
Automatic Protocol Field Inference for Deeper
Protocol Understanding

Ignacio Bermudez, Alok Tongaonkar
Symantec Corp.

{ignacio bermudezcorr,
alok tongaonkar}@symantec.com

Marios Iliofotou
Caspida Inc.

marios@caspida.com

Marco Mellia, Maurizio M. Munafò
Politecnico di Torino

{marco.mellia, maurizio.munafo}@polito.it

Abstract—Security tools have evolved dramatically in the
recent years to combat the increasingly complex nature of attacks,
but to be effective these tools need to be configured by experts
that understand network protocols thoroughly. In this paper
we present FieldHunter, which automatically extracts fields and
infers their types; providing this much needed information to the
security experts for keeping pace with the increasing rate of new
network applications and their underlying protocols. FieldHunter
relies on collecting application messages from multiple sessions
and then applying statistical correlations is able to infer the
types of the fields. These statistical correlations can be between
different messages or other associations with meta-data such as
message length, client or server IPs. Our system is designed to
extract and infer fields from both binary and textual protocols.
We evaluated FieldHunter on real network traffic collected in
ISP networks from three different continents. FieldHunter was
able to extract security relevant fields and infer their nature for
well documented network protocols (such as DNS and MSNP)
as well as protocols for which the specifications are not publicly
available (such as SopCast) and from malware such as (Ramnit).

I. INTRODUCTION

In recent years the attacks against networks have become
more complicated. To defend against these complex attacks,
network defense tools have also evolved to use more sophis-
ticated mechanisms. For instance, firewalls have moved from
using simple packet-filtering rules to application level rules [1]
that need deeper understanding of the protocols being used
by network applications. Similarly, intrusion detection systems
are increasingly using vulnerability based signatures [2] that
contain information specific to network protocols. Access
control mechanisms are also evolving from IP address based
policies to fine-grained policies which use the protocol objects
such as users and message types.

It is clear that configuring all of the above applications
require a deeper understanding of network protocols. However
comprehending protocol specifications is a very tedious task.
The traditional approach of manually reverse engineering a
protocol cannot cope with the rate at which new network
applications are made available to the market and brought
into workplace. Moreover, many of the proprietary protocols’
specifications are not publicly available. As a result, security
administrators have to configure these security tools with
very limited visibility into the network protocol space; thus
adversely affecting the efficacy of these tools in securing the

network.
The above technology challenge has led to a growing

interest in the research community in the development of
techniques for automating the reverse-engineering process for
extracting protocol specifications, either from binary code
analysis [3]–[7] or from network traffic [8]–[14]. Most of
the times network application binaries are not available to
the network operators limiting the usefulness of code analysis
based techniques. Hence, we focus on network traffic based
analysis. The state-of-the-art techniques in this area try to infer
message formats or underlying protocol state machines.

In this paper, we take a complimentary approach of identify-
ing field boundaries and inferring the field types for protocols.
Thus, we study well known protocols and identified a set of
field types that can used in a multitude of security applications.
We focus on identifying: (i) Message Type (MSG-Type), such
as flags in DNS protocol or GET/POST keywords in HTTP, (ii)
Message Length (MSG-Len), usually found in TCP protocols
to delimit application messages in a stream, (iii) Host Identifier
(Host-ID) such as Client ID and Server ID, (iv) Session Iden-
tifier (Session-ID) such as cookies (v) Transaction Identifier
(Trans-ID) such as sequence/acknowledgement numbers and
(vi) Accumulators such as generic counters and timestamps.
We note that a protocol may not have all the above types
of fields. Also, different fields may be useful for different
security applications. For instance, Host IDs can be used by
access control systems while Message Length can be used by
Intrusion Prevention Systems to prevent buffer overflow kind
of attacks.

We built a system, called FieldHunter that uses a two step
methodology: (i) Field extraction: here we extract fields from
the protocol messages. Due to the different characteristics
of fields in textual and binary protocols, we use techniques
specific to each type to extract fields. (ii) Field type inference:
this step is common for the fields extracted in both textual
and binary protocols. The key contribution of our work is the
development of various heuristics based on observed statis-
tical properties for inferring the different field types. In our
evaluation, we used real network traces from three different
Internet Service Providers (ISPs) to validate that we were
able to extract various field types from well known protocols
such as Real Time Protocol (RTP) as well as protocols
without any publicly available specification such as SopCast.ISBN 978-3-901882-68-5 c© 2015 IFIP

Fig. 1. Terminology diagram.

