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Abstract—With the increasing sophistication and maturity of
biomedical sensors and the significant advances on low-power
circuits and wireless communications technologies, wireless body
area networks (WBANs) have emerged recently to provide per-
vasive health monitoring for humans. In WBANs, smart phones
can serve as data sinks to forward the sensing data to back-end
servers. Due to the battery concern of smart phones and the
postural changes of humans, temporary disconnection between
sensors and their associated smart phones may frequently happen
in WBANs. In this case, the sensing data would be lost when
the limited memory space of sensors overflows. To prevent
excessive data loss, this paper proposes a scheme to parasitize
the data on existing public Wi-Fi networks, once the links from
sensors to the smart phones become unavailable. Specifically,
an optimization problem to maximize the time during which
data loss can be avoided by exploiting the data parasitizing
scheme is formulated, where a decision set of the packets’
size and sending timing to public Wi-Fi networks needs to be
determined. We develop an offline algorithm to obtain an optimal
decision set and present an efficient online algorithm for practical
implementations. The feasibility of the proposed scheme and the
efficacy of the algorithms are demonstrated through prototype
implementations on a WBAN testbed with biomedical sensor
devices for real-world experiments.

Index Terms—Wireless body area networks, data loss preven-
tion, data parasitizing

I. INTRODUCTION

Traditional biomedical sensors, such as clinical thermome-
ters and sphygmomanometers, are used popularly but solely
for personal health care. Recently, chronic diseases have
become one of the leading causes of death and disability in
many countries. One of the best ways to save the lives of
these patients relies on continuous health monitoring [1]. To
effectively collect measurements and send the measured data
to a monitoring system, a communication network amongst
biomedical sensors is needed. As a result, wireless body
area networks (WBANs), a new generation of wireless sensor
networks (WSNs), have emerged [2]. In a WBAN, biomedical
sensors, deployed on the patients’ body, report their measure-
ments to a data sink by wireless transmission in a single-
hop or multi-hop fashion. The sink often links to a healthcare
institution through wide area networks. Thanks to the WBAN,
medical specialists in the institution can collect real-time
health-related information, so appropriate and timely medical
advice or treatment can be delivered to the patients.

The application scenarios of WBANs are initially given
in ambulances and hospitals. The patients are often in high
risk of death and emergency. The mobility of the patients is

low since they cannot move freely by themselves. For this
kind of scenario, the WBAN needs to deliver data in time
and provide excellent user experience to medical specialists,
who may not be familiar with electronic devices [3], [4]. As
people are paying more attention to their health, WBANs
start to extend their applications to home or public space.
The patients in such scenario are usually not in emergency
but in some complex circumstances WBANs have to deal
with. For example, unlike traditional WSNs, the postural
movement of patients has strong impact on the performance
of WBANs [5], [6]. Furthermore, people are used to carrying
their smart phones anywhere and anytime. Smart phones are
equipped with high processing power and multiple wireless
radio interfaces. The flexible software development kits and
rich user interfaces supported by smart phones make it easy
for patients to configure and control their WBANs. With so
many great properties, the smart phone is an excellent choice
to serve as the data sink of WBANs [7], [8]. In this paper, we
focus on the scenario in home or public space where patients
deployed with biomedical sensors and carrying smart phones
can freely move and change their postures.

For the WBANs used in home or public space, temporary
disconnection between any two sensors or between a sen-
sor and the data sink may happen mainly in two kinds of
situations. The first one is the postural changes caused by
human movement [9], which leads to varying link quality.
The other cause is on the data sink, i.e., the smart phone.
A smart phone needs to perform many different tasks, such as
collecting data from the sensors, making phone calls, or surfing
the Internet, which would lead to undesirably high energy
consumption [10]. Thus, a smart phone may run out of battery
and the battery needs to be recharged or changed. As a result,
temporary disconnection between sensors and the data sink
occurs. For the focused scenario, since the patients are not in
emergency, the measurement data collected by sensors can be
delivered later after the connection is recovered, which means
that delivering complete and intact data is more important than
real-time data delivery [2], [11].

A straightforward solution to prevent data loss is to tem-
porarily store the data on the sensor storage when disconnec-
tion happens. However, the sensors in WBANs are small [11],
and the external storage is an extravagance on this kind of
devices. Instead, the measurement data is usually stored in
the embedded memory in the micro-controller of sensors.
The size of the embedded memory is relatively small andISBN 978-3-901882-58-6 c© 2014 IFIP



can just keep the data from the typical measurements, e.g.,
electrocardiography (ECG), for less than 10 seconds [12], [13].
Since the focused scenario is in home or public space, it is
expected that there are some existing wireless accesses such as
Wi-Fi hotspots in the surroundings. This observation motivates
us to prevent data loss due to temporary disconnection in
WBANs by “parasitizing” the measurement data on those Wi-
Fi networks without the need for sensors to have external
storage.

In this paper, we want to ensure the intactness of biomed-
ical sensing data for WBANs once temporary disconnection
happens. It is no doubt that Wi-Fi networks are ubiquitous
nowadays. In addition, PING, a popular network adminis-
tration utility to test the reachability of a host, operates
by sending Internet Control Message Protocol (ICMP) echo
request packets to a target host. Upon receiving an echo
request packet, the target host will send an echo reply packet
back, and the reply packet will contain the data received in
the request packet [14]. The above observations serve as the
foundation of our proposed scheme that tries to parasitize
the measurement data on surrounding Wi-Fi networks. The
proposed data parasitizing scheme makes use of ICMP echo
request/reply packets to carry the measurement data in Wi-Fi
networks by embedding the data into multiple echo request
packets and sending those packets to the Internet hosts, such
as gateways and routers. With the time difference (i.e., delay)
between a pair of echo request and reply packets due to net-
work propagation and host processing, the Wi-Fi netowrk can
be considered as temporary storage for sensors. By carefully
making a decision on when to send the request packets and
how much data to be embedded in the echo request packets, the
measurement data generated during temporary disconnection
can be preserved.

