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Abstract—The net neutrality debate has been centered at the
question: whether price and service differentiation should be
allowed for the Internet? We focus on a monopoly market,
where regulation is often required, and study the type of
service differentiation where an option of paid prioritization is
provided for the Content Providers (CPs) by an Internet Service
Provider (ISP). We study the ISP’s pricing strategy and the
corresponding CPs’ responses. Based on the higher level CPs’
choices of service classes and the lower level traffic equilibrium,
we analyze the utility of the ISP and the CPs as well as the social
welfare. By comparing the induced social welfare under different
settings, we find that ISP’s optimal pricing leads to an efficient
differentiation among the CPs such that the social welfare is
highly optimized. We also identify the conditions under which
the ISP would have a strong incentive to expand its capacity
when the market grows. In conclusion, our results support the
use of priority-based pricing and service differentiation rather
than imposing net neutrality regulations.

I. INTRODUCTION

Net neutrality (also known as network neutrality) has been
heatedly debated in recent years among policy and law makers.
At the center of the debate, Internet Service Providers (ISPs)
and Content Providers (CPs) argue whether service and price
differentiation should be allowed for the Internet transport
services, e.g., IP transit and content delivery services. ISPs
argue that a non-neutral network is more beneficial for the
Internet ecosystem. First, they argue that due to network
congestion and security, network management is needed to
differentiate traffic and maintain a more efficient network.
Second, without service and price differentiation, ISPs will
not have incentives to expand their infrastructure capacity
and provide better quality services, which will impair the
future development of the Internet. Third, they argued that
the revenue model of the two-sided Internet market is not
balanced: ISPs only earn fixed monthly payments from the
end-user side; however, CPs earn much more from the online
services as well as advertising for their media customers. In
this two-sided market, ISPs do not obtain a share from the
content side revenue, and therefore, get the feeling that the
CPs are free-riding on their invested infrastructure. On the
other hand, CPs think the boom in services at the edge of
the network over the past decade should be credited to net
neutrality. If net neutrality is abandoned, ISPs may have too
much pricing power to charge CPs and also obtain chances to
favor specific CPs, leading an end to the Internet boom.

The provision of price and service differentiation will
change both the economic structure and traffic demand for the
Internet. Charging the CPs for premium services will create
new money flows from CPs to ISPs, and therefore, it is worth
studying how these two parties would respond to this new
economic structure. End users will also perceive varied delays
for contents from CPs that use different service classes. We
are curious about how the traffic demand would be reshaped
due to the service differentiation.

To understand the changes caused by price and service
differentiation, our model includes three parties: a monopoly
ISP, a set of CPs and their end users, which interact in the
following sequence: 1) the ISP sets the price for a priority-
based premium service; 2) CPs choose which service to use; 3)
end users adjust the traffic demand based on received quality.
We model the service differentiation based on an M/M/1
priority queueing model in Section II and analyze the CPs’
choices of service classes in Section III. This type of priority-
based price and service differentiation is also referred to as
paid prioritization in this work and analyzed via backward
induction. In Section IV, we evaluate the system performance,
i.e., delay and throughput, and analyze the ISP’s pricing
strategy and its impact on the ISP’s profit, the CPs’ utility and
the social welfare, through which we obtain some insights and
implications on the net neutrality debate. Our contributions and
findings include:
• Under any fixed CPs’ choices of service class, we prove

the uniqueness of a lower-level traffic equilibrium (The-
orem 1) and its monotonicity properties (Theorem 2).

• For a network neutral case, we prove a unique dominant-
strategy equilibrium (Theorem 4) for the CPs’ strategies.

• Under paid prioritization, we characterize the congestion
equilibrium of the CPs’ strategies (Theorem 5 and 6).

• By evaluating the utility of the ISP and the CPs and the
resulting social welfare, we find that

1) Paid prioritization induces a higher social welfare
than that under a neutral network.

2) Under the ISP’s optimal price, the social welfare is
highly optimized but the CPs’ total utility is reduced
due to the monetary transfer from the CPs to the ISP.

• By evaluating the ISP’s capacity expansion decisions
under different system scales, we find that

1) The ISP’s optimal price is small when the system
is less congested or has a small scale.

2) The ISP will be incentivized to expand capacity withISBN 978-3-901882-58-6 c© 2014 IFIP
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the growth of demand, if its capacity cost is low and
the system scale is neither too small nor too large.

Intuitively, the social welfare increases in a non-neutral
network because high-valued, delay-sensitive contents could
be better served. When a system is not congested, CPs may
find an ordinary service sufficient; when a system is small, the
loss in statistical multiplexing might outperform the benefit of
prioritization. Both cases would naturally lead to a lower opti-
mal price for the ISP. We believe that our modeling framework
and results provide new insights to the net neutrality debate.