In addition we fed FieldHunter with Ramnit command and
control traffic extracted from the same traces. Ramnit traffic
is unencrypted first and then analyzed by FieldHunter, which
represents a milestone for our system, that shows how useful
it is on providing valuable information about specific security
applications such as this malware.

The rest of the paper is organized as follows. §II defines
the terminology used throughout the paper, §III provides
details about the core algorithms used by FieldHunter to deal
with binary and textual protocols. Performance evaluation and
parameter tuning is presented in §IV. We discuss related works
in §V and finally conclude the paper in §VI.

II. TERMINOLOGY

Figure 1 gives a pictorial representation of the terminology
we use throughout this paper. Our methodology takes as input
a set of conversations (i.e., flows defined by the usual 5-
tuple) of a particular application. We refer to such a set
as collection. Conversations consist of exchanged messages
between two hosts. Messages from client to server are denoted
as C2S (dark-colored) and from server to client as S2C1(light-
colored). Messages consist of different pieces of information
enclosed in fields. As we show in figure 1, conversations
evolve horizontally over time (t) and messages can be com-
pared vertically across multiple conversations.

To enable the analysis of a collection, the messages in the
conversations can be grouped together in the following ways:
(i) Grouping messages based on their position in conversations,
e.g., all third messages in C2S direction. (ii) Grouping together
all the messages of a conversation. This essentially captures
session-like information (Note that (i) and (ii) are very similar
to vertical and horizontal sub-collections as defined in [15]).
(iii) Grouping together messages by direction, e.g., all C2S
messages. Message grouping is instrumental for FieldHunter
to find patterns in the collections. Then if these groups do not
contain enough message diversity, FieldHunter cannot unveil
the field types it is designed for.

It is worth mentioning that the formation of protocol col-
lections used by FieldHunter is beyond the scope of this

1Client is the initiator of the conversation and the server is the other end.
Hosts are identified by their IP address.

Fig. 2. FieldHunter system diagram.

work. However, we suggest two alternatives for the same. One
way is to use a testbed in which the application is executed
while the traffic exchanged is being captured. Alternatively, the
collection can be extracted from passive observation of actual
traffic by the means of network classifiers, i.e., by filtering all
conversations involving a well-known port, or by relying on a
Deep Packet Inspection (DPI) classifier [16].

Application conversations are transported by TCP/UDP
segments and are extracted by FieldHunter using the following
methodology: for messages transported over UDP it is as-
sumed that each segment contains one application message; for
TCP it is assumed that TCP PUSH flags delimits the beginning
of a new application message from the end of another one. An
accurate message extraction can be done once message length
has been identified by FieldHunter.

III. DESIGN

In this section, we describe the system design and discuss
the two components of FieldHunter: (i) Field Extractor (ii)
Field Type Inference Engine These components are run in
sequence to obtain a field summary report (which describes
the identified fields and their types) as shown in figure 2.

A. Field Extractor

Textual and binary protocols differ greatly in the way fields
are used. Textual protocols typically use delimiters such as “:”
or “0x0D0A” to separate fields. On the other hand in binary
protocols, fields either have fixed offset and size or offsets and
lengths that are specified in some preceding fields.

1) Textual Protocols: Field extraction for textual protocols
boils down to identifying field delimiters. However, this is a
non-trivial task as many protocols use multiple delimiters for
different purposes. For instance, consider a message such as
TIME-OUT: 60 # PORT: 54001. In this message, “#” is
used to separate out the fields, while “:” is used to separate
out key and value in a field. We categorize delimiters in three
types: (i) Field delimiter (Df): separates the different fields
of a message, e.g., the “#” character in the above example. (ii)
Key-value delimiter (Dk−v): separates the key from its corre-
sponding value, e.g., the “:” in the same example. (iii) Value-
value delimiter (Dv−v) separates different values for the
same field, e.g., the comma ‘,’ in the field AllowedPorts:
4534, 80, 53. FieldHunter identifies Df and passes fields
along with their Dk−v to the Field Type Inference Engine.
Our implementation does not analyze Dv−v . Hence we do
not discuss this type of delimiter in the paper.

