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Abstract—Data traffic in cellular networks increased tremen-
dously over the past few years and this growth is predicted to
continue over the next few years. Due to differences in access

technology and user behavior, the characteristics of cellular
traffic can differ from existing results for wireline traffic. In
this study we focus on understanding the flow rates and on
the relationship between the rates and other flow properties by
analyzing packet level traces collected in a large cellular network.
To understand the limiting factors of the flow rates, we further
analyze the underlying causes behind the observed rates, e.g.,
network congestion, access link or end host configuration. Our
study extends other related work by conducting the analysis
from a unique dimension, the comparison with traffic in wired
networks, to reveal the unique properties of cellular traffic. We
find that they differ in variability and in the dominant rate
limiting factors.

I. INTRODUCTION

The volume of data traffic in cellular networks has been

increasing exponentially for the past few years and it is

predicted to continue increasing over the coming few years as

well. Cellular systems operate under restrictive constraints of

resources including radio channel capacity, network processing

capability, and handset energy consumption. To cope with this

explosive growth and best serve their customers, operators

need to have a better understanding of the nature of traffic

carried by cellular networks.

The operators and the community have already gained

tremendous understanding of Internet traffic from various

industry and research reports [1], [2], [3], [4], [5], which

are obtained by analyzing the traffic from wired networks.

Operators can use it to aid the design of better flow scheduling

and performance optimization. However, given the prosperity

of mobile Internet, it remains a question whether such prac-

tices can be reused in managing cellular networks. This paper

aims at providing some answers to this question: examining

similarities and distinctions between wireless and wireline

traffic.

While there are many aspects of traffic properties, we

selected one group of traffic, HTTP flows, and one metric, the

flow rate, so that we can perform a more focused, detailed,

and fair comparison. We selected HTTP flows because it is

the dominant category of traffic in both wireless and wireline

access. For example, TCP traffic in wireline may contain

many more P2P flows than wireless, resulting in a biased

comparison. The flow rate metric has been studied extensively

a decade ago for wireline networks [6]. We believe that there

is a need to re-examine the problem in the cellular context for

the following reasons. First, new applications and new traffic

patterns emerge. Web traffic has thus undergone a significant

change, from the simple web page to complex applications,

e.g., media or social networking. Second, the appearance of

new user devices and new network access technologies. In

addition, the range of applications and operating systems sig-

nificantly differs from the ones developed for wired networks.

For example, application developers may have customized

designs for cellular traffic due to the constraints on radio

network resources and handset energy consumptions. There

are few and limited studies for cellular networks and they do

not reflect the recent cellular traffic surge [7] or have different

focuses [8], [9].

We take two steps to investigate HTTP flow rates in cellular

networks. From the macroscopic perspective, we examine the

basic characteristics of HTTP flow rates, with an emphasis on

their distribution and the correlation with other flow properties.

To illustrate the unique characteristics of cellular data traffic,

we perform a comparative analysis of wireline and wireless

accesses. We seek answers to questions like “Are the flows in

wireless network slower or faster in general?”, “Do flow rates

vary significantly with size? ”, and “Which are the dominant

limiting factors of flow rates?”. To further answer the last

question, from a microscopic perspective, we then study the

causes that limit the rates at which flows transmit data using

the algorithms proposed in [10]. Factors considered include

congestion, sender window, receiver window, bandwidth, and

application induced limitations. These analyses provide knowl-

edge of the potential bottlenecks of data transfers.

We summarize our key findings below.

• From the macroscopic studies, we found that flow rates in

both wireline and wireless data sets vary over several or-

ders of magnitude and, as expected, wireless has smaller

flow rates. For flows of the same size, the variance of rates

in wireless is larger than that in wireline. It means that

the impact of channel variance outweighs the regulation

attempts, such as fair queuing, at the base station which

constitutes the bottleneck.

