing both

the internal and external bitmaps by setting the associated bits

to zero, which is detailed in reference [11]. The third case can

be seen as a special situation of case one, a further updating

should be conducted in T-segment Tree because there is no

B-segment following the T-segment.

Due to the differentiated updating operations, it can improve

the updating efficiency and avoid unnecessary overhead in

certain cases. We remark that the depth of the T-segment

Tree is bounded by SL and that our experimental findings

on huge datasets demonstrates that the first levels of the name

tree are relative steady and unlikely to change frequently. As

a consequence, the updating ratio can be kept under control

using a proper SL. This allows us to avoid a fair complex tree

updating process, and transfer it to the low-overhead updating

in mCBF. Furthermore, the length of entries in the mCBF is

Fig. 4. (a) Number of characters; (b) Number of components for each name.

shortened by SL, this also benefits the overhead of updating

in mCBFs. In the sequel of the work, all the aforementioned

qualitative evaluations will be proved experimentally to crisply

highlight the relevance of TB2F to CCN scenarios.

III. THEORY ANALYSIS BASED ON PRACTICAL

CONSIDERATIONS

Is the proposed TB2F fitted to large scale CCN scenarios?
And how to choose an optimal SL for TB2F? To answer

these questions practically, we make an in-depth study of the

characteristics of CCN names. We recognize that the set of

Internet URLs is a subset of CCN names. Thus, we collected

a large scale real-world URLs as our raw materials, which

contain 2×107 URLs with about 1.3×108 components. Then,

we processed them to build the experimental CCN-names

dataset according to the reference [5]. Finally, the total dataset

contains about 2×108 CCN names, occupies 9.725 GB. Table

II shows the summary information of dataset collections. In

the following, we will make a further analysis for the statistical

features of names.

We seek to explore the shape and statistical characteristics

of two very relevant features of the name space: (1) the

number of the components � (ui) for each name ui and (2)

the number of the characters ϕk (ui) for the k-th component

in ui. Both of them are core indicators for the features of

CCN names and dramatically affect lookup operations. Fig. 4

shows the characteristics of our dataset in terms of number of

characters and components for each CCN name, respectively,

where the names are reported with the same sequence as the

crawling process provided them. Furthermore, their statistical

distributions are shown in Fig. 5, some essential findings are

observed in what follows.

Observation 1: In Fig. 5(a), it can be argued that more than
91% components have a length smaller than 10 characters,
and nearly 40% components with a length of 3 characters.

This feature means short components are popular to be used

in CCN name, whereas long components exist but are rare. An

intuitive explanation is that short components are easier to be

remembered by human, and more convenient to be used.

Observation 2: In Fig. 5(b), we observe that nearly 40%
names have a length less than 4 components, and nearly 75%
names have a length less than 5 components.

This feature means if we consider the case of 50% names,

the threshold of the length should lie in the set of [4,5].
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Based on these primary considerations, we deepen our

analysis to assess the metrics in terms of (a) computing
complexity, (b) false positive rate, and (c) aggregation and
updating ratio, dependent on SL.

(A) Computing complexity: The lookup complexity in a

trie is directly dependent on the depth of the trie [17], thus,

the average time complexity of T-segment lookup achieves a

reduction from O
(
ζ̄qi

)
to O

(
ζ̄Tqi

)
, and is O (SL) in the worst

case. As for the B-segment, the membership query complexity

is O (1) in theory [14]. However, it is a fact the hash comput-

ing for each prefix of B-segment in CCN is expensive, which is

dependent on the length of substrings [18]. Since it requires

to compute for each level substring of qBi for membership

queries, the computing complexity is O
(
ζ̄Bqi ·

(
ζ̄Bqi − 1

)/
2
)
.

If the hash computing for each substring is independent,

the time complexity will become O
(
ζ̄Bqi

)
in the worst case

relying on concurrent processing for all substrings. Let κ
be max

(
SL, ζ̄Bqi

)
. Since T-segment matching and B-segment

hashing can be processed in parallel, the total time complexity

for TB2F-PL is O (κ+ 1) in theory.

The updating process includes entry deletions and entry

insertions. Different from lookup operations, this process only

conducts hash computing for the string to be deleted or

inserted, and need not to care about its substrings in the CBF.

For TB2F-DU, the hash computing for the updating entry costs

O
(
ζ̄Bqi

)
. The computing complexity of locating the proper leaf

in TB is O (SL) in the worst case. The update complexity in

CBF is O (1). Due to the parallel process, the time complexity

for TB2F-DU is also O (κ+ 1) in the worst case.

(B) False positive rate: In original BF-solutions, all names

should be inserted into the filters. However, in TB2F-DS not all

prefixes need to be stored using BF, but only the B-segments.

