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Abstract—Mobile on-demand videos are getting tremendously
popular and incurring staggering overhead on cellular net-
works. Fortunately, next generation cellular networks support
video streaming over either unicast or multicast, but how to
capitalize both unicast and multicast for optimal on-demand
video streaming remains an open question. In this paper, we
consider a resource allocation problem that concurrently uti-
lizes unicast/multicast in order to support many more mobile
streaming users and minimize the energy consumption of the
battery-powered mobile devices. We formulate this problem as
a Binary Integer Programming (BIP) problem. We present an
optimal algorithm, SCOPT, for this problem. We also develop
an efficient heuristic algorithm, SCG, for lower overhead. We
conduct detailed packet-level simulations to evaluate the algo-
rithms in LTE networks using OPNET. Our simulation study
shows that the proposed algorithms: (i) result in lower energy
consumption than multicast-only approach, (ii) scale to many
more mobile users than unicast-only approach, and (iii) are more
energy efficient with more network bandwidth or fewer videos.
In addition, we discuss how our solution can be extended to
support Single Frequency Networks in which multiple adjacent
base stations operate on the same frequency.

I. INTRODUCTION

The demand for multimedia streaming over mobile net-

works has been steadily increasing: worldwide mobile traffic

amount reached 885 petabytes per month in 2012, and about

51% of that traffic carries videos [1]. Current 3G cellular

networks only support unicast, which is not optimized for

streaming a video to many mobile devices. This is because the

video will be sent multiple times over a shared air medium,

which consumes excessive mobile network bandwidth and

may negatively affect voice call quality. There are several 4G

technologies to enable multicast in mobile networks, e.g., the

Multicast and Broadcast Service (MBS) in WiMAX [2] and

Evolved Multimedia Broadcast Multicast Service (eMBMS) in

LTE [3]. In fact, some U.S. cellular operators plan to launch

eMBMS service in their LTE networks [4], which will allow

operators to efficiently stream a video to numerous mobile

devices. Although multicast in cellular networks seems to be

only useful for live events broadcast, many other applications

can potentially benefit from it. These applications include on-

demand video streaming, timeshifted events, and mobile video

recorders. These and similar applications can benefit from

multicast because modern mobile devices have increasingly

larger storage space, which can be used to prefetch some

video segments that will be consumed later. More specifically,

for live streaming, such as sports events, mobile users can

arrive at different times, but they start receiving from the

current moment. This creates a natural case for grouping

users in multicast sessions. For prefetching, popular videos,

such as latest TV episodes and highlights of recent sports

events, will be requested by many users at different times,

e.g., in the evening of the release day. Since those videos

are not immediately played back, the requests can be grouped

into multicast sessions as well. Video streaming applications

impose tremendous loads on the mobile networks, which will

likely force the cellular network operators to seriously consider

the multicast supports in next generation mobile networks that

will be deployed in the near future.

To cope with the staggering number of requests, the cellular

base stations have to carefully determine whether to serve each

request using unicast or multicast, in order to minimize the

network load and prolong the mobile devices’ battery life.

Making such decisions is challenging because: (i) the user

demands and network conditions are diverse and dynamic,

and (ii) there exists a clear tradeoff between network load and

energy saving. This tradeoff is due to two common features of

modern mobile networks. First, network interfaces on mobile

devices support multiple Modulation and Coding Scheme

(MCS) modes to cope with different channel conditions. For

example, mobile devices closer to the base station may use

more aggressive, i.e., higher, MCS modes for higher transfer

rates, whereas mobile devices at the cell edge can only use

lower MCS modes at lower transfer rates. Second, network

interfaces on mobile devices may be turned off1 when not

receiving in order to save energy. That is, when mobile devices

use higher MCS modes, they receive at higher rates and

finish earlier. This in turn results in higher energy savings.

Therefore, streaming videos using unicast allows individual

mobile devices to use the highest MCS modes allowed by their

channel conditions for the highest possible energy saving at

the expense of higher network load due to duplicated video

streams. In contrast, streaming using multicast forces some

mobile devices to use lower MCS modes to cope with the

mobile device with the worst channel condition, and thus

suffers from lower transfer rate and lower energy saving. Such

a tradeoff between network load and energy saving motivates

1In this paper, turning off network interface loosely refers to putting the
network interfaces into low-power states. Next generation cellular networks
all support such power saving features, although they may employ slightly
different terminologies.ISBN 978-3-901882-58-6 c© 2014 IFIP



us to study a hybrid on-demand video streaming system that

concurrently leverages unicast and multicast to maximize the

overall energy saving of mobile devices under various resource

constraints.

In this paper, we study the resource allocation problem

in a hybrid on-demand streaming system over both unicast

and multicast in next generation mobile networks. The base

station(s) concurrently serves multiple videos with diverse

popularity to mobile devices, and different mobile devices

may start watching at different times. The operator is assumed

to reserve a fixed amount of network bandwidth for the on-

demand video streaming service. Our problem is to schedule

which chunks of videos should be sent over multicast (or uni-

cast) and when to send them, in order to maximize the overall

energy saving of mobile devices without consuming excessive

network bandwidth. We prove that the resource allocation

problem is NP-Complete, and then mathematically formulate

it as a Binary Integer Programming (BIP) problem. The

optimization problem can be optimally solved using optimiza-

tion problem solvers, which however may be computationally

expensive for on-demand streaming services. Therefore, we

develop algorithms for close to optimal solutions.

While our solution is general for all cellular networks that

support multicast, we use LTE networks in our evaluation

for concrete discussion. In particular, our extensive simulation

results, using OPNET [5], lead to the following observations.