• This observation is further confirmed in the microscopic

root cause analysis. We observe that applications do not

control the flow rates actively. To efficiently use the radio

link resource, most applications over HTTP send most

bytes as fast as possible. Interestingly, this observation is

different from the recent findings in an LTE network [11],

as the latter has much larger bandwidth which appears to

shift the bottleneck back to the application.

• Finally, our results also suggest that the main rate limitingISBN 978-3-901882-58-6 c© 2014 IFIP
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Fig. 1. CDF of flow rates.

cause differs between wireless and wireline traffic. The

wireless access link seems to be the bottleneck in most

cases. This means that to reduce response times in a

wireline network, increasing the initial congestion win-

dow might pay off, while this should have a detrimental

effect in the wireless network.

In the rest of this paper, we first introduce the methodology in

Section II. Section III presents various statistics for flow rates

and the root cause analysis results are shown in Section IV. We

discuss related work in Section V and conclude in Section VI.

II. METHODOLOGY AND DATA SET

We divide our analysis in two steps. The goal of the first

step is to report basic flow statistics, including flow rate, size

and duration. Once these macroscopic statistics are discovered,

we investigate the causes behind these flow rates in our

second step using our algorithm in [10] which is based on

the understanding of TCP dynamics and congestion control

mechanisms.

We have used two data sets collected in Europe during 2011

without packet sampling but with automatic anonymisation of

IP addresses. The wireless data set was collected on a Gn

interface between a Gateway GPRS Support Node (GGSN)

and a Serving GPRS Support Node (SGSN) in a cellular

network. It contains 2 weeks of data with 3.9 million sessions

from 50k IP addresses. The wireline data set was collected at

the head end of a municipal access network. It contains 31

hours of data with 19 million sessions from 21k IP addresses.

The HTTP traffic accounts for 67.4% of the total wireline

traffic and 75.8% of all the wireless traffic in bytes. We are

aware that the network conditions vary across countries and

regions. We however expect that our findings are representative

of developed countries where both types of access are popular

and well deployed.

III. MACROSCOPIC: FLOW RATE CHARACTERIZATION

We drive our analysis based on a number of hypotheses

regarding possible differences that are related to different

access technologies. In the following analysis, the flow rates

are computed as the flow size divided by the flow duration,
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Fig. 2. CCDF of flow rates.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09

C
D

F

Flow size (bytes)

wireless 1
wireless 2
wireline 1
wireline 2

Fig. 3. CDF of flow sizes.

where the flow size is defined as the total number of bytes

transferred and the flow duration is the time elapsed between

the first and last packet. Noting that some flows only contain a

few packets, which makes flow rate less meaningful, we focus

on flows with significant data transfers by removing flows

shorter than 100 milliseconds [6] or smaller than 100 packets.

To verify that the conclusion is not biased by a particular data

set or time period, we separate the two-week wireless data

into two sets of one-week each, and the 31-hour wireline data

to two sets of 15.5-hours each.

A. Flow rate distribution

Hypothesis 1: It is suspected that wireless flows are slower

because of constraints related to, e.g., longer RTTs (e.g., due

to link layer error corrections in the wireless access network)

and constrained bandwidth (e.g., because of sharing between

users in the same cell or sector). Note that it is unlikely to be

caused by errors or losses because they are corrected by the

link layer recovery mechanisms in wireless access networks.

To examine this hypothesis, we first show the CDFs (cumu-

lative distribution functions) of flow rates in Figure 1. First, we

observe that the flow rates in both data sets vary over several

orders of magnitude. Second, flow rates tend to be slower for

wireless access than for wireline access. We also show the

tails of the flow rates in log-log scale in Figure 2. It is seen
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Fig. 5. Flow duration for the same flow size.

that both data sets exhibit long tail distributions and, again,

that flow rates for wireless tend to be lower than for wireline

access. Both figures thus confirm Hypothesis 1, i.e., wireless

networks feature smaller rates in general as compared to wired

networks.

We further investigate the reasons for this difference. Since

the flow rate is computed from flow size and flow duration,

we next examine their distributions. This analysis is driven

by Hypothesis 2: because of the limitations of the devices,

e.g., screen size, computing capability and power supply, one

may expect that sizes and durations for content differ between

mobile devices and PCs.