This paper makes three contributions: firstly, we propose the
idea of “data parasitizing” and derive the key requirements
to make use of data parasitizing to ensure the intactness of
measurement data when temporary disconnection happens in
a WBSN. Secondly, an optimal offline solution to fulfill the
requirements has been proposed to serve as a performance
baseline, and a practical online algorithm inspired by the
properties of the offline solution is developed. Finally, we
implement our proposed algorithm on WBAN devices and
validate the performance of our data parasitizing scheme
through extensive experiments in real-world environments.

The rest of this paper is organized as follows. Section II
reviews some related works. In Section III, we describe the
system model and formulate the problem. The optimal offline
algorithm and the efficient online algorithm are introduced in
Section IV. Section V reports some experimental results, and
Section VI concludes this paper.

II. RELATED WORKS

WBANs, the key role in future e-health, have attracted
significant interest for a wide range of research topics re-
cently [2], [11]. Unlike traditional WSNs, WBANs are de-
ployed around human bodies; thus, some researchers focused
on understanding the impact of human body tissues on the
propagation of radio waves [15], [16]. Based on those WBAN
radio wave studies, researchers proposed specific medium

access control (MAC) protocols to provide reliable commu-
nications in WBANs [17], [18]. In addition, since WBANs
are adopted to convey important and personal medical infor-
mation, some researches have been carried out to offer more
stringent security and privacy for WBANs [7], [19].

Apart from the obstruction of human bodies, the perfor-
mance of WBANs is also significantly influenced by the pos-
tural movement of patients. The postural movement may cause
temporary disconnection between nodes in the network [20].
Some researches have been done to tackle this problem from
the routing perspective. Latre et al. [21] proposed a protocol
that constructs routing trees in a distributed manner. Then,
by carefully scheduling communication time-slots among the
nodes in WBANs, the proposed protocol aims to offer good
resilience to mobility. Another group of researchers bor-
rowed the concept from delay tolerant networks, where the
information about the postural movement has been used to
improve the efficiency of routing when external storage is
available [22], [23]. Furthermore, Liang et al. [9] proposed
a routing framework for WBANs. They developed a model to
predict link quality, and the prediction result is used to improve
routing reliability and resist data injection attacks. This work
can ensure reliable routing, but the task of ensuring that the
measurement data is intact remains untouched.

Our proposed scheme exploits the properties of ICMP echo
request/reply packets. In networking area, ICMP request/reply
packets are mostly utilized to measure the round trip time so as
to determine the bandwidth and latency of network links [24].
Instead of using such packets as probes, ICMP can be used for
another purpose. The ptunnel [25] and icmptx [26] applications
tunnel TCP/IP connections using ICMP echo request and reply
packets. Those implementations serve as proofs-of-concept
that ICMP packets can be used to encapsulate data. When
temporary disconnection happens in WBSNs, we cleverly
utilize ICMP echo request/reply packets to “parasitize”the
measurement data in surrounding Wi-Fi networks to prevent
excessive data loss. To the best of our knowledge, this is a
very early attempt and has not been considered before.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce our system model, network
architecture, and assumptions underlying the system model.
Then, we formally define the design objective and the problem
under investigation.

A typical WBAN is comprised of a data sink and multiple
biomedical sensors. The data sink performs the initialization,
maintenance, and control functions in the network. The data
sink also serves as a gateway connected to healthcare institu-
tions through a wide area network (WAN). The communication
of WBAN nodes can be achieved in a single-hop or multi-hop
fashion. Without loss of generality, in this paper, we consider
the system model based on a WBAN with multi-hop communi-
cations [27], where sensors are equipped with data forwarding
capability. There exists a communication link between any two
nodes if they are within each other’s communication range.
A routing tree rooted at the data sink is constructed. Here,
any existing WBAN tree construction algorithm can be used,
and any existing WBAN routing protocol can be utilized for
identifying next-hop routing candidates. In other words, our



proposed scheme is compatible with any kind of routing trees
and protocols.

Our focused scenario for WBANs consists of a smart phone,
carried by a patient serves as the data sink, and multiple
biomedical sensors deployed on the patient’s body. Each of
those biomedical sensors can sense one or more kinds of
health conditions, such as blood pressure, glucose, intraocular
pressure, and electrocardiography. For ease of presentation,
we assume that every biomedical sensor senses only one kind
of health conditions, although our scheme remains applicable
when this assumption is relaxed. Each sensor can send the
measurement data to the data sink via multi-hop wireless
communications. The connection among sensors and the smart
phone generally use the low-power radio (IEEE 802.15.4,
802.15.6 or Bluetooth LE). The smart phone is connected
to a healthcare institution through the WAN. The medical
specialists in the institution can monitor, collect, and analyze
the health conditions from the measurement data forwarded
by the smart phone.

As mentioned previously, temporary disconnection of some
communication links may happen due to the postural move-
ment of patients and the running-out of batteries on smart
phones. This may lead to communication disruption, and the
measurement data from those sensors cannot be sent to the
data sink during the disruption period. If a sensor’s embedded
memory is fully occupied by its sensing data during that
period, then some of the measurement data would get dropped
and be lost. In this paper, we propose a data loss prevention
scheme by parasitizing the measurement data on surrounding
Wi-Fi networks. We can observe that Wi-Fi networks are
ubiquitous. If the Wi-Fi networks are completely-open, the
device can upload the sensing data directly to the server
on the Internet. However, most of the Wi-Fi networks are
using web-based authentication. Even though a person does
not have a valid account and password, some hosts, like web
servers, domain name servers, or authentication servers owned
by the service provider, in the provider’s network can still
be reached by ICMP echo request packets supported by the
Internet protocol suite. The standard protocol of ICMP echo
request/reply packets has an innate property that the reply
packet must contain the same data carried in the corresponding
request packet.