• The proposed solution allows cellular networks to support

a large number of mobile devices, as if in multicast-only

networks, and achieve almost-optimal energy saving, as if

in unicast-only networks. In some experiments, compared

to 71% energy saving of the multicast-only solution, our

proposed solution results in 89% energy saving, which is

the same as the unicast-only network. On the other hand,

unicast-only solution can only support very few mobile

devices, and thus does not scale to large networks.

• The proposed algorithms can easily run in real time,

as they have polynomial time complexities. In our ex-

periments, they terminate in less than few milliseconds

on a commodity workstation. In real deployment, they

would typically run on powerful servers and periodically

invoked once every several seconds.

In addition, next generation cellular networks support Single

Frequency Networks [6], in which multiple base stations

transmit the same wireless signals on the same frequency to

increase the received signal strength of mobile devices. We

also extend our formulation for Single Frequency Networks,

which significantly reduce interference and allow mobile de-

vices to receive combined signals for better reception.

II. RELATED WORK

Several studies consider on-demand streaming services over

mobile networks in a more restricted sense. For example,

Hillestad et al. [7] proposed an adaptive algorithm for stream-

ing scalable on-demand videos over fixed WiMAX networks.

However, the authors did not exploit multicast to reduce the

network load. Majumdar et al. [8] proposed a multimedia

streaming approach leveraging both Forward Error Correction

(FEC) and Automatic Repeat ReQuest (ARQ). The appropriate

parameters of source and channel coding were determined so

that the overall transfer rate is maximized. They also presented

an algorithm for multicasting scenarios, which employs FEC

only as ARQ is less applicable in multicast. Lee et al. [9]

described a scheme that uses both unicast and multicast

communications to reduce service blocking probability and

bandwidth consumption. Different from our work, they did

not take energy consumption into consideration. Hlavacs and

Buchinger [10] proposed a patching system for mobile net-

works. Their system may suffer from low energy saving as

eventually all videos are multicast. Yoon et al. [11] con-

centrated on the implementation details of a multicast video

service in LTE networks. These studies [7], [8], [9], [10],

[11] did not consider energy conservation, which is crucial

to battery-powered mobile devices.

Tremendous research efforts have been devoted to saving

energy on mobile devices. One of the earliest works in

this area is called STPM [12] which proposes a self-tuning

operating system module that adapts itself to the network

access patterns and intent of applications to enable power

management only when appropriate. E-Mili [13] adaptively

downclocks the network radio to reduce the amount of energy

consumed during idle listening. Zhu and Cao [14] presented

a new scheduling algorithm, called rate-based bulk scheduling

(RBS) for the base station to determine data flows to be served

at different times. The concept of proxy server is employed to

buffer data for the mobile devices so that the wireless network

interface can sleep for a long time period to save power. Luna

et al. [15] considered the selection of source coding parameters

jointly with transmitter power and rate adaptation to reduce

power consumption. These approaches [12], [13], [14], [15] try

to reduce energy consumption of mobile devices from different

perspectives, but do not jointly use unicast and multicast.

In summary, our work leverages both unicast and multi-

cast in mobile networks to serve more users and maximize

the overall energy saving of mobile devices under a given

bandwidth constraint. To the best of our knowledge, this

problem has not been rigorously investigated in the literature.

Last, we note that there are more advanced mechanisms, such

as MU-MIMO [16], which may result in better broadcast

spectrum efficiency. These advanced mechanisms however are

too complex and out of the scope of our work.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider an on-demand streaming scenario with base

stations, mobile devices, and resource allocators as illustrated

in Figure 1. Mobile devices arrive asynchronously, and each

mobile device sends requests to a resource allocator to receive

video streams. These requests may be driven by mobile users’

current demands or by some prediction logics running on

mobile devices, e.g., a background mobile application may

prefetch videos that are most likely to be watched in near

future [17], [18]. Since the requests are driven by mobile

devices/users, user inputs like delay, fast forward, and rewind
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Fig. 1. The considered resource allocation problem in mobile networks.

can be supported, which enable diverse applications, including

on-demand video streaming, live or time-shifted sports events,

and mobile personal video recorders. Each resource allocator

periodically solves an optimization problem for leveraging

both unicast and multicast to: (i) maximize the average energy

saving across all mobile devices, (ii) minimize the network

resource consumed by video streaming, and (iii) ensure smooth

playout on all mobile devices. Upon the optimization problem

is solved, the resource allocator notifies the base stations to

stream videos accordingly.

Figure 1 demonstrates the generality of our considered

problem in two aspects. First, the resource allocator may

manage one or multiple base stations. For example, the base

stations of a Single Frequency Network must be managed

by the same resource allocator for optimal allocations. For

clarity, we first assume that each resource allocator manages a

base station, and generalize the problem for Single Frequency

Networks in Section V. Second, depending on: (i) channel

conditions of individual mobile devices and (ii) reserved

bandwidth for video streaming, resource allocators may decide

to stream videos over multicast, unicast, or a mixture of both.

For example, the top cell in Figure 1 consists of mobile

devices with similar channel conditions and only has little

bandwidth available for on-demand video streaming, which

renders multicast only decisions. In contrast, the bottom cell

suffers from heterogeneous channel conditions, but has more

spare bandwidth, which in turns leads to unicast only decisions

for higher energy saving. Our considered problem covers these

two scenarios and any mixture of them such as the center cell

in this figure.