II. PRIORITY-BASED SERVICE AND TRAFFIC EQUILIBRIUM

The recent debate on network neutrality manifests itself in
the cases where the last-mile ISPs intended to differentiate
services and charge CPs, e.g., Apple and Google, for service
fees [3]. We want to understand whether or not a non-neutral
treatment of contents for different CPs is beneficial for the
Internet ecosystem as a whole. In practice, the bottleneck of
the Internet is often at the last-mile connection towards the end
users [7], both wired and wireless. We focus on a monopolistic
last-mile ISP with bottleneck capacity µ. This is the case
where market competition does not exist and regulations might
be most in need. Because latency arises from the queueing
delays in routers, we use the M/M/1 queueing framework to
characterize network traffic and quantify the varied average
delays of each service class, similar to prior work [4] [11]. In
practice, priority-based differentiation at a packet level could
also be implemented via feasible schemes like DiffServ [2]
for the Internet.

We consider a set N of CPs, from which end-users request
for content via the ISP. We assume that the ISP provides
differentiated services for the CPs: an ordinary class (L-class)
and a premium class (H-class). Traffic sent in H-class will
have a higher priority and be sent before those queued in L-
class. For traffic in the same service class, they are processed
in an FIFO manner. Under this two-class M/M/1 priority
queueing system, all the CPs get to choose whether or not
to use the premium service. We denote sN = {H,L} as a
strategy profile of the CPs, where H and L denote the set
of CPs in H-class and L-class, satisfying H ∩ L = ∅ and
H ∪ L = N . For each CP i ∈ N , we denote λi as its
throughput achieved at the ISP, defined as λi = Λi(φi). φi is
a congestion/quality metric of the service experienced by CP
i’s end users. In our context, φi denotes the average queueing
delay for CP i at the ISP. We denote λmaxi as the maximum
achievable throughput of CP i.

Assumption 1: For any CP i ∈ N , its throughput Λi(φi)
is exogenous, continuous, strictly decreasing and satisfies

lim
φi→0

Λi(φi) = λmaxi , and lim
φi→+∞

Λi(φi) = 0.

Assumption 1 states that the CP’s throughput decreases as
the service quality is degraded. This effect comes by two
reasons: 1) network quality affects the throughput naturally,
and 2) worse performance also discourages the demand from
end-users, which in return affects the aggregate throughput of

the CP. In particular, λmaxi can be considered as the throughput
when the network congestion does not exist and the maximum
number of interested users are using CP i at a full speed. This
maximum throughput depends on how popular the content is,
i.e., how many users of the CP, and the content’s maximum
throughput, e.g., 5Mb/s is enough for high-quality Netflix
streaming movies.

We denote λ = (λ1, ..., λ|N |) as the throughput of all
the CPs. For any CPs’ joint decision sN , we define λH =∑
i∈H λi and λL =

∑
i∈L λi as the aggregate throughput

for each service class. Based on the M/M/1 priority queueing
theory [9], we derive queueing the delays φH and φL of the
H- and L-class, respectively, as follows:

φH = ΦH(λ, µ, sN ) =
1

µ− λH
,

φL = ΦL(λ, µ, sN ) =
µ

(µ− λH − λL)(µ− λH)
.

(1)

By defining φ = (φH, φL) as the system queueing delay,
the above equations can be written in a matrix form as:

φ = Φ(λ, µ, sN ) (2)

Under any strategy profile sN of the CPs and the resulting
queueing delay φ, we can characterize each CP i’s throughput
by Assumption 1 as follows

λi =

{
Λi(φH) if i ∈ H,
Λi(φL) if i ∈ L;

(3)

or in a matrix form as

λ = Λ(φ, sN ). (4)

Assumption 1 characterizes how throughput responses to
delays and Equation (1) characterizes how the delays are
affected by throughput in return. The following Definition 1
describes the steady-state of the system delays.

Definition 1: For any fixed strategy profile sN and system
capacity µ, a delay vector φ is an equilibrium if it satisfies{

φH = ΦH(λ, µ, sN ),
φL = ΦL(λ, µ, sN ),

where λ = Λ(φ, sN )

or in a matrix form as

φ = Φ(Λ(φ, sN ), µ, sN ) (5)

Definition 1 states that the system delay φ in equilib-
rium would induce the amount of CP traffic, i.e., λ =
Λ(φ, sN ), that causes exactly that amount of delays, i.e.,
φ = Φ(λ, µ, sN ), in both service classes.

Theorem 1: For any fixed strategy profile sN and system
capacity µ, there always exists a unique equilibrium φ.