TABLE I
Common text-based protocols and their observed delimiters. GAME:

Team Fortress (game), TEL: Telnet, CS: Counter Strike (game), GNU:
Gnutella.

Prot. Df Dk−v Prot. Df Dk−v

HTTP 0x0D0A ‘:’, ‘ ’ FTP 0x0D0A ‘ ’

SMTP 0x0D0A ‘:’, ‘ ’,
‘-’ TFTP 0x1D 0x1E

POP3 0x0D0A ‘:’, ‘ ’ CS 0x5C 0x5C
RTSP 0x0D0A ‘:’ GNU 0x0D0A ‘:’, ‘ ’
SIP 0x0D0A ‘:’, ‘ ’ RTP 0x0D0A ‘:’, ‘ ’

GAME 0x00 0x00 MSN 0x0D0A ‘ ’
TEL 0x0D0A ‘:’, ‘ ’

Common choices of Df and Dk−v delimiters are shown
in Table I. The delimiters are derived using documentation
of the listed protocols, and are actually observed in our data
sets. As we see, there are popular delimiters, such as 0x0D0A
(carriage-return and line-feed pair), as well as non-standard
delimiters, such as 0x00 (null), 0x1D, and 0x5C.

Generally speaking, FieldHunter identifies delimiters using
three key observations: (i) Delimiters are non-alphanumeric
sequences of 1 or 2 characters. (ii) Delimiters have a high
horizontal and vertical frequency compared to other non-
alphanumeric sequences in a textual protocol. (iii) There is
only one Df that splits up the messages into key-value
pairs (UID: 1234, Content-length: 872) or sin-
gleton keywords fields (HELO, LOGOUT, OK, FAILED).
FieldHunter first identifies Df and then proceeds with the
Dk−v if fields are key-value paired.

a) Field Delimiter Inference: To infer the Df , Field-
Hunter finds frequent sequences of non-alphanumeric char-
acters in the protocol which are considered to be delimiter
candidates d. Then from among all the candidates it chooses
only one (Df = d), such that it splits up any protocol message
into valid key-value pairs and singletons. Validity of key-value
pairs and singletons is check by comparing common prefixes
and exact matches respectively.

b) Key-Value Pair Delimiter Inference: Once Df has
been detected, messages are split into fields from which we
need to identify key-values along with Dk−v , and single-
tons. The identification of Dk−v is taken in three steps:
(i) FieldHunter clusters fields of the same type by using
the Longest Common Prefix (LCP); (ii) by re-clustering the
clusters, FieldHunter cleans up possible outliers caused by two
or more keywords sharing a common prefix. E.g., Port: and
Point: have Po in common, and finally (iii) we choose the
Dk−v as the non-alphanumeric suffix part of the LCP of each
group. In the case that all the LCPs are identical for a group,
then we say that the field contained by the group is a singleton
and we do not search for a delimiter.

2) Binary Protocols: In binary protocols, fields represent
serialization of variables as they are structured in memory.
To parse these fields, message recipients need to know the
structure of the data, i.e. the offset and length of the fields.
Unfortunately FieldHunter, does not know the message data

structure. To overcome this FieldHunter splits messages into
n-grams which are used by Field Type Inference Engine. We
observe that for most of the field types, the n-grams in the field
also show characteristics similar to the field. For instance, if
a protocol has a 32-bit Host ID field, the four 8-bit n-grams
also exhibit similar statistical properties as Host ID. In such
cases, we identify the field type for the single n-grams and
then check whether consecutive n-grams can be merged into
a larger field of the same type.

We note that this assumption does not always hold. For in-
stance, a 32-bit Accumulator field may increment by one every
time. But given the number of samples that we may consider
in our collection (say order of thousand), the most significant
bits may show up as constants and not accumulators. This
issue is circumvented for fields such as Message Length
and Accumulators (numerical representations) by considering
n-grams of larger size first, say 32-bit n-gram, and then
iteratively reducing n-gram size till the whole n-gram fits
the field. Moreover we consider byte endianness for fields
that contain numerical representations, heuristics are repeated
trying both little-endian and big-endian. This is not the case
for fields that can be interpreted as categorical representations.