Figure 3 and Figure 4 show the CDFs of flow sizes and

flow durations. It is seen that (1) the range of flow size

distributions are similar from the curves of both access, and

(2) wireless flows are more “extreme” than wireline ones with

larger fractions of small and large flows respectively. Thus,

the assumption of content being adapted to mobile devices

with smaller resulting sizes is not generally observable. On

the other hand, the flows last much longer in wireless, which

is likely to be one reason for the lower flow rates. We further

confirm this in Figure 5 where we group flows according to

their sizes and compute the average duration of each group

on y-axis and which clearly shows longer flow durations for

files of the same size. Lower rates in wireless are thus the
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Fig. 6. CoV of flow rates with same flow sizes.

result of technological constraints or more resource contention,

leading to longer duration rather than difference in sizes of the

transfers.

B. Inter-flow rate variability

While the above figures present the distribution of all

flow rates, we next focus on the stability/variability of flow

rates, because of the following two conjectures. On the one

hand, wireless flows may exhibit smaller variability because

their bottleneck typically is the air interface which is shared

and subject to fair scheduling while wireline flows may be

constrained anywhere in the network and fair scheduling

seldom is present at these bottlenecks (Hypothesis 3). On the

other hand, wireless networks offer variable radio conditions.

Moreover, the air interface schedulers transmit more traffic for

users with better radio conditions in order to achieve higher

overall throughput. The variability in radio conditions may

thus be translated to a higher variability with wireless access

(Hypothesis 4).

We examine the variability by grouping flows by size. Fig-

ure 6 shows the coefficients of variation (CoV) for different,

size-based flow groups with at least 30 flows in each group. It

is seen that the throughput is much more variable in wireless

networks than in wireline ones, especially for larger flows.

This is confirmed by Figure 7 which shows the CDFs of flow

group CoVs.

However, we realize that grouping by size alone may

result in biases due to the variability of channel conditions

experienced by different users. For instances, two users with

very different yet stable wireless connections, e.g., 500 kbps

and 1 Mbps may be assigned to the same size group in

Figure 6, resulting in very large CoV. To remove such bias,

we also group by source and also by destination addresses.

To overcome the dynamic IP assignment issue in wireless

networks, we first identify an active transfer window for each

IP address (i.e., periods during which packets are continuously

sent/received from/to this IP), and include flows within these

windows. The distributions of their CoVs are also shown in

Figure 7 and we conclude that, for all three grouping methods,

wireless flows consistently show higher variability. These re-

sults thus suggest to reject Hypothesis 3 and accept Hypothesis
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4. It means that the regulation effect of the scheduler at the

base station apparently has less impact than the variability of

the channel conditions. It could also be caused by different

subscription plans with different caps on data rates.

C. Correlation with flow size

We further look into other properties of flows with high

rates by examining the correlations between flow rates and

other factors. From Figure 1 and 2 we observe that most

flows are slow, i.e., 50% of rates are smaller than 20 kbps

for wireless, but that there also are quite a few fast flows

which reach rates above 1 Mbps. Thus, our Hypothesis 5 is

that these fast flows also are the “elephant flows”, i.e., the

ones which carry most of the traffic. To verify it, we compute

the accumulated fraction of bytes carried by a subset of the

flows sorted by rate in descending order. The result is shown

in Figure 8 with fastest flows at the right end of x-axis. The

results confirm our expectation; the top 20% fastest flows

account for 45% of the traffic in wireline data set and 70%

of the traffic in the wireless data set. This suggests that flow

rates are determined by radio optimizations, e.g., sending data

as fast as possible by, e.g., switching from common channels

to dedicated channels for “persistent flows”. This result not

only confirms the high correlation between flow sizes and rates

from previous work [6] but also suggests that the correlation

is more pronounced in wireless.