Theorem 1 states the existence and uniqueness of a lower-
level traffic equilibrium. From Equation (1), one may observe
that the delay of H-class ϕH does not depend on the CPs in
L-class while the delay of L-class does depend on the CPs in
H-class. In fact, we can extend the result for any number of
priority classes based on the same technique.

By Theorem 1, we define ϕ(µ, sN ) = (ϕH, ϕL) as the
unique equilibrium of a system (µ, sN ). We simplify the



3

notation as ϕ(sN ) when a fixed capacity µ is considered. We
also use ϕ(H,L) to denote ϕ({H,L}) for the convenience
of illustration when we look further into the service classes.
Next, we study the properties for the system equilibrium.

Theorem 2: For any sN and s′N with H,H′ /∈ ∅ and H′ ⊂
H, the unique equilibrium ϕ(µ, sN ) =

(
ϕH, ϕL

)
satisfies

ϕH(µ, s′N ) < ϕH(µ, sN ) < ϕL(µ, sN ), ∀ µ > 0;

ϕH(µ1, sN ) > ϕH(µ2, sN ), ∀ 0 < µ1 < µ2.

Theorem 3: For all H,L 6∈ ∅, such that H ∩ L = ∅ and
H∪L = N , the L-class delay satisfies ϕL(∅,N ) < ϕL(H,L).

Theorem 2 intuitively states that in equilibrium, the delay
of H-class is always smaller than that of L-class, and when
the system’s capacity µ increases, the delay of H-class always
decreases. However, this is not always true for L-class. Theo-
rem 3 implies that any partition of the set N of CPs will cause
a longer delay in L-class although the number of CPs in L-
class is smaller. Theorem 2 and 3 also infer that ϕH(N , ∅) is a
delay upper-bound for H-class and ϕL(∅,N ) is a delay lower-
bound for L-class, where both bounds effectively capture the
same single-class delay, i.e., ϕH(N , ∅) = ϕL(∅,N ).

III. CPS’ STRATEGIES AND EQUILIBRIUM

In this section, we study CPs’ choices of service classes
which are fixed as sN in Section II. We assume that the ISP
charges c for per unit traffic sent in H-class, which will induce
a new economic structure of the system. CPs now have to
trade off between an extra payment to the ISP and a higher
traffic demand in H-class due to the smaller induced delay.
For each CP i, we denote vi as its per-unit traffic valuation,
e.g., the profit generated by advertising for clients (Google), e-
commerce (Amazon) or online services (Netflix). We consider
the case of a fixed µ in this section and ϕ(sN ) is in short for
ϕ(µ, sN ). We also denote ui as CP i’s utility, which depends
on the strategies of the CPs sN as follows:

ui =

{
viΛi

(
ϕL(sN )

)
if i ∈ L,

(vi − c)Λi
(
ϕH(sN )

)
if i ∈ H.

Given a fixed capacity µ and an ISP charge c, the set
N of CPs choose their service classes strategically so as to
maximize their own utilities. Under this game-theoretic model,
the special case of c = 0 will induce a neutral network, where
choosing the premium service is a dominant strategy for all
CPs and the system only has a single service class in effect.

Theorem 4: When c = 0, sN = (H,L) = (N , ∅) is the
unique dominant strategy equilibrium.

When c > 0, each CP needs to tradeoff between the
per-unit traffic profit (vi for L-class and vi − c for H-
class) and the achieved throughput (Λi(ϕH) and Λi(ϕL)). In
general, dominant strategy equilibrium often does not even
exist. Instead, a Nash equilibrium of this simultaneous-move
game can be defined as follows.

Definition 2: Any strategy profile sN = (H,L) is a Nash
equilibrium if it satisfies

vi − c
vi



>
Λi

(
ϕL
(
H\{i},L ∪ {i}

))
Λi
(
ϕH(sN )

) if i ∈ H,

≤
Λi
(
ϕL(sN )

)
Λi

(
ϕH
(
H ∪ {i},L\{i}

)) if i ∈ L.

When applying the Nash equilibrium concept, a “common
knowledge” assumption is often needed, i.e., every CP knows
all the other CPs, and they are aware of the fact that they know
each other, and etc. In practice, the number of CPs is large and
it is unrealistic to assume that all CPs know the characteristics
of all their competitors. Moreover, although each CP only
makes a binary decision in the strategic game, the total strategy
space has a size of 2|N |, which makes the evaluation of the
Nash equilibrium computationally expensive. To resolve this
problem, analogous to the “price-taking” [14] assumption of
competitive equilibria in classic economics, we can make a
similar “congestion-taking” assumption for the CPs.

Assumption 2: For any service class X , any CP i /∈ X
uses ϕX as an estimate of the ex-post congestion ϕX∪{i} in
its decision making, and we define ϕX = 0 if X = ∅.

Based on the above “congestion-taking” assumption, we
adopt the concept of “congestion equilibrium” [12] as follows.