By exploiting this property, we can parasitize the measure-
ment data in those Wi-Fi networks. When a sensor device
notices that it is disconnected from its WBAN, the device
starts to find available Wi-Fi networks in the surroundings.
Since the disconnection is caused by the postural changes of
patients or the battery issue of the data sink, the sensor on the
body can still get a chance of having good link quality with
those nearby Wi-Fi access points. Then, the device embeds
the still-generated measurement data into multiple ICMP echo
request packets and sends those packets to some hosts on one
of the available Wi-Fi networks. After a period of time, the
echo reply packets carrying the exactly same measurement
data will be sent back. The device can repeat constructing and
sending such ICMP echo request packets with the data carried
until the connection in the WBAN is recovered. In this way, we
can keep the measurement data intact during the disconnection
period.

Ar
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Energy Harvesting Communication System
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Abstract—We consider the optimal packet scheduling problem
in a single-user energy harvesting wireless communication sys-
tem. In this system, both the data packets and the harvested
energy are modeled to arrive at the source node randomly. Our
goal is to adaptively change the transmission rate according to the
traffic load and available energy, such that the time by which all
packets are delivered is minimized. Under a deterministic system
setting, we assume that the energy harvesting times and harvested
energy amounts are known before the transmission starts. For
the data traffic arrivals, we consider two different scenarios.
In the first scenario, we assume that all bits have arrived and
are ready at the transmitter before the transmission starts. In
the second scenario, we consider the case where packets arrive
during the transmissions, with known arrival times and sizes.
We develop optimal off-line scheduling policies which minimize
the time by which all packets are delivered to the destination,
under causality constraints on both data and energy arrivals.

Index Terms—Energy harvesting, rechargeable wireless net-
works, transmission completion time minimization.

I. INTRODUCTION

WE consider wireless communication networks where

nodes are able to harvest energy from nature. The

nodes may harvest energy through solar cells, vibration ab-

sorption devices, water mills, thermoelectric generators, mi-

crobial fuel cells, etc. In this work, we do not focus on

how energy is harvested, instead, we focus on developing

transmission methods that take into account the arrivals of

the data packets as well as the arrivals of the harvested
energy during the course of transmission. As shown in Fig. 1,

the transmitter node has two queues. The data queue stores

the data arrivals, while the energy queue stores the energy

harvested from the environment. In general, the data arrivals

and the harvested energy can be represented as two indepen-

dent random processes. Then, the optimal scheduling policy

becomes that of adaptively changing the transmission rate and

power according to the instantaneous data and energy queue

lengths.
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Fig. 1. An energy harvesting communication system model.

In this work, we consider the off-line problem where we

assume the availability of the off-line knowledge of energy

and data arrivals at the transmitter. Our goal is to determine

the structural properties of an optimal off-line schedular.

In this paper, we determine the properties of the optimal

off-line solution, and develop an optimal off-line algorithm.

We incorporate channel fading and random energy arrivals

into our formulation, and develop the corresponding dynamic

programming based and simpler heuristic on-line algorithms

in [2]–[4].

In this paper, we consider a single node shown in Fig. 2.

We assume that packets arrive at times marked with × and

energy arrives (is harvested) at points in time marked with ∘.

In Fig. 2, !! denotes the number of bits in the "th arriving

data packet, and #! denotes the amount of energy in the "th
energy arrival (energy harvesting). Our goal then is to develop

methods of transmission to minimize the time, $ , by which all

of the data packets are delivered to the destination. The most

challenging aspect of our optimization problem is the causality
constraints introduced by the packet and energy arrival times,

i.e., a packet may not be delivered before it has arrived and

energy may not be used before it is harvested.

The trade-off relationship between delay and energy has

been well investigated in traditional battery powered (un-

rechargeable) systems. References [5]–[10] investigate energy

minimization problems with various deadline constraints. Ref-

erence [5] considers the problem of minimizing the energy

in delivering all packets to the destination by a deadline. It

develops a lazy scheduling algorithm, where the transmission

times of all packets are equalized as much as possible, subject

to the deadline and causality constraints, i.e., all packets must

be delivered by the deadline and no packet may be transmit-

ted before it has arrived. This algorithm also elongates the

transmission time of each packet as much as possible, hence

the name, lazy scheduling. Under a similar system setting,

[6] proposes an interesting novel calculus approach to solve

the energy minimization problem with individual deadlines
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Fig. 1. The system model on a sensor device

The objective of our scheme is to keep the measurement
data intact during the disconnection period. In the previous
paragraph, we elaborate on the main idea of our “data para-
sitizing” scheme. Here, we further formulate the problem that
our scheme tries to tackle. Since the scheme is applied to each
device (i.e., biomedical sensor) individually, the interaction
among devices is not discussed in this paper.