Several types of cellular wireless networks adopt Orthogo-

nal Frequency Division Multiple Access (OFDMA) modula-

tion scheme, which divides the wireless medium along both

time and frequency domains [19]. We consider an allocation

window with T columns of symbols and S rows of subchan-

nels. A pair of t ∈ [1, T ] and s ∈ [1, S] uniquely determines

a resource block, which is the unit of resource allocation in

the network.2 Let d denote the fraction of resource blocks that

is reserved for video streaming, which can be adjusted based

on the voice loads. Thus, the considered resource allocation

problem is to distribute the dTS blocks of an allocation

window among all mobile devices. Once an allocation is

computed, it is used in several consecutive allocation windows

until some mobile devices’ channel conditions change. Note

that the system parameter T affects the length of allocation

windows: larger T leads to longer allocation windows for

higher allocation flexibility, and smaller T results in shorter

allocation windows for shorter video service delay. The service

delay refers to the time difference between a mobile device

switches to a video and the mobile device starts to render that

video. Shorter service delay also results in faster adaptation

to network dynamics. In the true on-demand case with real

time constraints on the service delay, a patching solution [20],

[21], [22] can be used. That is we define a threshold for a new

request to join an on-going multicast session of video and at

the same time create a separate, temporary unicast session for

that user to receive the earlier parts of the video. This new

request will be considered in the next allocation window, and

potentially be merged into a multicast session.

The on-demand streaming service offers V different videos.

Let rv denote the encoding rate of video v. We assume that

each video v is watched by Nv mobile devices, and we let

N =
∑V

v=1 Nv be the total number of mobile devices. The

network interface on each mobile device can be put into one

of M Modulation and Coding Scheme (MCS) modes. We let

per-block capacity cm denote the amount of data that can be

carried by a block with mode m, where cm is non-decreasing

in m ∈ [1,M ]. Each mobile device is under a different channel

condition, and can receive at a maximum MCS mode, which

is determined by the firmware on the network interface to

maintain reasonable bit error rates. Moreover, mobile devices

may watch different parts of a video. We divide video v into

Zv consecutive parts in the length of allocation windows (a few

seconds). We let wv,m,z (v ∈ [1, V ], m ∈ [1,M ], z ∈ [1, Zv])
be the number of mobile devices watching segment z of video

v with maximum MCS mode m.

For a given video v, depending on the MCS mode, a

mobile device needs to receive different number of blocks

in each allocation window. This is because the amount of

data to transmit is fixed at qT rv, which can be carried by

⌈qT rv/cm⌉ blocks, where q is the symbol time and m is the

MCS mode. Allocating different number of blocks to satisfy

such capacity demand could largely affect the off time of

each mobile device, and thus its energy saving. We define

the energy saving γ as the fraction of time each mobile

device can turn off its network interface to save energy. We

acknowledge that factors (e.g., MCS modes) other than the

off time may slightly affect the energy consumption. We,

however, only consider the dominating off time in this work

for better tractability. Moreover, previous studies [19], [23]

2We interchangeably use resource blocks and blocks to refer to the resource
allocation unit throughout this paper.



show that mobile device’s energy consumption depends on the

number of symbols it receives, and it is almost independent

of the number of subchannels. Therefore, we assume that

base stations first allocate blocks in the same column before

considering different ones.

The considered problem can be formally written as:

Problem 1: We consider a cellular network with a single

cell, in which a fraction d of the network resource blocks

is reserved for an on-demand streaming service of V videos,

where each video has Nv mobile devices in the allocation

window. For video v ∈ [1, V ], there are wv,m,z mobile devices

that can receive the video with the maximum MCS mode

m and segment z, where m ∈ [1,M ] and z ∈ [1, Zv]. An

allocation specifies: (i) the mapping between each block and

video, (ii) the multicast/unicast model of each block, and (iii)

the MCS mode of each block. For each allocation window of

T symbols and S subchannels, find the optimal allocation to

transmit V videos to all N =
∑V

v=1 Nv mobile devices, so

that: (i) the average energy saving across all mobile devices

is maximized, (ii) no more than dTS blocks are consumed by

the on-demand streaming service, and (iii) all mobile devices

watching video v receive at rate rv for smooth playout.

Lemma 1 (Hardness): The considered resource allocation

problem is NP-Complete.

Proof Sketch: We reduce the 0-1 knapsack problem to our

problem, which yields the hardness of our problem. �

The considered problem supports various applications, in-

cluding live streaming, on-demand streaming, video prefetch-

ing, and mobile video recorders. For live streaming, mobile

users naturally form multicast groups. However, some users

may have poor channel conditions, which could degrade

the performance for the whole multicast group. Solving our

problem gives each user the optimal decision whether to join

a multicast session or receive the live stream using unicast.

Another case is prefetching videos for later playback, where

mobile devices may signal the base stations to indicate less

restricted time constraints. Solving our problem determines the

optimal allocation of requests to multicast and unicast sessions,

and we give the requests with closer deadline higher priority.

Furthermore, we note that the proposed hybrid on-demand

video streaming approach may be readily augmented to satisfy

different optimization criteria and resource constraints based

on the requirements from cellular operators. For example,

instead of minimizing the average energy consumption across

all mobile devices, operators may prefer to minimize the

maximal energy consumption among all mobile devices for

fairness. Moreover, operators may specify energy budget for

individual base stations, so as to control their operational costs.

The possible optimization criteria and resource constraints are

highly driven by business policies, and an exhaustive list of

them is out of the scope of this paper.
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Fig. 2. An illustrative example showing that mobile devices receive videos
using either unicast or multicast and different modulation modes.