Next we consider the relationship between flow rate and

other key parameters. To this end, we first select the top k%

of fastest flows (measured as throughput), and then check

the fraction of these flows also belonging to the top k%

largest flows (measured in flow size), longest flows (measured

in flow duration) and most bursty flows (measured in the

average packet inter-arrival time for packets in each flow). This

analysis is similar to [5] but with a slightly different definition.

Figure 9 shows the k values in y-axis and different comparison

metrics in x-axis. The colors indicate different degrees of

overlap. For example, dark blue indicates large overlap and red

means small overlap. The figure shows that rates of wireless

flows exhibit a strong correlation with flow size. On the other

hand, we observe a weak correlation with burstiness while

rates of wireline flows exhibit medium correlation with flow

size and no correlation with burstiness. It is also seen that

flow rate exhibits no correlation with flow duration in any of

the data sets. It is consistent with Figure 8, i.e., fast flows are

also elephant flows, and this correlation is more pronounced

in wireless. Interestingly, some of these fastest flows are also

the most bursty ones in wireless, which is not significant in

wireline. One likely reason is that fast flows fully utilize the

radio access link by sending packets as fast as possible, thus,

are more affected by the dynamic conditions on the radio links,

resulting in large jitter.

IV. MICROSCOPIC: THE ORIGINS OF FLOW RATES

From the above analysis of flow rates, we observe that

wireless flows are generally slower and more variable, and that

they exhibit higher correlation with flow sizes. This suggests

that the application level just sends data as fast as possible

(i.e., with little control), and the limiting factor of flow rates

is the wireless access link. Next, we conduct a deeper analysis

on the limiting factors behind the observed rates and seek for

additional evidences of the lesser impact of the application as

compared to the access link characteristics in wireless.

A. Method

In this section, we apply a root cause analysis (RCA) tool

on the same dataset, to understand the factors affecting the
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rates of flows in the access networks we consider. The RCA

technique has been introduced and validated in [10]1. First, the

tool divides each TCP connection into two kinds of periods,

application limited periods (ALP) and bulk transfer periods

(BTP). ALPs correspond to time intervals during which the

application limits the throughput achieved, which happens,

e.g., when a server applies rate limitation or when users pause

to read a web page before clicking on another link and the

browser uses persistent HTTP. During BTPs, the transport or

network layer (of the end hosts involved in the transfer or on

the path between those hosts) is the limiting factor. Within

a single TCP connection, multiple such phases may exist

interleaved with each other, i.e., a connection is transformed

into a series of ALPs and BTPs in the first phase.

In the second phase, the tool drills down into the BTPs

and tries to identify the main rate limiting cause. A number

of metrics (so called limitation scores) are computed for each

BTP which then are used to classify each BTP into one of the

following limitation causes:

• Unshared bottleneck link: The target flow alone utilizes

all the capacity of the bottleneck link. The latter is likely

to be the access link at the sender or receiver side.

• Shared bottleneck link: There is cross traffic competing

for the bandwidth.

• TCP receiver: The receiver buffer constrains the maxi-

mum number of bytes TCP can send without acknowl-

edgement when there is still available spare bandwidth.

This limitation means that the bandwidth delay product

is larger than the receiver buffer or the receiver is not

consuming the data fast enough.

• Transport limited: When there is no packet loss, and

no limits from the TCP receiver, the TCP congestion

control mechanism unnecessarily limits the increase of

the congestion window. In such cases, increasing the

initial congestion window of TCP will reduce the total

transfer time [13].

• Mixed/unknown: A mixture of the causes described

above or unidentified causes.

The algorithms are implemented using a DBMS-based ap-

proach called InTraBase [12]2. In the following study, we use

four hypotheses based on a priori knowledge and test them

against our RCA results. From our experience with wired

networks [14], we came with up:

• Hypothesis 5: Most of the bytes are sent as fast as

possible by TCP.

• Hypothesis 6: Application limited flow rates are smaller

than those limited by other causes.

• Moreover, according to typical network provisioning

strategies, we have Hypothesis 7: The last mile is the

network bottleneck in wireless.