Definition 3: Any strategy profile sN = (H,L) is a con-
gestion equilibrium if it satisfies

vi − c
vi

 > Λi
(
ϕL(sN )

)
/Λi
(
ϕH(sN )

)
if i ∈ H,

≤ Λi
(
ϕL(sN )

)
/Λi
(
ϕH(sN )

)
if i ∈ L.

Notice that the “congestion-taking” might not be hold for
influential CPs such as Google and Netflix in practice; how-
ever, Vernon Smith, behavioral economist and Nobel laureate,
has shown in his pioneering empirical work [18] that for a
modest scale of supply and demand, e.g., even three players
in both the supply and demand sides, the system (a handful
of powerful CPs in our context) also adapt itself to its
competitive equilibrium which makes the condition required
by the classical competitive equilibrium unnecessary.

Although any CP’s throughput function Λi(φi) can be quite
general under Assumption 1, the above setting does not yet
capture the traffic characteristics of the CPs. In particular, we
consider the following class of the throughput functions

Λi(φi) = λmaxi e−αiφi , (6)

where each CP i’s throughput is characterized by a delay-
sensitivity parameter αi on the exponent term. The bigger the
αi is, the more sensitive CP i’s throughput is to the delay.
Therefore, big values of αi can be used to model inelastic
traffic, e.g., realtime streaming content, and small values of
αi can be used to model elastic traffic, e.g., file download.
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Another way to understand αi is by evaluating the economic
metric demand elasticity of delay εi defined by

εi =
dΛi(φi)

dφi

φi
Λi(φi)

= −αiφi,

which captures the ratio of the percentage change in demand
caused by the percentage change in the delay. The above
equation clearly shows that any CP’s demand elasticity of
delay is proportional to its value of αi.

By substituting (6) into Definition 3, we can characterize
the congestion equilibrium by the following Theorem 5.

Theorem 5: For any fixed ISP charge c, a strategy profile
sN is a congestion equilibrium only if

ϕL(sN )− ϕH(sN )

 > βi(c) if i ∈ H,

≤ βi(c) if i ∈ L,

where βi(c) is defined as

βi(c) =


1

αi
ln

(
vi

vi − c

)
if vi > c,

+∞ otherwise .

Theorem 5 reveals the structural property of a congestion
equilibrium for the upper-level CP choices. For each CP i, we
can calculate a priority βi(c) such that the CPs with higher
priorities (smaller values of βi(c)) will be more likely to end
up using the premium service.

IV. PERFORMANCE EVALUATION AND IMPLICATIONS

In this section, we evaluate the system performance, the
utilities of each party and the social welfare via extensive
and carefully designed experiments based on the lower-level
traffic equilibrium (Section II) and the upper-level congestion
equilibrium of the CPs’ choices (Section III) together.

We define the ISP profit and the CPs’ aggregate utility as

U ISP = cλH = c
∑
i∈H

Λi(ϕH) and UCP = UCPH + UCPL ,

where UCPH =
∑
i∈H ui =

∑
i∈H(vi−c)Λi(ϕH) and UCPL =∑

i∈L ui =
∑
i∈L viΛi(ϕL) define the aggregate CP utility

in H- and L-class, respectively. We define the social welfare
as U = U ISP + UCP , the sum of the ISP’s profit and the
CPs’ aggregate utility. We define λmax =

∑
i∈N λ

max
i as the

sum of CPs’ maximum throughput, which is the maximum
traffic demand from the end-users. Under a random setting,
we denote E

(
λmax

)
as the mean of this maximum demand.

Although the ISP and CP utilities depend on the values of
c and vi, the following Theorem 6 states that the equilibrium
sN does not change when these values scale linearly.

Theorem 6: If a strategy profile sN is a Nash equilibrium
or congestion equilibrium for a system with ISP charge c
and CP valuations {vi : i ∈ N}, it is also the same type
of equilibrium for any linearly scaled system with c̃ = kc and
ṽi = kvi, i ∈ N for all k > 0. In particular, we have ϕ̃ = ϕ,
λ̃ = λ, ŨCP = kUCP , Ũ ISP = kU ISP and Ũ = kU .

By Theorem 6, we could normalize the maximum valuations
of CPs to be 1 and choose each vi as a uniform random vari-
able in [0, 1] without loss of generality. We consider a system
of |N | = 1000 independent CPs. The CP delay sensitivity
parameter αi and the maximum throughput λmaxi are assumed
to be uniformly distributed in [0, 10] and [0, 2λ̄max], where
λ̄max denotes the mean of λmaxi . Inspired by the structural
property of the congestion equilibrium in Theorem 5, we
calculate the congestion equilibrium of the CPs’ strategies as
follows. Initially, all CPs stay in L-class. We update the CP
strategy profile sN by allowing CPs to move sequentially from
L-class to H-class in the ascending order of βi(c) until sN
reaches the congestion equilibrium of Definition 3.