IV. PROPOSED SOLUTION

A. Mathematical Formulation

We next formulate the resource allocation problem (Problem

1), which assigns the resource blocks to individual videos,

decides whether to use multicast or unicast, and determines

the MCS modes of individual blocks, in order to maximize

the overall energy saving while guaranteeing smooth playout.

We use a boolean decision variable xv,m,z (v ∈ [1, V ], m ∈
[1,M ], z ∈ [1, Zv]) to denote whether the segment z of video v
is unicast/multicast using MCS mode m. That is, xv,m,z = 1
if segment z of video v is transmitted with MCS mode m,

and xv,m,z = 0 otherwise. When wv,m,z = 1 (wv,m,z > 1),

the base stations stream video v using unicast (multicast).

Figure 2 illustrates a sample solution of our resource allocation

problem, in which we use multicast only when there are

two or more mobile devices in the corresponding range. For

example, the two mobile devices in the outer-most circle

receive multicast signals with MCS mode 1. When xv,m,z = 0,

mobile devices with maximum MCS mode m receive z of v
with the next lower MCS mode n ∈ [1,M ]. For example,

as Figure 2 shows, two mobile devices with maximum MCS

mode 6 (which is m) only receive at MCS mode 5 (which

is n). We define an intermediate boolean variable yv,m,n,z for

each v ∈ [1, V ], m,n ∈ [1,M ], n ≤ m, z ∈ [1, Zv] as follows.

yv,m,n,z = 1 when mobile device with maximum MCS mode

m would receive segment z of video v with MCS mode n,

and yv,m,n,z = 0 otherwise. yv,m,n,z is determined by xv,m′,z ,

m′ ∈ [n,m] as follows:

yv,m,n,z ≤ 1− xv,m′,z, ∀ m′ ∈ [n+ 1,m], (1)

yv,m,n,z ≤ xv,n,z. (2)

We present the formulation in Eq. (3). The objective func-

tion in Eq. (3a) is to maximize the average energy saving. The

total size of video v in an allocation window is qT rv, and the

minimum number of symbols we need is ⌈
⌈ qTrv

cm
⌉

S
⌉, where m

is the MCS mode. The three summations iterate through all

the videos, modes, and segments, respectively. The constraint

in Eq. (3b) ensures that the on-demand streaming service only

consumes up to d network resources. The constraint in Eq. (3c)

guarantees that every mobile device receives its allocation

window at a feasible MCS mode. This in turn ensures that all
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x
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N

∑V
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∑M
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z′=1 wv′,m′,z′

∑m′
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s.t.
∑V

v′=1

∑M

m′=1

∑Zv′

z′=1 xv′,m′,z′⌈ qTrv′

cm′

⌉ ≤ dTS (3b)

(1−
∑m

n′=1 yv,m,n′,z)wv,m,z = 0 (3c)

yv,m,n,z ≤ 1− xv,m′,z, ∀ m′ ∈ [n+ 1,m] (3d)

yv,m,n,z ≤ xv,n,z (3e)

xv,m,z ∈ {0, 1}, yv,m,n,z ∈ {0, 1}, ∀ v ∈ [1, V ],m ∈ [1,M ], n ∈ [1,m], z ∈ [1, Zv].

1. foreach v ∈ [1, V ], m ∈ [1,M ], z ∈ [1, Zv]

2. initialize xv,m,z = 1 if wv,m,z > 0; xv,m,z = 0 o.w.

3. let ∆ =
∑V

v=1

∑M
m=1

∑Zv
z=1

xv,m,z⌈
qTrv
cm

⌉ − dTS

4. foreach v ∈ [1, V ], m ∈ [1,M ], n ∈ [1,m], z ∈ [1, Zv]

5. compute yv,m,n,z using Eqs. (3d) and (3e)

6. while ∆ > 0

7. foreach v ∈ [1, V ], m ∈ [1,M ], z ∈ [1, Zv],

7. where xv,m,z = 1

8. update yv,m,n,z and compute αv,m,z , βv,m,

8. and τv,m,z

9. let v∗, m∗ z∗ lead to the minimum τv∗,m∗,z∗

10. let xv∗,m∗,z∗ = 0

11. let ∆ = ∆− βv∗,m∗,z∗

12. return x

Fig. 3. SCG:An efficient algorithm to solve the single-cell allocation problem.

mobile devices smoothly render the video. Last, the constraints

in Eqs. (3d) and (3e) are from Eqs. (1) and (2).

B. Proposed Algorithms: SCOPT and SCG

The proposed resource allocation algorithms run on the

resource allocators close to base stations to determine how to

stream videos to maximize the overall energy saving of mobile

devices. The formulation in Eq. (3) is a BIP problem, which

may be solved by existing optimization problem solvers, such

as CPLEX [24] and GLPK [25]. We use CPLEX to implement

the optimal algorithm and refer to it as SCOPT (Single-Cell

OPTimum). Although SCOPT gives us the optimum alloca-

tions, its worst-case running time is exponential. Therefore, we

develop a greedy algorithm, called SCG (Single-Cell Greedy)

in the following. We start from an ideal decision in which

the number of blocks is more than enough to enable unicasts

to all mobile devices. Setting up a unicast channel to each

mobile device maximizes the overall energy saving. However,

the constraint in Eq. (3b) may prevent us from setting up

a unicast channel for each mobile device, which renders the

ideal decision infeasible. To turn an infeasible allocation into

a feasible one, we can reduce the number of unicast/multicast

with different MCS modes of a video, and hope the constraint

in Eq. (3b) can be satisfied. For example, by changing x1,3

from 1 to 0, we reduce the network load attributed to the

on-demand streaming service by ⌈ qTr1
c3

⌉ blocks. Doing so,

however, leads to a negative consequence: mobile devices

watching v with MCS mode 3 have to receive at a lower MCS

mode. This in turn leads to lower energy saving γ in Eq. (3a).