• Finally, the recent discussion on increasing the initial

congestion window size of TCP to improve the Web

performance[15], [13] gives rise to Hypothesis 8: In-

creasing the size of the initial congestion window would

1We implement the RCA algorithms using a DBMS-based approach called
InTraBase [12]. The tool is available upon request to matti.siekkinen@aalto.fi.

2The tools are available by request to matti.siekkinen@aalto.fi.
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of application limited bytes

c
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f 
a

ll 
b

y
te

s
wireline

wireless

Fig. 11. Majority of bytes are not rate limited by applications.

improve the performance.

Hypothesis 5 and 3 are important to back the results in

Section 3. More precisely, we need that (i) application having

little impact on the rate for most flows and (ii) the last mile

being the bottleneck, to confirm that the difference between

wireless and wireline traffic stems from the radio access link.

B. The role of applications

While using RCA, connections shorter than 130 packets are

not analyzed at all but are directly classified as opportunistic

flows, similarly to [6]. Consequently, we end up analyzing

a minority of flows but a majority of bytes because of the

heavy-tailed nature of Internet traffic.

To enrich the analysis with application-level knowledge, we

inferred the Web service used, based on keywords in the URL.

The results show that only a few applications were responsible

for the majority of the bytes in both wireless and wireline

traces. More precisely, the top 20 most popular sites aggregate

about 80% of the bytes in the wireline case and over 90% of
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the bytes in the wireless case. Facebook, YouTube and other

video streaming are the dominant applications, generating over

40% of the traffic.

We first examine the role of the application in limiting the

flow rates. Figure 10 plots the CDF of the per-flow fraction of

bytes carried by and time spent in ALPs. We observe that

a clear majority of both wireless and wireline connections

experience no rate limiting by application at all. The plot does

not, however, tell the difference between small and large flows

and this is why we show in Figure 11 the overall fraction

of bytes (over the whole set of flows) that are classified as

application limited. An overwhelming majority of bytes are

not rate limited by applications, which means that the most

prominent root causes for the flow rates lie in the network

and transport layers as was also suggested by our analysis in

Section III. Hence, Hypothesis 5 is confirmed. Note that this

is different from the findings in LTE [11] where the available

bandwidth is much higher and thus the application becomes

the limit.

To better understand the role of the applications, we further

study how much applications slow down transfer rates. We

compare the throughput of a flow against the fraction of ap-

plication limited bytes in Figure 12. Each symbol corresponds

to one flow (circles indicate wireless and diamonds indicate

wireline). In addition, the size of the symbol is proportional to

the size of the flow where larger symbols correspond to larger

flows. We observe that the fastest flows are those that carry

no application limited bytes and application limited flows are

likely to be those with very low rates, confirming Hypothesis

6. In line with the interpretation of Figure 8, we observe that

flows that feature high rates tend also to be large flows.

Though the above analysis shows that the application is

not the dominant limiting factor for all traffic, it may play a

different role for different types of applications. Thus, below

we investigated separately for a few popular applications. The

results of YouTube transfers are shown in Figure 13, which

shows a dual distribution. This is because some of the flows

correspond to download of the web pages, while some others,

usually larger, flows correspond to the actual video content

download. The former type of flows is likely sent at full rate

by the server, whereas the video transfers are rate throttled

by servers resulting in ALPs in our classification. However,

it is known that the YouTube content delivery strategy varies

depending on many factors [16]. While servers often apply

rate throttling, sometimes the whole video is downloaded in

one shot bypassing the server rate throttling, resulting in a

single BTP. Furthermore, a so called Fast Start period is always

present in the beginning of the video delivery regardless of

the strategy. During that period, all the available bandwidth

is typically used to deliver a sizeable part of content in

order to quickly fill the client’s playback buffer. That phase

corresponds also to a BTP.