A. System Performance Evaluation

We evaluate various performance metrics of the system,
i.e., |H|, ϕH, ϕL, λH and λL in Fig. 1-5. In each of these
figures, we vary E

(
λmax

)
to be 500, 1000 and 1500 in the

left, middle and right sub-figures. In each sub-figure, we vary
the ISP charge c from 0 to 1 on the x-axis and plot five curves
with µ = 100, 300, 500, 700 and 900, respectively.

We start with the boundary cases where c = 0 or c = 1.
We observe that H = N under c = 0 and L = N under
c = 1 as shown in Fig. 1. When c = 0, by Theorem 4, the
delay in the premium class is always lower and therefore, all
the CPs choose to use it. When c = 1, all CPs’ valuations are
lower than or equal to c, and therefore, no CP can afford to
use the premium service. In both cases, the system effectively
has only one service class and maintains a neutral network. In
particular, when c approaches 1, ϕH approaches the M/M/1
theoretic lower bound 1/µ in Fig. 2 and ϕL also approaches
its lower bound that equals the maximized value for ϕH (by
Theorem 3) in Fig. 3.

For c ∈ (0, 1), we could make the following observations.
• For any fixed µ and E

(
λmax

)
, |H| and ϕH decrease

monotonically as c increases in Fig. 1 and Fig. 2, respec-
tively. Although ϕL does not decrease monotonically, it
also have a decreasing trend with c in general. Besides,
because ϕL is around two orders of magnitude larger
than ϕH, the trend of the difference in delay ϕL−ϕH is
similar to that of ϕL.

• For any fixed µ and E
(
λmax

)
, λH decreases and λL

increases as c increases. Furthermore, λH decreases much
slower until λH has a sharp decline while λL increases
much faster until λL gets saturated. We can understand
that before λH decreases sharply, the aggregate through-
put can be compensated by the decreasing delay although
|H| gets smaller so that λH does not drop too quickly.
At the same time, ϕL is still very high so that λL can
not increase too much although |L| gets bigger.

• Under any fixed capacity µ and charge c, ϕH and ϕL
increases generally as E

(
λmax

)
increases across the three

sub-figures in Fig. 2 and 3.
• Under any fixed capacity µ and charge c, λH increases as

E
(
λmax

)
increases across the three sub-figures in Fig. 4.

However, in Fig. 5 for any fixed µ and c, 1) when c is
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(a) E
(
λmax

)
= 500 (b) E

(
λmax

)
= 1000 (c) E

(
λmax

)
= 1500

Fig. 1. Number of CPs in H-class in Equilibrium |H| under different E
(
λmax

)
.

(a) E
(
λmax

)
= 500 (b) E

(
λmax

)
= 1000 (c) E

(
λmax

)
= 1500

Fig. 2. Delay of H-class ϕH under different demand E
(
λmax

)
.

(a) E
(
λmax

)
= 500 (b) E

(
λmax

)
= 1000 (c) E

(
λmax

)
= 1500

Fig. 3. Delay of L-class ϕL under different demand E
(
λmax

)
.

high and µ is large, λL increases with E
(
λmax

)
because

most CPs cannot afford the premium service and µ is
large enough to accommodate more traffic in L-class; 2)
when c is high and µ is fixed, λL will get saturated due
to the limitation of µ; 3) when c is low, λL decreases
with the demand because CPs will choose H-class when
faced with a cheap charge and high congestion.

• When either the capacity µ gets bigger or the demand
E
(
λmax

)
gets smaller, |H| decreases sharper with c.

This can be understood as the premium service deserve
cheaper when the system becomes less congested.

B. ISP Profit, CP Utility, Social Welfare

After analyzing the system performance, we further look
into the derived utilities of different parties, i.e., the ISP profit
U ISP , the aggregate CP utility UCP and the social welfare
U = U ISP + UCP in Fig. 6-8, respectively.

In Fig. 6, we plot the ISP’s profit U ISP on the y-axis. In
each subfigure, we fix the demand E

(
λmax

)
and plot how

U ISP changes with different settings of µ and c. For each
fixed capacity µ, we observe a single peak curve for the
U ISP : when c is too small, the ISP cannot earn much despite
of the heavy traffic λH in H-class; when c is too large, the
ISP still cannot earn much due to the small number of CPs
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(a) E
(
λmax

)
= 500 (b) E

(
λmax

)
= 1000 (c) E

(
λmax

)
= 1500

Fig. 4. Traffic of H-class λH under different demand E
(
λmax

)
.