This illustrative example demonstrates the trade-off between

profit (Eq. (3a)) and cost (Eq. (3b)).

We let αv,m,z and βv,m be the offsets of profit and cost after

changing xv,m of an allocation from 1 to 0. Mathematically,

we write αv,m,z =
∑M

m′=mwv,m′,zyv,m′,m,z⌈⌈
qTrv
cm

⌉
/

S⌉ and

βv,m = ⌈ qTrv
cm

⌉. Our greedy algorithm strives to refine an

infeasible allocation by trading the minimum profit reduc-

tion (objective function) for the maximum cost reduction

(constraint). In particular, our algorithms evaluate the ratio

τv,m,z = αv,m,z/βv,m of all xv,m,z = 1 and drop the MCS

mode m and video v with the smallest τv,m,z value in each

iteration. Our algorithm stops once the constraint in Eq. (3b)

is satisfied. The pseudocode of SCG is given in Figure 3.

Lemma 2 (Correctness and Complexity): The SCG algo-

rithm gives a feasible allocation and terminates in polynomial

time: O(V 2M3Z2), where Z = maxVv=1 Zv .

Proof: The while-loop starts from line 6 ensures the

correctness. Let Z = maxVv=1 Zv. The dominating complexity

occurs in lines 6–8: (i) the while-loop starts from line 6 iterates

VMZ times in the worst-case, (ii) the for-loop starts from line

7 repeats up to VMZ times, and (iii) line 8 updates up to M
yv,m,n,z values. Collectively, the time complexity of the SCG

algorithm is O(V 2M3Z2).
We note that for real networks, V,M,Z are not large

numbers and the complexity does not depend on the number of

users, which can be large. For example, the maximum number

of videos that can be concurrently streamed on the most recent

LTE network is 23 [26], assuming average video bit rate

of 1736 Kbps [27] and maximum wireless bandwidth of 20

MHz [28]. Similarly, the largest value for M is 28 [26], and

for Z is 5 [29] assuming an allocation window of 10 seconds.

Moreover, all computations are simple scalar operations. Thus,

the algorithm can easily run in real time. In the evaluation

section, we show that SCG produces solutions close to those

of SCOPT and terminates in a few milliseconds.

V. EXTENDED FORMULATION FOR SINGLE FREQUENCY

NETWORKS

The formulation in Eq. (3) considers a single cell. In real

deployments, Single Frequency Networks help mobile devices
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v,m′,z, ∀ m′ ∈ [n+ 1,m], h ∈ [1, H ] (4d)

yhv,m,n,z ≤ xh
v,n,z, ∀ h ∈ [1, H ] (4e)

ŵh
v,m,z = wh

v,m,z +
∑

h′∈[1,H]\{h} x
h′

v,m,zδ
h,h′

v,m,z, ∀ h ∈ [1, H ] (4f)

xh
v,m,z ∈ {0, 1}, yhv,m,n,z ∈ {0, 1}, ∀ v ∈ [1, V ],m ∈ [1,M ], n ∈ [1,m], h ∈ [1, H ], z ∈ [1, Zv].

to improve the Signal-Interference-plus-Noise-Ratio (SINR).

This allows some mobile devices to receive at higher MCS

modes in order to increase the off time for higher energy sav-

ing. In this section, we consider H hexagonal cells that form a

dynamic Single Frequency Network, where each block can be

assigned to a Single Frequency Network independently. Such

an extension requires two major enhancements: (i) expanding

the solution space to multiple cells and (ii) modeling Single

Frequency Network gains from neighboring cells. We explain

each of the enhancements below.

Expanding Solution Space. We concurrently consider H
cells, and add a superscript h (h ∈ [1, H ]) to variables

whenever applicable. For example, Nh
v denotes the number

of mobile devices in cell h (h ∈ [1, H ]) who watch video v
(v ∈ [1, V ]). As another example, we let xh

v,m,z (v ∈ [1, V ],
m ∈ [1,M ], z ∈ [1, Zv], and h ∈ [1, H ]) be the decision

variable in the extended formulation. Adding the superscript

allows us to expand the solution space for all H cells.

Modeling Single Frequency Network Gains. In the single-

cell formulation, we assume that wv,m,z (v ∈ [1, V ], m ∈
[1,M ], z ∈ [1, Zv]) is an input to our problem. In real

systems, wv,m,z is a function of the SINR levels of individual

mobile devices. The precise function depends on the MCS

adaptation algorithm, which can be as simple as a stair-wise

function to guarantee a certain bit error rate, say < 5%.

The actual MCS adaptation algorithm belongs to the link

layer, and is out of the scope of this paper. Without loss of

generality, we model the Single Frequency Network gain of

mobile devices watching allocation window z (z ∈ [1, Zv])
of video v (v ∈ [1, V ]) with maximum MCS mode m
(m ∈ [1,M ]), from cell h′ (h′ ∈ [1, H ]) to cell h (h ∈ [1, H ],
h 6= h′) by δh,h

′

v,m,z , which represents the number of more/fewer

mobile devices in h that have maximum MCS mode m
if cell h′ would transmit allocation window z of video v
with MCS mode m as well. Upon considering the Single

Frequency Network gains from all cells, the number of mobile

devices with maximum MCS mode m in cell h is written as:

ŵh
v,m,z = wh

v,m,z +
∑

h′∈[1,H]\{h} x
h′

v,m,zδ
h,h′

v,m,z .