Overall, Figure 13 reflects the known complex nature of the

traffic patterns of YouTube well. We also looked separately at

Facebook traffic. It turned out that, similarly to YouTube traf-

fic, it has a dual nature where roughly half of the connections

were completely application rate limited, and the other half

not application limited at all.
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Fig. 13. Some YouTube transfers are server rate limited.

Root Un- Shared Receiver Trans- Mixed/
cause shared port unknown

Wireline 1% 12% 0% 38% 49%

Wireless 58% 16% 0% 3% 23%

TABLE I
RCA RESULTS FOR BULK TRANSFER PERIODS.

C. A closer look at bulk transfer periods

We now focus on the BTPs (periods where the rate is

not driven by the application). We already know that BTPs

dominate in our traffic, but to further back the results of

Section III we need more evidences that confirm the observed

rates are explained by the access link in the wireless case. We

report the fractions of bytes per limitation cause in Table I.

While the impact of the application on the throughput achieved
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is similar in both wireless and the wireline networks, the bulk

transfer analysis shows two main differences:

1) Unshared bottleneck link limitation is dominant among

the causes observed in the wireless network in contrast to

being almost non-existent in the wireline network. For the

wireless case, it is likely that the bottleneck is the client’s

access link as servers are usually hosted in well-provisioned

networks. This observation suggests that there is sufficient

capacity in the wireline network under study to sustain the

current users’ HTTP traffic. The transfers reach the throughput

limit set by the wireless network much more often than the

wireline network, which supports Hypothesis 3, i.e., the last

mile is the bottleneck.

2) Rate limiting by the transport protocol has much stronger

presence in wireline traffic compared to wireless traffic. This

finding indicates that the practice of using a larger initial con-

gestion window size could speed up transfers in the wireline

networks as advocated in [13].

Note also that while newer versions of TCP, e.g., TCP

Cubic under Linux, are able to achieve higher rates on paths

with high bandwidth-delay product, they are apparently not

operating in this regime for the wireline case. For the case of

TCP Cubic, this means that the transport protocol is operating

in the TCP-mode and not the Cubic-mode [17]. It thus suggests

that the correct solution to speed up transfers is to increase the

initial congestion window.

The situation is apparently completely different in the

wireless network under study. In this case, transfers are rarely

limited by congestion windows that could have opened faster.

In such a scenario, the better strategy is not to inflate the

initial congestion window, especially when considering the

observation that applications often operate close to the limit

of the access link capacity. Increasing the initial congestion

window could instead lead to losses or buffer bloat [19], or to

an increased RTT if a buffer can absorb the resulting burst, but

not to any reduction in the response time. Hence, Hypothesis

8 holds true in wireline network but should be rejected in

wireless network.

Table I also shows commonalities between wireline and

wireless. We first observe that there is no obvious receiver

window limitation, which suggests that the transport layer

of the operating systems of the end users (Windows, Linux,

Android, iOS) is correctly configured and does not constitute

a bottleneck. Surprisingly, we do not observe small receiver

window induced bufferbloat problem as reported in [18]. The

lack of receiver limitation in the wireless also suggests that the

processing capacity of the mobile devices is not a bottleneck

either. There are also similar fractions of shared bottleneck

links, which suggests that congestion within the network path

(not at the edges) occurs similarly irrespective of the type

of access. It indicates that the access networks are well-

provisioned in both networks.

D. Bufferbloat problem

We further checked for evidence of bufferbloat which has

been discussed a lot recently by the research community [19],

especially in the cellular case. We computed the ratio of the

average RTT to the SYN/ACK-RTT as an indicator of bloated

buffers during the transfer. We found some cases where that

ratio was large, going in extreme cases even beyond 100. The

RCA results for flows with ratios greater than or equal to

5 revealed that a great majority of such wireless flows were

limited by an unshared bottleneck link which suggests that

the wireless access link is the bottleneck. A closer look at the

number of applications used in parallel would be required to

assess the impact of bufferbloat on the end users. Indeed, if

the user runs a single application at a time, the increase of

RTT should have little impact on the perceived performance.

We leave this study for future work.