Based on the theory in [14], the false positive rate is the

probability that all k bits that it hashes to are 1. We derive a

new expression for false positive rate that is

p =

(
1−

(
1− 1

C

)kμn
)k

≈
(
1− e−kμn/C

)k

(2)

where C is the number of buckets in filters, k is the number

of hash functions, n is the total number of prefixes, and μ is

the ratio of B-segments over the entire space of prefixes.

Formula (2) presents a direct relation between the false

positive rate p and the ratio μ on condition of n being a known

constant. Fig. 6(a) shows the varying of fpr at different filter

sizes in the case of n=10 million and k=3 in theory.
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Fig. 6. (a) False positive rate; (b) Aggregation ratio of prefixes.

Observation 3: From Fig. 6(a), it is observed that the false
positive rate increases as the value of the ratio μ. Combining
with formula (2), a higher ratio μ will bring a higher false
positive rate if the total number of name prefixes is a constant.

In TB2F, only if the length of one name is bigger than SL,

its B-segment would be inserted into CBFs. According to the

Observation 2, different values of SL will bring different ratio

μ. If the threshold of SL is 5, then only 25% names have

corresponding B-segments. To this end, an optimal choice of

SL may lead to a suitable μ, that drives a small false positive

rate within an acceptable range.

(C) Aggregation and updating ratio: For ease of descrip-

tion, we first give a formal definition for aggregation ratio for

a set of names.

Definition 2 (Aggregation ratio): Given a name set S ,

in which the number of names is |S|, and a prefix length l,
∀l > 0, l ∈ N + , we can calculate the total number of all

different prefixes in S with a length l, that is C (l). Then, the

aggregation ratio is defined as 1 - C (l)/|S|.
Intuitively, the aggregation ratio represents the probability of

many names sharing one same prefix, and it is an important

indicator for the space compression of prefixes in the tree-

based data structure. Fig. 6(b) shows the aggregation ratio as

well as its rate of change greatly relying on the prefix length.

Observation 4: According to Fig. 6(b), the aggregation
ratio of the prefixes decreases with the length of prefixes. It is
larger than 95% when the length of prefixes l ∈ [1, 5], l ∈ N + ,
and it starts decreasing quickly when l > 6, l ∈ N + .

This feature implies that it would have a high aggregation

ratio in the first several components of CCN names. It will

bring a great space saving in TB structure and provide benefits

for the low updating probability of TB elements if the SL � 5.

Proposition 1: Given a tree R (P1) for name prefixes set

P1, a new set of name prefixes P2 brings an updating for

R (P1) to build R (P1 ∨ P2). The updating probability for

R (P1) increases with the depth of the tree.

Proof: Let A (t) denote the aggregation ratio of the prefixes

set Pt with a length of t, B (t) be the updating probability

for Pt. Based on Observation 4, ∀ε > 0, we have A (t) �
A (t+ ε). Given a new name prefix px, only if px /∈ Pt, one

updating would occur. Since a higher A (t) means a bigger

probability of px ∈ Pt, thus it obtains a lower updating

probability. Therefore, for ∀ε > 0, B (t) � B (t+ ε). It

concludes our proof. �
Based on the above observations and analysis, we provide



a methodology to estimate an optimal reference size for SL,

subject to all the constraints of the problem we are dealing

with: (i) to minimize the false positive rate, the SL should

be as much as possible, which is restricted in [4,∞) (from

Observation 3); (ii) to achieve a low memory cost as well as

a low updating ratio for T-segment Tree, the SL should be as

small as possible, which is restricted in the range [1, 5] (from

Observation 4 and Proposition 1); (iii) to obtain a reasonable

time complexity and memory cost, SL would better lie in the

set [4, 5] (from Observation 2). All these considerations guide

us to conclude an inference for the estimation of SL.

Inference: To maximize the benefit of TB2F, thus, minimize
the lookup time on the restriction of the affordable memory
cost as well as acceptable false positive rate and updating
overhead, an optimal size of SL is concluded with a set-
intersection operation, which is suggested in the set of [4, 5].

In next section, experimental comparisons will analyze the

performance tendency along with different SL values and

further crisply verify the relevance of this inference.

IV. EXPERIMENTS EVALUATION

To evaluate the scalability and efficiency of the TB2F, we

carefully selected two state-of-the art solutions, namely Name

Prefix-Trie [13] and Bloom-Hash [14] for comparisons. The

two candidates are typical to represent the Trie-based and BF-

based solutions, respectively. In the experiments, we focus

on comparing our solution with both of them in terms of

four metrics: (i) memory cost, (ii) lookup time consumption,
(iii) false positive rate as well as (iv) updating overhead.

To verify the optimal value of the SL, we further compare

the performance in varying SLs. All logical algorithms are

implemented with C++ in software, and run in a router testbed,

which is equipped with 16G RAM, 2 × Intel Xeon(R) 4 Cores

2.27GHz CPU, 8 Forwarding Faces, 2TB Disk Storage. Each

set of experiments repeat 100 times to get an average result.