Combining these two enhancements, we get the formulation

for a Single Frequency Network in Eq. (4). The objective

function in Eq. (4a) maximizes the average energy saving

across all H cells. The constraint in Eq. (4b) makes sure that

each cell is not overloaded. The constraint in Eq. (4c) ensures

that every mobile device receives at an MCS mode, which

is equal to or smaller than its maximum MCS mode. The

constraints in Eqs. (4d) and (4e) relate variables yhv,m,n and

xh
v,m. The constraint in Eq. (4f) takes the Single Frequency

Network gains into consideration.

Eq. (4) is a BIP problem and can be solved by existing

optimization solvers [24], [25] for an optimal algorithm like

SCOPT. Moreover, our heuristic algorithm (SCG) may be

extended to solve Eq. (4). One possible extension is to start

with transmitting each video with as many MCS modes as

possible, and iteratively reduce the network load of the cell that

suffers from the largest excessive network load. We notice that

there may be other ways to extend SCG for Eq. (4). However,

the detailed design is out of scope of this paper due to the

space limitations.

VI. EVALUATION

A. Setup

Simulator and Algorithms. We have implemented an on-

demand video streaming system in OPNET [5], which is a

detailed packet-level simulator. We have also implemented the

proposed SCG and SCOPT using a mixture of C/C++, Matlab,

and CPLEX [24] in the simulator. The heuristic SCG algorithm

is evaluated against the optimal solutions generated by SCOPT.

In addition, we have implemented unicast- and multicast-only

policies employed by the current systems, and we refer to

them as CURu and CURm in simulation results. CURu sets

up a unicast connection to each mobile device, while for each

video, CURm selects the minimal MCS mode of all mobile

devices receiving that video.

Wireless Network Configurations. Although our proposed

algorithms are general, we use LTE networks in our simula-

tions. Several enhancements on the OPNET LTE module have

been made, as detailed in the following. To enable multicast,

we employ eMBMS bearers in LTE downlinks. Each bearer

periodically delivers data bursts within every Common Sub-

frame Allocation (CSA) period for energy saving. More details

about LTE networks and their configurations can be found

in [30], [31]. We consider MCS modes 4, 8, 14, and 22 [26]

to support diverse channel conditions, so that each bearer can

carry a video with a minimal bit rate of 256 kbps, which is
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Fig. 4. Energy saving under different bandwidth
constraints in an LTE 10 MHz eMBMS system.
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Fig. 5. Energy saving under different bandwidth
constraints in an LTE 3 MHz eMBMS system.
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Fig. 6. Energy saving in large-scale simulations
of 1,000 mobile devices.

TABLE I
LTE NETWORK CONFIGURATIONS

Parameter Value

Physical Profile LTE 10 MHz FDD

Maximal Transmission Power 0.01 Watt

eNodeB Antenna gain (dBi) 15 dBi

User Equipment Antenna Gain (dBi) -1 dBi

Common Subframe Allocation (CSA) Period 8 frames

eMBMS Subframe Allocation per Frame 6 subframes (Max.)

Maximum Downlink Bit Rate 300 Kbps

Modulation and Coding Scheme (MCS) 4, 8, 14, 22

Evolved Packet System Bearer for Uplink Best effort

Propagation Model Free space, Walfisch-

Ikegami line of sight

Video Stream Bit Rate 256 Kbps

a common bit rate for mobile devices. For each bearer, we

adjust the time intervals between any two adjacent bursts per

the standard [32], [26] in order to prevent overflow/underflow

of the ingress link-layer buffer. The simulator runs the resource

allocation algorithm once every allocation window of 10 s. The

solutions are then mapped to the bearers, i.e., we map a general

resource allocation to an LTE-specific allocation for OPNET.

Table I gives the LTE configurations used in our simulations,

all other configurations follow the defaults set by OPNET.

We consider one and multiple cells for single-cell and single

frequency networks respectively, where each cell covers a 10×
10 km2 area. We consider up to 1,000 mobile users in the

whole area, and the mobile users join the system following a

Poisson process with mean λ, which is set to 20 s by default.

The mobile users are randomly deployed in the covered area,

so that more mobile users are close to the base stations as

cellular operators build more base stations in more crowded

areas. In particular, we assume 90% of mobile users are located

within 1/3 of cell radius. These mobile users either: (i) are

static or (ii) follow Random Waypoint mobility model. Upon

joining the system each mobile user randomly requests for

video.

Videos. For realistic video characteristics, we crawl

YouTube to collect 1,000 videos and we sort them on pop-

ularity. We then employ the Zipf distribution with a skewness

factor α to assign synthetic popularity to each video, so as

to exercise a wider range of popularity distributions. We set

α = 1.5 if not otherwise specified. The YouTube videos are in

240p, and we scale the bit rates up by a factor of 9 to emulate

720p videos, which are popular on modern smartphones. The

resulting popularity, video size, and video quality are used to

drive our simulator.

Performance Metrics. We consider the following perfor-

mance metrics and report average results with 95% confidence

intervals whenever applicable.

• Energy saving: the fraction of time each mobile device

can turn off its network interface to save energy.

• Service ratio: the fraction of mobile devices that can be

served by the video streaming service under the given

bandwidth constraint.

• Service delay: the time difference between a mobile

device switch to a new video and the first packet of that

video arrives at the mobile device. It also affects how fast

our allocations adapt to network dynamics.