B. Field Type Inference Engine

Our approach is based on the following key observation:
Fields with different types change differently over specific
sub-collections. For instance, a field that consistently takes
a distinct value for each IP address may represent a Host-
ID. Similarly, fields that increment by one over sequential
messages of a conversation may be part of a message counter.

FieldHunter assigns types to fields by using different sta-
tistical tests that are further explained. For clarity, in the rest
of the paper we use the term “n-gram” to interchangeably
mean “binary n-gram” or “textual field”, e.g., when it is
stated “n-gram entropy is computed” actually it means that
either “binary n-gram entropy is computed” or “textual field
entropy is computed”. On the other hand, we use specific
statistical tests based on different associations between ob-
served variables to infer different field types. The association
between two variables (a, b) can be of the following types: (i)
“numerical correlation” (a⇔ b), e.g., message length field is
numerically correlated to the observed length of the message,
(ii) “categorical correlation” (a ∈ A ⇔ b ∈ B), e.g., user ids
correlates categorically with IP addresses and (iii) “causality
correlation” (a⇒ b), e.g., certain type of message will result
in a particular response from server.

The labeling process works by making a hypothesis that a
given field is of a certain type. When the hypothesis holds,
i.e., the field exhibits the statistical behavior of the field type,
FieldHunter labels the field as such. We note here that a
field may be labeled as multiple field types. For instance,
an acknowledgement number field could be labeled as both
Transaction ID as well as an Accumulator.

In figure 3 the more complex heuristics are illustrated
using block-diagrams. Blocks in the diagrams represent dif-
ferent tests; horizontal/vertical arrow inside a block defines

Fig. 3. MSG-Type (left), MSG-Len (center) and Trans-ID (right) modules.

horizontal/vertical sub-collection analysis and thresholds are
highlighted in italic. More details on parameter selection are
given is §IV-D.

1) Message Type (MSG-Type): Contains information
about the underlying protocol state machine and its values
represent the semantic of the whole message. Thus, the content
of MSG-Type field is used by the receivers to understand what
type of message is received, e.g., a request, a status update,
an error message, etc.

Our methodology is based on two key observations: (i)
MSG-Types takes values from a well defined static and small
set; and (ii) represents transitions in an underlying protocol
state machine. Hence, by pairing request/response messages,
there is a high chance that their corresponding MSG-Type
fields are related. The leftmost diagram in figure 3 describes
the MSG-Type labeling process.

Using observation (i) above, FieldHunter first looks for n-
grams that vertically are neither random nor constant. Ran-
domness of a n-gram x can be measured using the entropy
H(x) metric. Let pi be the probability of having the n-
gram taking the value i. Then H(x) =

∑
i−pilog2pi, where

0 · log(0) = 0. By definition for 1-byte n-grams (8-bits)
H(x) takes values between 0 (constant) and 8 (perfectly
random). Then n-grams that are unlikely to be part of a MSG-
Type field are discarded. Once some fields are discarded,
according to observation (ii), the next step is to check for
n-grams that have a causal relationship with n-grams in the
response messages. Here FieldHunter uses categorical correla-
tion metric. Towards this end, FieldHunter measures causality
using the information theoretic metric I(q; r)/H(q), where
I(q; r) = H(q, r)−H(q|r)−H(r|q) is the mutual information,
that measures the information shared by a request (Q) and a
response (R) [17].

FieldHunter takes n-grams for which causality is greater
than a threshold of 0.8 as MSG-Type candidates. For the case
of binary protocols, if multiple n-grams are candidate, these

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

P
e
a
rs

o
n
 C

o
rr

e
la

ti
o
n

n-gram Offset [bit]

Fig. 4. n-gram correlation with MSG-Len for SopCast.

are grouped together and causality is checked again. Thus, if
a group coincides with the actual MSG-Type field, then the
whole candidate group should also satisfy the initial hypothesis
of causality. For example, suppose n-grams at byte offset 1,5,6
show a large causality so that q1 ⇒ r1, q5 ⇒ r5, q6 ⇒ r6.
Then it checks whether the groups (q1, q5, q6)⇒ (r1, r5, r6)
holds the causality. If this holds, the field containing n-grams
at offsets (1, 5, 6) are returned as the MSG-Type field.