Fig. 1 depicts the system model of the scheme on a senor
device. A sensor device consists of a sensor, a data queue,
and a transceiver. The sensor is capable of sensing one
specific health condition and generates raw measurement data
periodically. The data arrival rate of the raw measurement data
is denoted as Ar (bps). The data queue is the temporary storage
of the measurement data before they are sent out. Since we
assume that our sensing device does not have external storage,
the length of data queue Q (bits) is limited by the memory
size of the micro-controller on the device. The transceiver is
capable of sending and receiving data via a wireless link.
Here we assume the transceiver on each WBAN device is
compatible with Wi-Fi/802.11 standards. Also, we assume that
when the device is disconnected from the WBAN, the device
itself will refuse to forward other devices’data. That is, the
transceiver on the device will not receive data from other
WBAN devices during the disconnection. The bandwidth of
the Wi-Fi link to the surrounding access point (AP) is denoted
as B (bps). t denotes the system time, counting from zero
after the disconnection happens. The raw measurement data
generated by the sensor will flow into the data queue. We
denote A(t) as the total amount of accumulated data generated
from the sensor to the data queue at time t. A(t) can be
derived from Ar × t. The transceiver sends the packets to
a Wi-Fi access point with the data taken out from the data
queue. To protect the privacy of the data, the data in those
ping packets should be encrypted. We denote D(t) as the total
amount of accumulated data departed from the transceiver at
time t. In addition, the data from echo reply packets received
by the transceiver will be put into the data queue. We denote
R(t) as the total amount of accumulated data received by the
transceiver at time t. A major constraint in the system is that
the amount of the data inside the data queue cannot be larger
than the length of the queue at any time. If the constraint
is violated, data loss will happen due to data queue overflow.
Then, the system is deemed dead. The system lifetime, denoted
by T , means that the system dies at time T . In other words,
the system lifetime is the interval between the time of the
disconnection happening and that of the first data loss.

Recall that our objective is to keep the measurement data
intact during the disconnection. If the scheme can achieve a
longer system lifetime, we can more resist against temporary



disconnection for WBANs. As a result, for this problem of
data parasitizing, our objective can be transferred to maximize
the system lifetime. To solve this problem, we need to decide
when to send an ICMP echo request packet and how much data
the packet should carry. For each ICMP echo request packet
sent out by the transceiver, a corresponding ICMP echo reply
packet will be sent back to the transceiver. For each pair of
ICMP echo request/reply packets, tn, dn, and rn for the nth
packet pair are denoted as the request packet sending time,
the amount of data the packet carries, and the time of the
reply packet received by the transceiver, respectively. Then,
D(t) = Σn1dn such that tn ≤ t, and R(t) = Σn1 rn such
that rn ≤ t. We want to send the data out of the data queue
as quickly as possible to prevent the queue from overflow.
However, in addition to the data generated by the sensor, when
the reply packet is back, the data carried by that packet needs
to be stuffed into the data queue as well, so sending out packets
too early may not be a good choice. Thus, how to find an
optimal packet sending decision is the main challenge for the
problem.

To keep the system alive, the key is to prevent the data queue
from overflow. During the disconnection period, the data will
be fed into the data queue of a device from two sources: the
measurement data generated from the sensor and the data in
the echo reply packets received by the transceiver. The sensor
periodically generates the measurement data, and these data
will then be fed into the data queue continuously. Eventually,
the queue will be full if we do not send the data out via echo
request packets. Intuitively, we want to send the data out as
soon as possible to keep the queue empty. However, those data
sent out will be returned after some time. When those data
are back, we must make sure that the queue has some space
to accommodate them. This observation yields the following
constraint for the data queue:

A(t)−D(t) +R(t) ≤ Q− dn, n = 1, ..., N − 1 | t = rn

The equation ensures that the data queue has some space to
accommodate the data carried by the reply packets when the
packets arrive. Specifically, the amount of data in the data
queue at time t should always be less than the length of the
queue minus the amount of data carried by the reply packet
arrives at time t.

For optimizing the performance of our data parasitizing
scheme, we formulate the Maximum system Lifetime Data
Parasitizing (MLDP) Problem as follows.

Maximum system Lifetime Data Parasitizing (MLDP)
Problem

Input: Sensor data arrival rate Ar (bps), length of data queue
Q (bits), and Wi-Fi link bandwidth B (bps) to an AP, the
maximum amount S of data an ICMP echo request packet
can carry.

Output: System lifetime T , packet sending decision set ρ =
(t1, d1), ..., (tN , dN ), 0 < t1 < ... < tN < T , where N is the
number of packets sent by the transceiver before time T .

Objective: Maximize system lifetime T under the constraint
that A(t)−D(t) +R(t) ≤ Q− dn, n = 1, ..., N − 1 | t = rn
always holds when t ∈ (0, T ) and every d1, ..., dN ≤ S.

IV. OUR DATA PARASITIZING SCHEME

This section presents our data parasitizing scheme. In Sec-
tion IV-A, we discuss some important properties of packet
sending decision sets. Then, based on the discussion, we
propose an offline algorithm in Section IV-B to solve the
MLDP problem and obtain an optimal decision set. Finally,
an efficient online algorithm inspired by the optimal offline
algorithm is developed in Section IV-C to provide a practical
implementation in real-world scenarios.

A. Discussion on Packet Sending Decision Sets
To further analyze the impact of the packet sending decision

set on the system lifetime, we define the system capacity C
and depict the relationship between the system capacity and
the system lifetime. The system capacity indicates how much
data the system can store. Intuitively, a larger system capacity
means that the system can store more data generated from
sensors; thus, the system lifetime is longer, and vice versa.
Consequently, we have the first property that if a decision set
can achieve a larger system capacity, then a longer system
lifetime can be obtained, and vice versa.

Property 1. Two packet sending decision sets: ρ1 and ρ2.