(a) E
(
λmax

)
= 500 (b) E

(
λmax

)
= 1000 (c) E

(
λmax

)
= 1500

Fig. 5. Traffic of L-class λL under different demand E
(
λmax

)
.

(a) E
(
λmax

)
= 500 (b) E

(
λmax

)
= 1000 (c) E

(
λmax

)
= 1500

Fig. 6. ISP Profit UISP under different demand E
(
λmax

)
.

in H-class, which only induces small amount of traffic λH.
We also observe that the ISP’s optimal price, denoted as c∗,
increases when the capacity µ decreases. However, the optimal
µ to maximize U ISP cannot be too large or small, because
a small µ limits the amount of traffic H-class can serve;
however, a too large µ discourages the CPs to use the premium
service due to the lower delay in L-class. Across the three
sub-figures, we observe that for a fixed µ, when the demand
E(λmax) increases, the optimal ISP price becomes higher
due to congestion. Also, when µ is larger, U ISP gets larger
because the ISP can serve larger demand when µ increases.

In Fig. 7, we plot the aggregate CP utility UCP on the y-

axis. We observe that the CP utility increases with the capacity
µ for the fixed c and demand E

(
λmax

)
. Each CP utility

curve has a valley where the charge c is optimal for the ISP
profit (corresponding to the peak in Fig. 6). These valleys
show the utility transfer from the CP-side to the ISP under
differentiated services in comparison with the neutral cases
under c = 0 or c = 1. We also observe that the optimal ISP
charge c∗ decreases when its capacity µ expands. Across the
three sub-figures, when c is high and µ is small, UCP might
decrease with the demand E

(
λmax

)
. This is because when the

system gets more congested, the gap ϕL−ϕH becomes larger
resulting in that more CPs choose H-class and the ISP gets
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(a) E
(
λmax

)
= 500 (b) E

(
λmax

)
= 1000 (c) E

(
λmax

)
= 1500

Fig. 7. CP Profit UCP under different demand E
(
λmax

)
.

(a) E
(
λmax

)
= 500 (b) E

(
λmax

)
= 1000 (c) E

(
λmax

)
= 1500

Fig. 8. Social Welfare U under different demand E
(
λmax

)
.

more payment from the CPs despite of the increase of λH.

In Fig. 8, we plot the social welfare U = U ISP + UCP

on the y-axis. Similar to U ISP , U also shows a single-peak
shape. This implies that the priority-based differentiation or
paid prioritization provides better social welfare than that
of a neutral single-class system (under c = 0 or c = 1).
Similar to UCP , U increases when the ISP capacity µ expands.
Interestingly, the valley of UCP corresponds to the peak of
U . This implies that when the ISP maximizes its profit by
choosing an optimal charge c∗, it effectively differentiates the
CPs with different valuations (vi) and delay sensitivities (αi)
such that CPs with higher valuation and sensitivity, i.e., the
CPs with small values of βi(c), would use the premium service
and get high throughput (also by Theorem 5). Across the three
sub-figures, we also observe that U increases with the demand
E
(
λmax

)
and its increase is steeper when the capacity µ is

larger, as it could accommodate more traffic.

Implications on net neutrality: By comparing the derived
utilities of different parties and the social welfare, we find
that the ISP’s optimal pricing strategy is aligned with social
welfare: effective differentiation for profit maximization is also
good for prioritizing CPs with higher valuations. In this sense,
priority based service differentiation is better for social welfare
than a neutral network. However, it is true that the optimal
social welfare is achieved by sacrificing CPs with lower
valuations and biased towards the ISP for profit distribution.

Thus, from a fairness perspective, policy makers might want
to regulate the price not to be too high so as to balance the
social welfare and fairness among different parties.

C. ISP Optimal Pricing and Investment Incentives

In this subsection, we continue to study the ISP investment
incentives if it is allowed to provide paid prioritization. We
define ν = µ/E

(
λmax

)
to be the capacity for per-maximum

traffic demand. We consider the case that the ISP would
expand its capacity to meet a growing demand E

(
λmax

)
by

keeping a fixed ratio ν. Under this setting, we could 1) study
how the ISP would react towards the market growth and varied
system scale by adjusting its optimal charge c∗ and capacity
µ; 2) obtain trends and insights for the real Internet ecosystem,
the scale of which could be larger than the settings used in
previous subsections. We vary E

(
λmax

)
from 100 to 106 and

plot five curves with ν = 0.1, 0.3, 0.5, 0.7 and 0.9 to simulate
the situations where the ISP maintains from a fairly congested
system (ν = 0.1) to a much less congested system (ν = 0.9).