2) Message Length (MSG-Len): Our goal here is to find
fields that report the length of the application message. As
such, it is expected that MSG-Len field is linearly correlated
with the actual message size. For higher confidence, two
different tests are used for identifying linear correlations.

The complete MSG-Len test algorithm is depicted in the
central diagram in figure 3. This heuristic does not use the
typical 1-byte n-gram and for textual protocols it decodes the
content of the field as a number. The reason why 1-byte n-
grams do not provide good results is that MSB and LSB are not
correlated in this case. Hence, FieldHunter iteratively selects
n-gram windows of size 32, 24, 16-bit that are shifted at a step
of 8-bit. Such windows sizes are the standard sizes used to rep-
resent integers in computer memory. At each iteration Pearson
correlation coefficient tells whether the numeric values of the
fields are associated with the length of the messages. Notice
that the computation of this correlation could be affected by

biases due to some popular messages in the collection of the
same size. E.g. 98% of messages are length 40 bytes. To avoid
such biases, we stratify messages by length, creating in this
way a size heterogeneous sub-collection not affected by the
bias problem. We select all the fields such coefficient is above
a certain threshold as MSG-Len candidates. We empircally
found 0.6 to be a good threshold.

Figure 4 show the results of applying the Pearson correlation
to the SopCast protocol collection obtained from the one of
our traces. In this example, we use 16-bit n-gram. Coefficient
spans from zero to one, where zero indicates no correlation
and one represents a strong correlation. In figure 4 there are
two clear spikes, one at offset 88-bit and the other at 168-
bit that suggests the presence of a MSG-Len (see § IV-B1).
We cross-verified these results using information extracted by
manual protocol reverse engineering attempts found on the
Internet.

Once the candidates are found, the next step is to conduct
a test to verify that the candidates indeed are carrying infor-
mation regarding the length of the message. The hypothesis is
that the message length expresses the length of the message
in an unit of measurement, e.g. bytes, words, etc., and that it
describes the length of data starting from a given byte offset.
In other words, we state that the message length is ruled by the
following linear equation: MSGlen = a · FIELDvalue + b,
such that MSGlen ∈ N is the observable message length,
FIELDvalue is the value taken by candidate field, a > 0
accounts for the unit of measurement and b ∈ N is the
starting offset of the data described by the field . To verify
the assumption, the linear equation is solved and (a, b) are
obtained. This process is repeated taking all possible message
pairs with different lengths. Finally a candidate is considered
as a true MSG-Len field if for most of the pairs (> 90%) the
solution (is acceptable a > 0 ∧ b ∈ N).

3) Host Identifier (Host-ID): Identifies entities beyond the
network addresses. Its functionality permits network identifica-
tion of a particular host or device. For instance, in peer-to-peer
applications, a “Peer-ID” field can uniquely identify a specific
peer/host in the whole overlay, even when the peer is behind
NAT or is moving over multiple networks.

The heuristic assumes that all the messages sent by the
same host carry the same Host-ID, i.e., for a given source
IP, messages are likely to have the same Host-ID. Then Host-
ID should be strongly correlated with the IP address of the
sender. Based on this assumption, FieldHunter computes the
categorical correlation R(x, y) = I(x; y)/H(x, y) ∈ [0, 1] of
n-grams x with the sender IP address y, where H(x, y) is the
joint entropy (that measures the total amount of information
that x and y jointly carry). That is, for each x ∈ X ,
there is a different y ∈ Y , and vice-versa. N-grams with
correlation coefficient greater than certain threshold (say 0.9)
are selected as candidates. Finally, consecutive candidate n-
grams are merged into fields of at least a length of 4 Bytes.
Notice that the adoption of statistical tests, such as correlation,
makes the algorithms robust to handle noise in the data, such
as when NAT is used.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
o
rr

e
la

ti
o
n

n-gram Offset [bit]

Trans-ID TYPE Misc. SRC-Addr User-IDSess-ID

Fig. 5. n-gram correlation with Client IP (Vuze DHT).