E. Summary

We summarize the key findings of the limiting factors study

below. First, the application behaviour explains the rate of only

a minority of the large flows (Hypothesis 5 accepted). Second,

if a flow rate is limited by the application, the achieved rate is

in general low, confirming Hypothesis 6. Third, the end host

transport layer appears correctly parametrized and does not

constitute a bottleneck. Finally, the solutions to achieve higher

rates in the two network seem at odds: increasing the initial

congestion window looks like a good strategy for wireline

access. In contrast, such action could have an adverse impact,

leading to losses and increased delays in the wireless network,

which rejects Hypothesis 8. The solution to achieve higher

rates in our wireless network is thus much more costly as it

requires increasing the capacity for the (wireless) access link,

agreeing with Hypothesis 7.

V. RELATED WORK

Our work builds on top of many attempts to understand

the web traffic properties in the past [1], [2], [3], [4], [5]. In

particular, the closest work to ours, T-RAT [6] analyzes packet-

level TCP dynamics and infers the cause of the rates at which

flows transmit data. Lanet al. [5] found strong correlations

between flow size, rate and burstiness. Our work revisits and

re-validates these findings in wireline networks, which were

done decades ago and, we focus on identifying the distinctions

between wireless and wireline traffic.

Recently there has been a number of research in cellular

traffic. They can be classified as device based analyses or

network based analyses. Papers in the former group study

wireless usage by instrumenting mobile devices [20], [21], [22]

while papers in the later group, which includes our work, relies

on cellular data traffic collected by operators [8], [9], [11],

[23], [24], [25], [26]. Some of them focus on understanding the

user mobility patterns and resource utilization. For instance,

Paul et al. [25] analyzed the radio resources usage with

respect to the user mobility. 3GTest [20] measures the network

performance of popular smartphone platforms, and ARO [21]

characterizes the radio resource usage of mobile apps. These

studies are orthogonal to ours, as mobility is a unique property

in wireless networks.

Within the second group, a large body of existing work,

like ours, focus on finding differences in traffic characteristics

related to different users, applications, and device types. For
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example, [8] focuses on the diverse usage of smartphone apps

in cellular networks, [9] uses flow-level data to study traffic

pattern differences due to mobile device types and applications

and [26] examines the performance of over-the-top video

in wireless. Though we also analyze different application

patterns, our focus is on the comparison to wireline traffic for

the same application. Recently, Huang et al. [11] finds that

flow rates are limited by applications in LTE networks, which

has much larger bandwidth in radio access link compared to

3G networks that we consider in this study. Overall, our study

differs from related work by the explicit comparison between

wireless and wireline access, and by directly comparing re-

sults. Though some similar analyses have been done in related

work separately, none of them drew any conclusion from the

comparison perspective.

The most relevant work is [27] which compares the two

accesses from the general traffic properties. Our work takes

that idea one step further to examine the flow rates and the

underlying causes.

VI. CONCLUSIONS

In this paper, we have analyzed the flow rate characteristics

of cellular data traffic and compared the results to those

obtained for wireline networks. We relied on two large data

sets collected from a wired and a wireless access network

under the control of the same ISP in Europe, to carry out this

comparison. We found that flow rates in wireless networks are

smaller and that they exhibit higher variability (apparently due

to the high variance of the radio access links). In terms of the

limiting factors of flow rates, we observed that applications

have limited control on flow rates for both wireless and

wireline. However, the wireless network is operated close to

its limits as the access link most of the time is the bottleneck.

This is in clear contrast with the wireline network where there

is spare capacity at the edge. Using larger initial congestion

windows to achieve high flow rates, which is widely used

in wireline networks, is thus not sufficient in wireless. Our

findings thus provide insights for resource management and

optimizations in cellular networks.
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[27] Y. Zhang and Å. Arvidsson, “Understanding the characteristics of cellu-
lar data traffic,” in Proceedings of the 2012 ACM SIGCOMM workshop
on Cellular networks: operations, challenges, and future design, 2012.