We search for the ISP’s optimal price c∗ corresponding to
the single peak of the ISP profit for each given µ. In Fig. 9,
we plot c∗ and |H| on the y-axis in the left and right sub-
figures, respectively. From the left sub-figure, we observe that
when the system scale is small, i.e., when E

(
λmax

)
and µ are

both small, the optimal charge of the ISP is very small and
most of the CPs will be in H-class. This can be explained
by the fact that with a small-scale M/M/1 system, it is not so
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(a) ISP Optimal Price c∗ (b) Number of CPs in H-class |H|

Fig. 9. ISP’s optimal price and the number of CPs in H-class

efficient to do price and service differentiation. However, when
the system scale becomes large, the optimal price of the ISP
increases and is stabilized at a certain level. This is because the
statistical multiplexing effect makes the system more efficient
and the ISP is able to differentiate the CPs better. In particular,
when the ISP provisions a larger capacity, it results in a lower
optimal price because the system becomes less congested and
CPs have less incentives to use the premium service. However
for the ISP, there is also a tradeoff between charging a high c∗

and inducing a larger λH so as to maximize its profit U ISP .
Eventually, the optimal capacity planning ν for the ISP also
depends on the cost for deploying more capacity. When the
cost of capacity is high, the ISP will not have incentives to
maintain a system with a high value of ν, i.e., a system with
low congestion. This is because a high value of ν will induce
a low optimal price c∗, and if c∗ is lower than the capacity
cost, it is not sustainable for the ISP to expand capacity.
Implications on ISP investment: Under paid prioritization,
ISPs do have incentives to expand capacity when demand
increases. However, how fast the ISP will expand its capacity
compared to the growth of demand depends on the system
scale and its capacity cost. In particular, the ISP does not
have a strong incentive to expand capacity, i.e., to keep a low
value of ν, if its capacity expanding cost is high or the system
scale is either too small or too large.

V. RELATED WORKS

To address net neutrality rigorously, economists have an-
alyzed this issue from various perspectives. Hermalin and
Katz [10] regarded the realization of net neutrality equivalent
to the imposition of a single product quality requirement.
Economides and Tag [8] addressed the various regulations
combined with quality service, differentiated pricing and ex-
clusive contracts through a two-sided market model. Their
discussion on cross-side externality acts as the rationale for
the government intervention. Njorogel et al. [16] study this
problem through a game theoretical two-sided model and reach
conclusions on the investment incentives. Musacchio et al.
[15] compared one-sided and two-sided pricing in terms of
social welfare and tried to address the question whether the
non-directly connected ISPs should charge CPs or not.

Unlike the analysis from economical view which only
consider the basic money and utility exchange as well as the

positive externalities (network effects), the following works
make another step further by incorporating network charac-
teristics into the analysis to model the traffic demand. Choi
and Kim [6] first adopted the priority queueing framework
to capture the network’s response towards neutral and non-
neutral cases. Hotelling model was used for the competition
between CPs under differentiated service priorities. We extend
the two-CP model to a more general one and allow CPs to
choose their preferred service class. Jan et al. [11] and Altman
et al. [1] also adopt queueing delays to model the congestion
externality. Different from their work, we analyze the problem
in a microeconomic way and model the congestion externality
that affects individual CPs’ throughput by which the analysis
is more detailed.

Our work is also related to Ma et al. [13], which proposed to
use a Public Option ISP as a better alternative for net neutrality
regulations. In terms of modeling, we similarly characterize
the CP traffic and derive a unique traffic equilibrium. The
difference is that their model is based on a Paris Metro Pricing
[5], [17] framework, where the differentiated service classes
are based on capacity sharing as characterized in [5]. Our
model however does not separate the capacity physically and
therefore, the two service classes in our model are inter-
dependent. Also, contrast to the result of Ma et al. [13] where
a monopoly ISP has an incentive to make the lower-class a
“damaged good” and the higher-class non-work-conserving,
under the priority based service differentiation, our system is
always work-conserving and the ISP’s optimal pricing strategy
is highly aligned with social welfare.

Moreover from the law perspective, Wu [19] focused on the
discriminatory issues brought by the violation of net neutrality.
Yoo [20] also focus on the economics of congestion to propose
a new analytical framework for assessing such restrictions.