0
1
2
3
4
5
6
7
8

 0 50 100 150 200 250 300

E
n
tr

o
p
y

n-gram Offset [bit]

Trans-ID TYPE Sess-ID Misc. Src-Addr User-ID

Fig. 6. The n-gram entropy for Vuze DHT over a C2S vertical sub-
collection.

Figure 5 shows the categorical correlation between n-grams
in a vertical collection and the corresponding source IP address
for the Vuze DHT collection. Note how R(x, y) is very close
to one (high correlation) for n-grams that represents the Client
Address and the Client-ID. However, we also observe that the
first n-grams of the Session-ID are also correlated with the
sender IP address. The explanation for this protocol peculiarity
is found in the Vuze’s specification. Vuze’s Session-ID is an
application’s global counter randomly initialized at the start-
up and incremented by 1 for each new conversation. Hence,
the most significant bits in the Session-ID are likely to be the
same for all messages sent by the same sender. By imposing
a minimum length constraint, FieldHunter can discard such
fields.

4) Session Identifier (Session-ID): Keeps track of
application-level sessions that span over multiple conversa-
tions. Semantically, it is similar to the use of Cookies in
HTTP. Since the Session-ID remains constant between a pair
of endpoints, FieldHunter correlates the n-grams to the pair
of client and server IP addresses. Then we proceed using the
same categorical correlation as we do for Host-ID.

5) Transaction Identifier (Trans-ID): The algorithm we
use to detect Trans-IDs is illustrated in the rightmost diagram
in figure 3. It is assumed that Trans-ID are randomly picked
by the transaction creator and then copied back in the replies.
Therefore, we first search for n-grams that appear random
across both vertical and horizontal collections. Randomness
is measured using entropy as before.

Figure 6 shows the entropy of n-grams for the Vuze DHT
protocol [18] taken from the same trace as above. The figure
shows the entropy of the first 36 n-grams (reported on the
x-axis at the corresponding offset) in the C2S vertical sub-
collection. On the top, the protocol field names are reported
as extracted from documentation. In this example n-grams with
high entropy are good candidates for the Trans-ID field.

Next, all consecutive request/response messages are paired
and for each of them, it is checked whether the n-grams/field
take the same values. If the check passes, then the pair of n-
grams are added to a set of Trans-ID candidates. Note that
request/response message format can change and Trans-ID
may appear at different offsets (e.g. in Vuze DHT). Therefore,
the heuristic does not assume the protocol message formats
are the same in both directions.

Finally, FieldHunter measures the consistency of these
candidates over all the conversations, i.e., n-gram candidates
with enough support (say > 0.8) are finally marked as
such. Minimum support allows some degree of mismatch,
e.g., caused by message reordering or retransmission in the
collection. Finally, consecutive n-grams are merged to form
a field of at least 2 Bytes. For textual protocols such n-gram
merging is not needed.

6) Accumulators: We search for fields that have their
values increasing over consecutive message within the same
conversation. These fields typically represent message se-
quence numbers, acknowledgement numbers and timestamps.
To identify such fields, we use the difference, denoted as
∆, between values of n-grams in two subsequent messages.
We expect ∆ to be positive and “fairly constant”. Notice
that differences are not required to be perfectly constant. For
instance a byte-wise counter in a protocol of variable size
messages would have variable ∆.

We search for accumulators in C2S and S2C directions
independently of each other. As with the MSG-Len field, here
we do start with fixed size n-grams. We assume accumulators
are encoded in fields of a given field length, e.g, 64, 32
and 16 bits. For each field offset, we compute the vector of
increments (∆) considering each consecutive message pair in
each conversation. In order to use one threshold that captures
the variations among ∆s of different scales (e.g., sequential
counters vs millisecond timers), we compress ∆ using a
logarithmic function; ∆̂ = ln ∆. Next, we analyze ∆̂ and
select those that have relatively low entropy, i.e., ∆̂ looks
“fairly constant”.

C. Field Summary

FieldHunter provides information of the field type extracted
automatically out of known/unknown protocols as the final
result. It provides two separate reports (corresponding to each
direction of messages) for each protocol. The report contains
the set of fields for which the types have been inferred. Note
that we may not identify the type for some of the fields and
will skip them in the report.