B. Results

Near Optimality. We first compare the results achieved

by our SCG algorithm versus those computed by the optimal

algorithm (SCOPT) in terms of energy saving. We simulate a

small number of mobile users (25) in order to be able to com-

pute the optimal results. Figures 4 and 5 present the sample

results from 25 static mobile devices in 10 and 3 MHz LTE

eMBMS networks, respectively, under diverse d between 30%

and 60%. In both figures, the energy saving achieved by our

algorithm is very close to the optimal. In the same figures, we

plot the results achieved by the current multicast-only CURm

and unicast-only CURu algorithms for comparison. We make

three observations on these two figures. First, SCOPT/SCG

outperform CURm by 5% and 20% in energy saving. This

is because SCOPT/SCG leverage unicast communications to

apply more aggressive MCS modes on mobile devices closer to

the base station. Second, when more bandwidth is allocated

for video streaming service (larger d values), SCOPT/SCG

achieve higher energy saving, which approaches that of CURu.

However, different from SCOPT/SCG that support all 25

mobile devices, CURu can only support 12 mobile devices

when d = 30% (not shown in the figure). Third, while SCG

achieves energy saving very close to SCOPT, SCG terminates

in < 1 ms, while SCOPT may take as long as 200 ms.
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1,000 mobile devices.
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In summary, SCOPT/SCG outperforms CURm and CURu

in energy saving and/or service ratio, and SCG runs faster

without compromising the optimality too much. Hence, in the

rest of this paper, we no longer report results from SCOPT.

Scalability to Support More Users. We next consider

1,000 mobile devices in a 20 MHz LTE eMBMS network.

Figure 6 plots the average energy saving achieved by different

algorithms. This figure shows that the proposed SCG algorithm

constantly outperforms CURm in terms of energy saving, and

the gap is larger when more bandwidth is reserved for the

video streaming service. Figure 7 presents the average service

ratio, which shows that CURu only supports < 20 mobile

devices, while the proposed SCG supports up to about 240

mobile devices concurrently: a 6X improvement in scalability.

This figure also reveals that SCG outperforms CURm in service

ratio when d ≤ 60%, which is because the proposed SCG

algorithm intelligently allocates the resources among mobile

devices, while CURm is first-come, first-serve. We note that

reserving more than 60% of resource blocks for on-demand

videos is not a typical setup. Even if that’s the case, the SCG

algorithm still outperform CURm in energy saving as indicated

in Figure 6. Last, Figure 8 reports the service delay of SCG

under diverse d values, which shows the resulting average

delay is about 6.5 s, which is slightly over half of the allocation

window length. If a shorter service delay is required, patching

techniques [20], [21], [22] can be adopted.

We note that, different from the results from static users

(Figures 4 and 5), the energy saving of the SCG algorithm

in Figure 6 is not increasing along with larger d values.

This is because the number of static users is much smaller,

and the SCG algorithm always achieves 100% service ratio.

Therefore, more reserved bandwidth enables more energy-

efficient allocation. In contrast, the number of mobile users

is large, and more reserved bandwidth leads to higher service

ratio as indicated in Figure 7.

Implications of Window Size. We vary the allocation

window size between 2 and 16 s. Intuitively, longer allocation

windows lead to more rooms for optimization, and thus higher

service ratios. We plot the service ratio of the proposed SCG

algorithm in Figure 9, which shows a small increasing trend.

On the other hand, Figure 10 gives the average service delay

under different allocation window sizes. This figure shows that

the service delay increases significantly with longer allocation

windows. Combining these two figures, we conclude that the

benefits of larger allocation window sizes are out-weighed

by the longer service delay. Given that the SCG algorithm

terminates in < 1 ms in our simulations, we recommend short

allocation window size.

Mobility. We configure mobile devices to move following

Random Waypoint mobility model. The mobility speed is

randomly chosen between 0–72 km/hr. We consider up to 50

mobile devices in this experiment. With the proposed SCG

algorithm, the resulting energy saving does not change much

with the number of mobile devices, even when they are mobile.



The observed energy saving is about 96%, which is higher than

91% achieved by CURm. CURu can not support all 50 mobile

devices, and thus we do not report the results from it.

Number of Videos. We next vary the number of videos

in the video streaming service. We employ a 10 MHz LTE

eMBMS network with d = 60%. There are 36 mobile users.

Figure 11 reports the energy saving achieved by different

algorithms under diverse number of videos. This figure shows

that SCG always outperforms CURm, and the performance

gap is larger with fewer videos, which can be attributed to the

larger optimization room leveraged by the SCG algorithm.

VII. CONCLUSIONS

We studied the resource allocation problem of a hybrid

multicast-unicast video streaming service in cellular networks.

The goal of employing the hybrid model is to support the ever

increasing number of mobile users requesting video services.

We formulated an optimization problem for the hybrid stream-

ing service, which maximizes the number of supported mobile

devices, and their energy saving in single-cell networks. We

showed that our problem is NP-Complete, and described an

optimal solution (SCOPT). To avoid exponential running time,

we proposed an efficient algorithm (SCG), which terminates

in polynomial time and produces near optimal results. Our

simulation results indicate that: (i) SCG results in higher

energy saving than the algorithms that only support either

unicast or multicast, (ii) SCG achieves energy saving very

close to that of SCOPT, while it can run in real time, and (iii)

more bandwidth reserved for video streaming service or fewer

supported videos result in higher energy saving.
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Mobile Broadband. Elsevier Ltd., 2011.
[7] O. Hillestad, A. Perkis, V. Genc, S. Murphy, and J. Murphy, “Delivery

of on-demand video services in rural areas via IEEE 802.16 broadband
wireless access networks,” in ACM international workshop on Wireless

multimedia networking and performance modeling, Terromolinos, Spain,
October 2006, pp. 43–52.