Tρ1 > Tρ2 ⇐⇒ Cρ1 > Cρ2

In the system, there are two places where the data can be
stored. One is the data queue on the sensor device. The other is
the Wi-Fi network via our data parasitizing scheme. Obviously,
the capacity of the data queue is the length of the queue. On
the other hand, we denotes CB as the capacity of the Wi-Fi
network. Then, C = Q + CB . Since the length of the data
queue is limited by the micro-controller’s memory space, the
only parameter we can adjust is the capacity of the Wi-Fi
network. The size of CB depends on how much data echo
request packets can carry before they are sent back. That is
where the decision set comes in. The decision on each packet’s
sending timing and data size will affect CB . During the time
interval from a request packet sent out to its corresponding
reply packet back, the data can be: (1) on the way to the
destination host (i.e., carried by the echo request packet), (2)
in the host (i.e., processing), or (3) on the way back to the
device (i.e., carried by the echo reply packet). A maximum CB
can be obtained if the communication links and the processing
queue of the host are fully occupied by the measurement data.
Ideally, the upper limit of CB is decided by the wireless
link bandwidth B. However, in reality, the communication
links cannot be completed filled with the measurement data
since some other information, such as control messages and
packet headers, needs to be delivered in the Wi-Fi network.
To increase CB , the total size of each packet’s header should
be reduced. Since each packet’s header size is fixed, the only
thing we can do is to reduce the number of packets required
to carry a unit of data. Thus, we have the second property
that the fewer the packets required to carry a unit of data, the
larger the system capacity.

Property 2. Two packet sending decision sets: ρ1 and ρ2.

Nρ1
Eρ1

<
Nρ2
Eρ2

=⇒ Cρ1 > Cρ2



where E = ΣNn=1dn is denoted as the total amount of data
carried by the echo request packets sent out.

Based on Properties 1 and 2, if we can reduce the number
of packets required to carry a unit of data, the system capacity
can be increased and the system lifetime will be prolonged.
Finally, we have a corollary that the fewer the packets required
to carry a unit of data, the longer the the system lifetime.

Corollary 1. Two packet sending decision sets: ρ1 and ρ2.

Nρ1
Eρ1

<
Nρ2
Eρ2

=⇒ Tρ1 > Tρ2

B. An Optimal Offline Algorithm

The above corollary suggests the form of the optimal offline
determination, i.e., to maximize the interval between each pair
of successive echo request packets. Suppose that the arrival
times of the echo reply packets are known in advance once
the sending times of the corresponding echo request packets
are determined. That is, rn can be obtained once the algorithm
determines (tn, dn). In this way, we can utilize a greedy
approach to derive the optimal decision set. We then proceed
to define the optimal determination.

Given the sensor data arrival rate Ar, the length of data
queue Q (bits), the maximum amount of data a packet can
carry S, and a function PKT RETURN(t, d) that will return
the corresponding rn based on (tn, dn) for the nth packet. For
the first packet, we define

t∗1 = t | A(t) = min{Q,S}.
d∗1 = min{Q,S}. (1)

The first echo request packet will be sent out once the data
queue is about to overflow or the amount of data in the queue
reaches the upper bound a packet can carry. In other words,
this packet will be sent out only when necessary, and will
carry as much data as possible.

Then, we derive the reply packet return time: r∗1 =
PKT RETURN(t∗1, d

∗
1). For the nth packet (n ≥ 2), we

define (assuming that the nearest coming reply packet is the
mth packet)

t∗n = t | t > t∗n−1, A(t)−D(t) +R(t) = min{Q− d∗m, S},
r∗m = PKT RETURN(t∗m, d

∗
m) > t

d∗n = min{A(t)−D(t) +R(t), S}.
(2)

That is, the packets will be sent when (1) the amount of data
in the data queue is about to become larger than the length
of the queue minus the amount of data carried by the coming
reply packet, or (2) the amount of data in the queue reaches
the upper bound a packet can carry. Moreover, this packet
must carry as much data as possible. The above calculation
repeats until we cannot find a feasible t∗n. That is, ∀ t >
t∗n−1, A(t) −D(t) + R(t) > Q. Suppose that the calculation
stops at the N th packet. Then, the decision set determined by
the offline algorithm is defined as follows.

Definition 1 (OOD). The packet sending decision set ρ∗ given
by

ρ∗ = (t∗1, d
∗
1), ..., (t∗N , d

∗
N )

is called the Optimal Offline Determination (OOD).

Now, we proceed to prove the feasibility and the optimality
of OOD.

Lemma 1. OOD is a feasible decision set.

Proof: In OOD, based on Eq. 1 and 2, the next echo
request packet will be sent out immediately before the amount
of data in the data queue becomes larger than the length of
the queue minus the amount of data carried by the coming
reply packet. Thus, A(t) −D(t) + R(t) ≤ Q − dn holds for
n = 1, ..., N − 1. In addition, the amount of data carried by a
request packet is always less than or equal to S. Thus, dn ≤ S
holds for n = 1, ..., N − 1. As a result, ODD is a feasible
decision set for the MLDP problem.

Theorem 1. OOD is an optimal decision set.

Proof: We prove this theorem by contradiction. Suppose
there exists a feasible decision set ρ′ with T ′ > T ∗.

The first packet in ρ′ cannot be sent later then that in
ρ∗. Otherwise, the data queue will overflow. Thus, the first
packet’s sending time in ρ′ is not later than that in ρ∗.
Accordingly, the amount of data carried by the first packet
in ρ′ is not more than that in ρ∗. Thus, we have

t′1 ≤ t∗1, d′1 ≤ d∗1. (3)

Assume that the kth packet’s sending time in ρ′ is not later
than that in ρ∗, and the amount of data carried by the kth
packet in ρ′ is not more than that in ρ∗, for some unspecified
number k. If the k + 1th packet’s sending time in ρ′ is later
than that in ρ∗, the data queue must overflow since the time
interval between the kth and k + 1th packets in ρ′ is larger
than that in ρ∗. Thus, the k + 1th packet’s sending time in ρ′

is not later that in ρ∗. With the same argument, the amount
of data carried by the k+ 1th packet in ρ′ is not more that in
ρ∗. Thus, we have

t′n ≤ t∗n, d′n ≤ d∗n ∀n > 1. (4)

Then, we discuss three possible cases, depending on the
total number of packets N in ρ′ and ρ∗:

Case 1 (N ′ < N∗): If the total number of packets in ρ′

is smaller than that in ρ∗, based on Eq. 4, the N ′th packet’s
sending time in ρ′ is earlier than the N∗th packet’s sending
time in ρ∗. Thus, the system lifetime achieved by ρ′ will be
shorter than that achieved by ρ∗. It can be derived that T ∗ >
T ′.