VI. CONCLUSIONS

In this work, we study paid prioritization, i.e., the priority-
based price and service differentiation, which we find is ben-
eficial for the Internet ecosystem. Our service differentiation
is based on the M/M/1 priority queueing delay and we estab-
lished a two-level equilibrium model: the lower-level traffic
equilibrium and the higher-level CP choice equilibrium. The
lower-level equilibrium models the end-user traffic demand
responded to network congestion and the higher-level equi-
librium captures the CPs’ business incentives and decisions.
Based on our model, we evaluate the system performance and
the utilities of different parties. We find that the ISP’s optimal
pricing strategy is highly aligned with the social welfare,
although the utility of CPs is reduced due to the payment to
the ISP. The results imply that price and service differentiation
is beneficial for the Internet compared to a neutral network;
however, policy makers might still need to carefully regulate
the ISP to provide better fairness among the ISP and the CPs.
We also investigated the optimal pricing of ISP under different
system scales and identified the conditions under which the
ISP will have incentives to expand capacity with the growth
of traffic demand.
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APPENDIX
PROOFS OF SELECTED THEOREMS

Proof of Theorem 1: The proof is equivalent to show that
there is a unique solution to Φ

(
Λ(φ, sN ), µ, sN

)
−φ = 0. φH

is independent from φL so that the R2 → R2 mapping can be
reduced to one R→ R and another R2 → R2 mapping:

{
ΦH
(
ΛH(φH,H), µ)− φH = 0

ΦL

(
Λ
(
φ, sN

)
, µ, sN

)
− φL = 0

(7)

We first show the uniqueness of φH. We have

limφH→+∞ ΦH(ΛH(φH,H), µ)− φH = −∞,
limφH→φ

′
Hs.t.λH(φ

′
H)=µ ΦH(ΛH(φH,H), µ)− φH = +∞,

(8)
Function f(φH) = ΦH(ΛH(φH), µ,H)−φH is continuous

so that there exists a φ∗H s.t. f(φ∗H) = 0. Since f(φH)
is strictly decreasing with φH, φ∗H is the unique solution
to f(φH) = 0. We only consider the congested case, i.e.∑
i∈N λ

max
i > µ. Therefore, this achieved unique solution

φ∗H has to be greater than zero.
The second part is to find a unique solution φ = (φH, φL)

to ΦL(Λ(φ, sN ), µ, sN ) − φL = 0 when φH = φ∗H. Suppose
φL = kφ∗H and the problem turns to find a k > 1 s.t.
ΦL(Λ(φ∗, sN ), µ, sN ) − kφ∗H = 0, φ∗ = (φ∗H , kφ

∗
H). Simi-

larly, there is limk→+∞ ΦL(Λ(φ∗, sN ), µ, sN )−kφ∗H = −∞.
Define g(k) = ΦL(Λ(φ∗, sN ), µ, sN ) − kφ∗H, λH(φH) =∑
i∈H Λi(φH) and λL(φL) =

∑
i∈L Λi(φL). We have

g(k) = (
µ

µ− λH(φ∗H)− λL(kφ∗H)
− k)φ∗H (9)

Define δ = µ − λH(φ∗H). φ∗H > 0 s.t. δ > 0.
δ does not change with k and it is determined by H
alone. Besides λL(kφ∗H) increases as k decreases so that
limk→+∞ λL(kφ∗H) = 0. Therefore, there exist a K > 0
which is large enough such that λL(kφ∗H) ≤ δ if k ≥ K.
Here we can get limk→K+ g(k) = +∞. Then there must exist
a K+ ≤ k∗ < +∞ which makes g(k∗) = 0. Since g(k) is
also a strictly decreasing function with k, k∗ is the unique
solution to g(k) = 0. In particular,

k∗ =
µ

µ− λH(φ∗H)− λL(k∗φ∗H)
> 1. (10)

Now we have proved there exists a unique φL = k∗φ∗H which
satisfies ΦL(Λ(φ, sN ), µ, sN )− φL = 0.

Proof of Theorem 3: Suppose the sum of the traffic for
(∅,H ∪ L) are λtH and λtL. The sum of traffic for (H,L) are
λsH and λsL. First because H is independent from L, there is
ϕH(H∪L,∀) = ϕL(∅,H∪L). Due to the monotonicity of ϕH,
we have the following inequalities ϕH(∅,∀) < ϕH(H,∀) <
ϕH(H ∪ L,∀). Thus we have ϕH(H,∀) < ϕL(∅,H ∪ L). In
particular, it is ϕH(H,L) < ϕL(∅,H ∪ L) here. Since λH is
strictly decreasing, there is λsH > λtH.

We have ϕL(∅,H ∪ L) = 1
µ−λt

H−λt
L

and ϕL(H,L) =
1

µ−λs
H−λs

L

µ
µ−λs

H
. Suppose ϕL(∅,H ∪ L) > ϕL(H,L).

1
µ−λt

H−λt
L
> 1

µ−λs
H−λs

L
because µ

µ−λs
H
> 1. Further λtH +

λtL > λsH + λsL. We have proved that λsH > λtL so that the
only case is λtJ > λsJ . However because λJ is also strictly
decreasing and we have assumed ϕL(∅,H ∪ L) > ϕL(H,L),
there should be λtL < λsL which is a contradiction. Therefore
we have proved that ϕL(∅,H ∪ L) < ϕL(H,L).