To check the performance in various scale cases, we ran-

domly select name prefixes from our dataset and insert them

into the forwarding tables with randomly assigned forwarding

faces. The number of inserted entries is ranged from 1 to

20 million. Then, we conduct names queries concurrently

to simulate a practical CCN name lookup. We observe and

compare the performance when the SL value varies from 1 to

6. We set the number of buckets in mCBFs as 100 times of

the number of name prefixes (the load factor is 0.01). Each

bucket occupies 8 bits, thus, the maximum counting value is

28−1, which is enough to avoid the potential bucket overflow.

(i) Memory cost. In this experiment, we select 1-20 million

names from the dataset and insert them into the FIB in

order. Meanwhile, we record the memory cost each additional

one million names. Fig. 7 shows memory cost in different

solutions. It states that memory cost increases with the number

of names. The Name Prefix-Trie has the biggest memory cost

as well as the sharpest increasing rate. When the number of

prefixes rises to 11 million, the memory cost reaches to the

max limit of our hardware (nearly 16 GB). This means Name

Prefix-Trie has the worst scalability at large scale systems.
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TB2F may provide a great improvement with respect to Name

Prefix-Trie. The memory cost decreases as the SL decreases.

In the worst case (SL=6), the memory cost is still acceptable

by our hardware. In the case of SL=1, the memory cost of

TB2F approaches to the one of Bloom-Hash, which exhibits

the smallest memory consumption.

(ii) Lookup speed. Fig. 8 presents that the mean lookup

time for each lookup increases slightly with the scale of pre-

fixes. Bloom-Hash has the worst performance because Bloom-

Hash must conduct complex hash computing for all substrings

of each name and cope with a number of conflicts, which

consumes additional time. Name Prefix-Trie has a smaller

processing time when the number of prefixes is less than

11 million. Unfortunately, as shown in Fig. 8, the usage of

Name Prefix-Trie is restricted to a small set of prefixes due

to a poor scalability. Concerning TB2F, its processing time

first decreases then increases as the SL increases. Note that it

achieves to the minimized time consumption when SL=5.

To make a more detailed explanation, Fig. 9 shows the

components of processing time for every lookup, including

the name reading, T-segment lookup, B-segment lookup, and

hash check processes in cases of SL=3,4,5,6. In this figure,

the time consumptions in name reading and T-segment lookup

are independent on the number of prefixes. Nevertheless, the

time in B-segment lookup and hash check slightly increases

by the number of prefixes, which contributes to an increase

law for the total time. It is also observed that the total time

decreases as SL increasing in Fig. 9 (a), (b) and (c), and gets

the minimum in case of SL=5. In the case of SL=6, the total

time increase again due to the time in TB lookup increases

greatly. Further, we make a comparison in a view of different

SLs. Here, we focus on two cases of 10M prefixes and 20M

prefixes. In this figure, we observe that for increasing values of

SL, the time in B-segment lookup drops down, while the time

in T-segment grows up. Most excitingly, the time in B-segment

lookup first falls below the one in T-segment when SL=5. The

main reason is that a bigger SL brings a longer T-segment Tree

as well as shorter B-segments, and time consumption highly

relies on the length of both kinds of segments. This result

confirms the rationality of previous inference, an optimal SL

is in the range of [4, 5].

(iii) False positive rate. We also observe the false positive

rate with the number of hash functions. We compare the

Bloom-Hash and TB2F-based solutions with different SL

values. In this experiment, the case of total 20 million names

is considered. To reduce the impact from the hash function
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itself, different hash functions [25] are adopted for computing

hash keys for CBF. Fig. 11 shows the comparison results

when the number of hashes is 2,3,4 (the cases using more

hash functions can be easily deduced). In this figure, TB2F-

based solutions have a lower false positive rate than Bloom-

Hash, since Bloom-Hash has the biggest number of names

need to be inserted into the filter. Further, we observe that the

false positive rate decreases along with the SL increase. The

reason is that the number of B-segments is reduced by the

SL increasing, then achieves a smaller false positive rate. This

result also validates our previous analysis.

(iv) Overhead of updating. To evaluate the overhead

of updating, we first finish inserting 1-20 million prefixes

into the FIB in different cases, then randomly delete/insert

20% prefixes from/into the data structure. The average time

consuming for per prefix is used to denote the overhead of

updating. Fig. 12 shows the overhead varies with the scale of

prefixes. In this figure, the overhead keeps a relative high level

in Name Prefix-Trie and Bloom-Hash. We observe that TB2F

with SL=1 is a little higher than both them, while the ones

with other SLs have lower overheads. That’s because TB2F-

DU bring benefits for the updating process with a limited

extra overhead. However, its benefit is dependent on the value

of SL. When SL=1, the benefit is too small to make up the

extra overhead. As the SL increases, the benefits become more

impressive, which results in a relative low update overhead.