[8] A. Majumdar, D. Sachs, I. Kozintsev, K. Ramchandran, and M. Yeung,
“Multicast and unicast real-time video streaming over wireless LANs,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 12, no. 6, pp. 524–534, June 2002.

[9] J. Lee, H. Park, S. Choi, and J. Choi, “Adaptive hybrid transmission
mechanism for on-demand mobile IPTV over WiMAX,” IEEE Transac-

tions on Broadcasting, vol. 55, no. 2, pp. 468–477, June 2009.

[10] H. Hlavacs and S. Buchinger, “Optimal server bandwidth for mobile
video on demand,” Annals of Telecommunications, vol. 65, no. 1, pp.
31–46, February 2010.

[11] J. Yoon, H. Zhang, S. Banerjee, and S. Rangarajan, “MuVi: A mul-
ticast video delivery scheme for 4G cellular networks,” in Proc. of

ACM International Conference on Mobile Computing and Networking

(Mobicom’12), Istanbul, Turkey, August 2012, pp. 209–220.

[12] M. Anand, E. Nightingale, and J. Flinn, “Self-tuning wireless network
power management,” Wireless Networks, vol. 11, no. 4, pp. 451–469,
July 2005.

[13] X. Zhang and K. Shin, “E-MiLi: energy-minimizing idle listening in
wireless networks,” IEEE Transactions on Mobile Computing, vol. 11,
no. 9, pp. 1441–1454, September 2012.

[14] H. Zhu and G. Cao, “On supporting power-efficient streaming ap-
plications in wireless environments,” IEEE Transactions on Mobile

Computing, vol. 4, no. 4, pp. 391–403, July 2005.

[15] C. Luna, Y. Eisenberg, R. Berry, T. Pappas, and A. Katsaggelos, “Joint
source coding and data rate adaptation for energy efficient wireless video
streaming,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 10, pp. 1710–1720, December 2003.

[16] R. Ghaffar, “LTE-Advanced Multi-User MIMO: Improved feedback
and precoding design,” in IEEE International Vehicular Technology

Conference (VTC Fall), Quebec City, Canada, September 2012, pp. 1–5.

[17] Y. Zhao, N. Do, S. Wang, C. Hsu, and N. Venkatasubramanian, “O2SM:
Enabling efficient offline access to online social media and social
networks,” in Proc. of ACM/IFIP/USENIX International Conference on

Middleware (Middleware’13), Beijing, China, December 2013.

[18] S. Wang, T. Lin, Y. Wang, C. Hsu, and X. Liu, “Poster: Fusing
prefetch and delay-tolerant transfer for mobile videos,” in Proc. of ACM
International Conference on Mobile Systems, Applications and Services

(MobiSys’13), Taipei, Taiwan, June 2013, p. 525.

[19] Y. Yu, P. Hsiu, and A. Pang, “Energy-efficient video multicast in 4G
wireless systems,” IEEE Transactions on Mobile Computing, vol. 11,
no. 10, pp. 1508–1522, October 2012.

[20] H. Hlavacs and S. Buchinger, “Hierarchical video patching with opti-
mal server bandwidth,” ACM Transactions on Multimedia Computing,

Communications, and Applications, vol. 4, no. 1, pp. 8:1–8:23, January
2008.

[21] C. Griwodz, M. Liepert, M. Zink, and R. Steinmetz, “Tune to Lambda
patching,” SIGMETRICS Performance Evalulation Review, vol. 27,
no. 4, pp. 20–26, March 2000.

[22] A. Bar-Noy, J. Goshi, R. Ladner, and K. Tam, “Comparison of stream
merging algorithms for media-on-demand,” Multimedia Systems, vol. 9,
no. 5, pp. 411–423, 2004.

[23] J. Kim, T. Kwon, and D. Cho, “Resource allocation scheme for
minimizing power consumption in OFDM multicast systems,” IEEE

Communications Letters, vol. 11, no. 6, pp. 486–488, June 2007.

[24] “IBM ILOG CPLEX,” http://www.ibm.com/software/integration/
optimization/cplex-optimizer.

[25] “GLPK (GNU Linear Programming Kit),” http://www.gnu.org/software/
glpk/.

[26] “Evolved Universal Terrestrial Radio Access (E-UTRA); physical layer
procedures (release 9). Third Generation Partnership Project (3GPP)
standard TS 36.213 ver. 9.2.0,” 2010.

[27] “Recommended bit rates for live streaming,” http://www.adobe.com/
devnet/adobe-media-server/articles/dynstream live/popup.html.

[28] E. Dahlman, S. Parkvall, and J. Sk’́old, 4G: LTE/LTE-Advanced for

Mobile Broadband. Academic Press, Inc., 2011.

[29] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming
over HTTP dataset,” in Proc. of the 3rd Multimedia Systems Conference
(MMSys ’12), New York, NY, USA, February 2012, pp. 89–94.

[30] “LTE Model User Guide, OPNET Modeler 9.1 Documentation.”

[31] Y. Zaki, T. Weerawardane, C. Görg, and A. Timm-Giel, “Long term
evolution (LTE) model development within OPNET simulation environ-
ment,” in OPNET workshop, Washington, DC, August 2011.

[32] F. Hartung, U. Horn, J. Huschke, M. Kampmann, T. Lohmar, and
M. Lundevall, “Delivery of broadcast services in 3G networks,” IEEE

Transactions on Broadcasting, vol. 53, no. 1, pp. 188–199, March 2007.