Case 2 (N ′ = N∗): Since the total number of packets in
ρ′ is equal to that in ρ∗, according to Eq. 3 and 4, the system
lifetime achieved by ρ′ will not be longer than that achieved
by ρ∗. It can be derived that T ∗ ≥ T ′.

Case 3 (N ′ > N∗): If the total number of packets in ρ′ is
larger than that in ρ∗, the system lifetime achieved by ρ′ will
not be longer than that achieved by ρ∗ since the number of
packets required to carry a unit of data in ρ′ is larger than that
in ρ∗. Thus, it can be derived that T ∗ ≥ T ′.

Finally, we conclude that T ∗ ≥ T ′, which contradicts the
assumption and complete the proof.



C. An Online Algorithm

In this section, we present an online algorithm. Unlike the
optimal offline algorithm which is given the exact time at
which each echo reply packet will be received, an online
algorithm has no idea about the information of future reply
packets. Thus, for online decision set determination, we utilize
two techniques to overcome that challenge: one is a simple
estimation on each echo reply packet time’s receiving time.
The other one is an additional swap space for the data queue.

Before proceeding to define the online determination, we
elaborate on the two techniques first. The first technique is to
estimate the receiving time of each reply packet. Given the
sensor data arrival rate Ar, the length of the data queue Q
(bits), the maximum amount of data a packet can carry S,
and the wireless communication bandwidth B (bps), unlike
the offline algorithm, the online algorithm will send out an
echo request packet carrying an amount S of fake data before
sending out the first echo request packet. This packet serves
as a probe to do the echo reply packet time estimation. We
denote Best as the estimated bandwidth of the wireless link.
In the beginning, we have Best = B before the corresponding
echo reply packet of the probe packet is received. After the
corresponding echo reply packet is received, Best will be
updated:

Best =
S + Sh
r0 − t0

. (5)

where r0 is the reply packet’s receiving time, t0 is the request
packet’s sending time, and Sh is the size of the packet header.

Note that, Best, different from traditional bandwidth estima-
tion, cannot be considered as a real bandwidth estimated since
the host’s processing time is also included in the estimation.
However, it just fits our need here because what we need is
the time when the echo reply packet will be back, not the
real-time bandwidth of the wireless communication link. The
online algorithm only sends one probe packet. After that, Best
will keep being updated by the echo reply packets carrying the
measurement data according to Eq. 5. When each echo request
packet is sent out, the corresponding reply packet’s receiving
time is estimated by

rn =
dn + Sh
Best

+ tn

for the nth packet.
The second technique is to increase the swap space of the

data queue. The offline determination has only to ensure that
the queue has enough space for the data carried by each
echo reply packet immediately before receiving that packet.
However, for the online determination, we are not sure when
the packet will be received exactly. The simple estimation
described above may give rise to some errors. The errors can
lead to data queue overflow and the death of the system as a
consequence, if there is no enough space for the data carried
by the coming reply packet. To reduce the possibility for the
occurrence of this case, an extra space is reserved from the data
queue. The size of the extra space, denoted as Qs(t) at time
t, equals the size of the data carried by the two coming reply
packets estimated, instead of only one as did in the offline

determination. Then we have

Qs(t) = dn + dm | rm > rn > t,

@ro, rn > ro > t or rm > ro > rn.

where Qs(t) equals to the total amount of data carried by the
two coming reply packets estimated at time t.

Now, we proceed to define the online determination. Follow-
ing the same design concept of the offline algorithm presented
in the previous section, the online algorithm is fundamentally
based on Corollary 1. That is, the online algorithm attempts
to have each request packet carry as much data as possible.
For the first packet, we define

t1 = t | A(t) = min{Q,S}.
d1 = min{Q,S}.

Like OOD, the first echo request packet is sent out once the
data queue is about to overflow or the amount of data in the
queue reaches the upper bound a packet can carry. Next, for
the nth packet, n > 1, we define

tn = t | t > tn−1, A(t)−D(t) +R(t) = min{Q−Qs(t), S},
dn = min{A(t)−D(t) +R(t), S}.
That is, the packets will be sent when (1) the amount of data
in the data queue is about to become larger than the length
of the queue minus the size of the extra space Qs(t) or (2)
the amount of data in the queue reaches the upper bound a
packet can carry. In addition, the packet will carry as much
data as possible. As can be seen, the only difference between
the decision set determined by the online algorithm and OOD
is the extra space reserved from the data queue. The above
calculation repeats until we cannot find a feasible tn. That
is, ∀t > tn−1, A(t) − D(t) + R(t) > Q. Suppose that the
calculation stops at the N th packet. Then, the decision set
determined by the online algorithm is defined as follows.

Definition 2 (Online Determination). The packet sending
decision set ρ given by

ρ = (t1, d1), ..., (tN , dN )

is the online determination.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to validate
the feasibility of the proposed scheme and report some useful
insights in practice.