More importantly, the overhead of updating achieves to the

minimum when SL=5, which is the result from the tradeoff of

the length of T-segments and B-segments.

In total, above experiments verify that with a suggested

SL=5, TB2F achieves a relative good scalability and efficien-

cy by (i) speeding up lookup operations and reducing the

false positive rate with respect to Bloom-Hash; (ii) requiring

less memory than Name Prefix-Trie; (iii) achieving a lower

overhead in updating operations in the large scale case. In
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fact, the set of requested names may have a strong regional

disparity, and the optimal SL may be different due to additional

constraints (i.e., memory). The methodology in this paper can

be adopted to guide how to decide an optimal SL locally.

V. RELATED WORK

A well-known solution for fast LPM is the Trie [20], based

on which several solutions have been conceived [21]. These

solutions are inherently able to handle name aggregations due

to their tree structure [22]. The TB [11], a multi-bit expanded

Trie, is believed as one of the most efficient schemes among

them. Recently, their usage in CCN is being investigated by

the research community. Wang et al. first propose an effective

name component encoding solution for Name Prefix Trie to

reduce the memory cost and accelerate name lookup [13].

Additionally, a parallel name lookup is proposed by allocating

the logically tree-based structure to parallel physical modules

[23]. Li et al. also proposed a fast longest-name-prefix lookup

framework and implemented it using fat tree and extensible

hybrid data structures [24]. Although Trie-based algorithms

are simple and efficient, their performance degrades linearly as

the tree depth increases. The tree depth can be very huge due to

the length of CCN names, so that existing Trie-based solutions

if used in CCN cannot easily scale to Internet scenarios.

Another family of alternative approaches rely on the adop-

tion of BFs. The BF [12] provides a space-efficient proba-

bilistic data structure to support set membership queries. Since

standard BF does not allow element deletions, Counting BF

(CBF) is proposed to tackle this limitation by adding a counter

[16]. Dharmapurikar et al. first apply BF in the LPM [14].

Recently, there are some emerging BF-based solutions for

CCN. You et al. propose a distributed PIT table, named DiPIT,

which implements a sub-PIT on each CCN node face with a

CBF [19]. So et al. design a fast forwarding table combining

with BFs and data prefetching [25]. Wang et al. propose an



efficient lookup scheme for NDN by applying two-stage CBFs

[26]. However, BFs bring a chance for false positive rate due

to hash collisions, which partially depends on the number

of entries inserted into the filters. Due to the potential huge

number of CCN names, the false positive rate will be not easily

limited at a large scale. What’s worse, the hash computing for

possible prefixes of CCN names is needed in BFs, which will

lower the lookup efficiency, especially for the long names. All

these facts impede BFs readily applied in CCN at a large scale.

Besides, hardware-based approaches are also evolved for

CCN by taking advantage of its parallelism. Varvello et al.
target the hardware design of a high-end content router, named

by Caesar [27]. Wang et al. conduct a study on wire speed

name lookup by exploiting GPU’s massive parallel processing

power [28]. These hardware-based technologies can bring a

considerable improvement for the processing, however, they

make sacrifice on the high cost and power consumption.

It is this investigation that guides us to focus on novel

name lookup design in data structure and consider its suitable

hardware implementation. One idea is to split the long CCN

name into relative short segments by an alternative split rule.

With this simple operation, it allows us to make full use of

the advantages of existing lookup mechanisms. Our recent

work has originally explored a name lookup mechanism using

adaptive prefix Bloom filters [29], which is featured with using

a limited number of filters for prefixes and adaptive adjustment

for popular prefixes. Different from the previous one, this work

focuses on a skillful CCN-customized name lookup engine by

leveraging TB and BF with an optimized name split rule based

on extensive practical experiments.

VI. CONCLUSION

In this paper, a novel CCN-customized name lookup so-

lution (TB2F) has been presented. TB2F makes a simple

partition for hierarchical unbounded CCN names, and explores

a scalable data structure as well as efficient lookup scheme by

leveraging existing TB and BF. Practical analysis combining

with extensive experiments at a large scale suggests an optimal

value of the split level, and verifies the performance with

fast lookup with affordable memory cost, low false positive

rate and low updating overhead, which are believed to be

suitable for CCN at large-scale deployment. We believe this

fundamental work can provide a novel insight for further

developing high scalable and efficient lookup solutions for

large-scale CCN usage. In our future work, more optimizations

and further enhancements for TB2F will be planned, such as

taking into account of caching optimization, names distribution

in content retrieval [30][31], evolution for frequent names and

GPU implementation to improve the CCN name lookups.
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