A. Experiment Settings
The proposed data parasitizing scheme has been imple-

mented on a WBAN testbed based on the Arduino open-
source electronic prototyping platform. Each of the WBAN
sensor devices, shown in Fig. 2, is comprised of two parts:
e-Health sensors shielded with different biomedical sens-
ing capabilities from Cooking Hacks [28] and an arduino
duo micro-controller board [13] with Wi-Fi module enabling
2.4GHz IEEE 802.11b/g compliant radio support for wireless
communication. The sensor device can be powered by either
a computer via 5V USB connection or an external power
supply like a battery. The SRAM size of the micro-controller



Fig. 2. The WBAN testbed and sensor devices

TABLE I
SENSING RATES OF BIOMEDICAL SENSORS

Sensor type Data rate
Electrocardiogram (ECG) 12KBps
Accelerometer (ACC) 4 KBps
Pulse and oxygen in blood (SPO2) 2 KBps
Airflow (AF) 1.2 KBps
Glucometer (GLU) 200 Bps
Body temperature (BT) 15 Bps

(ATmega328) used in an arduino duo board is 2KB. Since
some space of SRAM needs to be reserved for program
execution, the size of the data queue Q is set at 1KB in
our experiments. The sensor device tries to connect to a Wi-
Fi network and then starts to process the measurement data
based on the online algorithm of the proposed data parasitizing
scheme.

We consider two different kinds of scenarios for investi-
gation: one is in a controlled environment and the other is
in a real-world environment. In the controlled environment,
we set up a WBAN sensor device with a Wi-Fi AP and a
web server in a private network, as shown in Fig. 3. The
WBAN sensor device is connected to the AP via 802.11g
wireless connection, and the server is behind the AP with
wired Gigabit Ethernet connection. On the other hand, in the
real-world environment, we place the WBAN sensor device
at different public spaces, such as coffee shops, department
stores, airports, and train stations with Wi-Fi hotspot services
provided by WIFLY [29] and CHT Wi-Fi [30] in Taipei City.
Based on the ICMP standard [14], the default value of the
maximum amount of data a packet can carry S is set at 8
KB. The transmission rate of the wireless link can be decided
by the sensor device itself. The rate can vary from 1 to 54
Mbps and is set at 1 Mbps by default. The sensing rates of
the measurement data for different kinds of biomedical sensors
available in our testbed are detailed in Table I. More detailed
settings will be specified in the following subsections. For
each setting, we perform 20 runs and demonstrate the average
performance. The performance metric, system lifetime, is the
interval between the time of the disconnection happening and
that of the first data loss.

B. A Controlled Environment

Fig. 4 and Fig. 5 show the evaluation results for the
sensor devices with and without our proposed scheme under

Multiple Hosts

Multiple Hosts via Single Network Interface

• Possible for ICMP Ping under public Wi-Fi

• Different servers/devices for gateway and DNS server

• Public Wi-Fi on Italy, Delhi airport tested all have multiple hosts

Multiple Hosts via Multiple Network Interface 
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• Need to switch between different APs.

• Possible obstruction: firmware instead of hardware

Web Server
[HOST]
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Fig. 3. The scenario investigated in the controlled environment
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Fig. 4. Performance evaluation in the controlled environment

the controlled environment. We measure the system lifetime
against different kinds of measurement data and transmission
rates. Some observations and insights from the experimental
results are summarized as follows.

Here we compare the performance of the online algorithm
and that of the optimal offline algorithm. To make a fair
comparison, the related information recorded during the ex-
periment conducted for the online algorithm is used as the
inputs of the optimal offline algorithm. In Fig. 4, the results
demonstrate that the system lifetime achieved by the online
algorithm is very close (about 90%) to that achieved by the
optimal offline algorithm. In addition, the lifetime of a sensor
device that keeps the measurement data intact with our scheme
is significantly longer than that without our scheme. The
sensor device without the data parasitizing scheme achieves
quite low system lifetime (only a few microseconds in some
cases), since it only relies on its very limited space of the data
queue to store the measurement data. From Fig. 4, we can also
observe the impact of different measurement data rates on the
system lifetime. An intuitive phenomenon indicates that the
system lifetime is shorter with the high data-rate biomedical
sensors (Fig. 4(a)) than with low data-rate ones (Fig. 4(b))
since the length of the data queue and the capacity of the
wireless communication link are limited.

Fig. 5 depicts the system lifetime against different trans-
mission rates of sensor devices with and without the proposed
scheme. The rate varies from 1 to 54 Mbps. The biomedical
sensors tested here are ECG sensors and body temperature
sensors. The reason for the sensor selection in this experi-
ment is that they represent two WBAN devices with diverse
measurement data rates (i.e., sensing rates): ECG for a high
data rate (12 KBps) and body temperature for a low data rate
(15 Bps). We observe that the system lifetime is shorter with
a higher transmission rate. That is because the prorogation
delay is shorter with a higher transmission rate, and thus the
capacity of the wireless link is smaller. As a result, the system
lifetime is shorter as we explained in Property 1. Nevertheless,
the sensor device with our scheme still achieves much longer
lifetime (dozens of seconds) than that without our scheme (less
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Fig. 5. The impact of different transmission rates in the controlled
environment

TABLE II
STATISTICS OF THE NETWORK CONDITION AT THE FIVE SITES

Site Max. Link Round-trip (ms)
Speed (Mbps) Avg. Stddev

Train Station 12 240 12.17
Airport 28 197 6.45
MRT Station 12 227 23.56
Department Store 36 126 3.18
Coffee Shop 54 105 1.06

than one second) even with a high transmission rate. This
verifies the effectiveness of our proposed scheme.

C. A Real-world Environment
For the experiments under a real-world environment, we

take our sensor devices to public spaces with Wi-Fi hotspots.
We let those devices connect to Wi-Fi networks with web-
based authentication. Five sites are chosen for the experi-
ments. They are the train station, airport, mass rapid transit
(MRT) station, department store, and coffee shop in Taipei
City. Before actually conducting the experiments, we measure
the network conditions (the round-trip time of ICMP echo
request/reply packets and their standard deviation) at each
site by sending 100 ICMP echo packets with 8 KB data. As
shown in Table II, the average round-trip times at the train
station, airport, and MRT station are longer than that at the
department store and coffee shop, since those public transit
places are crowded with passengers. The more the people are
using the Wi-Fi access, the longer the round-trip time. As
for the standard deviation of the round-trip time, the MRT
station is with a higher standard deviation than the airport and
the train station, since the turnover rate of passengers at the
MRT station is generally higher than that at the train station
in Taipei. The coffee shop has the lowest standard deviation
of the round-trip time, since people usually stay there longer
than at other sites.

Then, we conduct some experiments to evaluate the system
lifetime under the aforementioned five sites. The biomedical
sensors tested here are ECG sensors and body temperature
(BT) sensors, since they are with the highest and lowest data
rates among the biomedical sensors available in our testbed. As
shown in Table III, the system lifetime of sensor devices with
our scheme in the MRT station is lowest among the five sites.
Although the low transmission rate is beneficial to our scheme,
as shown in Fig. 5, the high round-trip time deviation of the
networks in the MRT station has an negative impact on the
performance of our scheme, since the accuracy of the packet
time estimation of the online algorithm is lower. This can be

TABLE III
THE EXPERIMENTAL RESULTS AT THE FIVE SITES

Site \ System lifetime (sec.) w/ the scheme w/o the scheme
ECG BT ECG BT

Train Station 5.66 418.77

0.083 66.64
Airport 4.67 372.94
MRT Station 3.78 332.56
Department Store 4.88 392.25
Coffee Shop 3.98 356.43

verified by comparing the lifetime in the train station with that
in the MRT station since they both have a similar link speed,
but a higher round-trip time deviation leads to a shorter system
lifetime. Nevertheless, the system lifetime with our scheme is
all significantly improved (a number of seconds to hundreds
of seconds), compared with that without our scheme (as low
as to dozens of microseconds), regardless of different sites and
data rates. This verifies the feasibility of the proposed scheme
in the real-world environment.

D. Discussion on the Feasibility of the Proposed Scheme
To implement the proposed scheme in the real world, there

will be some feasibility issues to be considered. The issues
include the energy consumption of sensors, the pre-processing
(e.g. disconnection detection, radio switching from ZigBee to
Wi-Fi, AP selection), and the possibility of being considered
as a kind of denial of service attack on Wi-Fi APs.

Regarding the energy consumption of sensors, a larger scale
and more sophisticated experiment is on-going. A preliminary
result of the experiment indicates that the energy consumption
for running our proposed scheme (i.e., wireless data transmis-
sion through public Wi-Fi access points) is close to that in
the normal operation including data sensing and low-power
wireless communications to smart phones. In other words, the
energy consumption of the proposed scheme is not as much as
we expect. We will continue to make a more detailed analysis
on energy consumption and finding any possibility to lower the
energy consumption further. Besides, the energy consumption
can be decreased by optimizing hardware design. For example,
some companies have started to develop the low-power ZigBee
and Wi-Fi dual radio chip [31].

The pre-processing should be done before the data queue
of the sensor device overflows. We are now developing high-
efficient mechanisms for radio switching and Wi-Fi AP selec-
tion. According to the preliminary result of the aforementioned
on-going experiment, detecting disconnection needs about 5-
10 ms, the delay of radio switching is below 10 ms, and the
delay of AP selection and association is about 70-100 ms.
The numbers are expected to be lower as we are tuning the
mechanisms to perfectly perform in terms of delay.

Even though the implementation of ICMP protocol should
be considered mandatory, we recognize that the operators
of Wi-Fi networks may block ICMP packets since those
operators may consider our scheme as a kind of denial of
service attack. We are examining the impact of the proposed
scheme on the parasitized Wi-Fi networks. The preliminary
result indicates that a single device only cause about 0.1%
throughput degradation.

In this paper, we focus on dealing with the key requirements
of “data parasitizing”, finding perfect decisions on when to



send the request packets and how much data to be embedded
in the packets, to give a first glance over the feasibility of the
proposed scheme. Instead of trying to solve all the issues at
once, tackling the core problem of the proposed scheme is a
most important first step. As mentioned above, a more realistic
and comprehensive experiment on the testbed for the whole
procedure of the proposed scheme is on-going. A thorough
investigation report with effective solutions for those issues
will be presented in the near future.

VI. CONCLUSIONS

In this paper, we propose a data parasitizing scheme for
wireless body area networks (WBANs) to avoid excessive data
loss due to temporary disconnection between sensors and their
associated smart phone. The scheme parasitizes the measure-
ment data of sensors on existing public Wi-Fi networks once
the links to the smart phone become unavailable. We derive
the key requirements for the data parasitizing scheme, and
formulate an optimization problem to maximize the “system
lifetime” (i.e., the time of data loss prevention). We present
an optimal offline algorithm that inspires our online algorithm
design. Experiments are conducted by implementing the pro-
posed scheme on a WBAN testbed to evaluate its feasibility
and effectiveness in practice. The experimental results verify
that the concept of data parasitizing is a promising direction
to prevent data loss due to temporary disconnection, without
needing any external storage to be equipped on sensors.

Full-scale and more comprehensive experiments on the
testbed are underway. A complete depiction of the proposed
scheme including the solutions dealing with the issues men-
tioned in Section V and the details on the pre-processing (e.g.
switching radio from ZigBee to Wi-Fi, selecting the most
suitable AP) and post-processing (how to redirect the data back
to the smart phone) will be presented in the near future.
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