IV. EXPERIMENTAL RESULTS

This section presents the results of running FieldHunter
using ISP packet traces reported in § IV-A. A DPI tool
feeds FieldHunter with protocol collections. In general, each
collection presents different characteristics. For instance, some
may contain wrongly classified flows caused by DPI false
positives. Other may present little diversity, e.g., showing
only conversation exchanged with a handful of servers, etc.

TABLE II
Summary of the traces we use.

Name Location Network Location Date Duration

TR1-2012 Europe Edge 04-2012 24 h
TR2-2009 S. America Backbone 10-2009 4 h
TR3-2007 Asia Backbone 01-2007 7 h

Different traces generate different collections that are sepa-
rately analyzed (for cross verification purpose). We consider
a protocol collection as valid only if it has at least 200
conversations for textual or 2,000 for binary protocols; see
§ IV-D for more details.

The subset of protocols for which we present results are
summarized in Tables III and IV for binary and textual
protocols, respectively. Both straightforward and challenging
cases are considered in our evalutation.

A. Datasets

We evaluate FieldHunter using three different traces (Ta-
ble II). Data was collected from different geographical re-
gions (Asia, Europe, and South America), between the years
2007 to 2012. All traces contain full payload from network
connections. Given the large size of the TR1-2012 trace we
limited the payload per connection to the first 1048 bytes2.
All our parameter selection is made using TR1-2012, whereas
we tested FieldHunter on all three traces.

B. Evaluation of Binary Protocols

Table III reports the results for nine binary protocols. Seven
of these protocols have known specifications. The table reports
the number of discovered and Ground-Truth (GT) bits, for
both C2S and S2C collections. Note that in many cases in
Table III, the number of discovered bits is larger than the GT
bits. This is because many protocols such as ED2K carry other
protocols. Since FieldHunter works on complete payload of
the conversation, it identifies fields within the inner protocol
as well. This is a limitation of how the DPI generates the
collection. The average AoC (Accuracy over Coverage) is 0.83
in the worst case. We observe that typical inaccuracies are due
to the Accumulator type. For counters that span over large
fields (e.g., a 32-bit long number), FieldHunter easily identifies
the less significant bits, but tends to miss the most significant
bits. This is because the latter appear as “constant”. Finally, the
last two rows in Table III show two closed protocols: SopCast
and PPLive. From the results depicted in the table, we show
details for three interesting case studies.

1) ED2K and KADEMLIA: ED2K and KADEMLIA
eMule messages are preceded by a common header which
is used as GT. FieldHunter correctly identifies such common
header. Moreover it discovers additional fields, that sum up to
a total of 128 bits in the C2S EDK2 collection. After manual

2We did not observe this to cause any notable problems. Only for some
protocols with long payloads, such as HTTP, portions of the payload and
rarely portions of the application-layer header were not fully captured.

TABLE III
Summary of the results from running FieldHunter on the binary-based

protocols.

Protocol Discovered/GT [bits] Cov/AoC
C2S S2C C2S S2C

Vuze DHT 288/240 200/208 0.87/1 0.85/0.87
DNS 48/32 56/32 0.75/1 1/1
uTP 88/96 200/96 0.75/1 0.67/0.87
RTP 80/88 80/88 0.82/1 0.82/1

ED2K 128/16 16/16 1/1 1/1
KADEMLIA 352/16 104/16 1/1 1/1

STUN 256/160 184/160 0.9/0.83 0.85/0.88
SOPCAST 128/? 152/? ?/? ?/?

PPLIVE 0/? 32/? ?/? ?/?

inspection, we observed those fields to correctly include key
hash information, Session-ID, Host-ID, etc.

2) SopCast: SopCast is a proprietary and closed protocol
used for P2P-TV broadcasting. Unveiling information about
the message format of such protocols is one of the motivations
for developing FieldHunter.

Particularly, this protocol represents a large fraction in the
TR3-2007 trace. FieldHunter identifies 128 bits corresponding
to: MSG-Len, Trans-ID, Session-ID, Host-ID (we argue it is
used for NAT traversal since it uses 64 bits, 32 of which
are typically a private IP address, and 32 are identical to the
Host IP address) and some accumulators of 16, 32 and 64 bits
(possibly used to reorder video/audio chunks).

3) Domain Name Service (DNS): For DNS in the TR1-
2012 trace, FieldHunter successfully identifies the Trans-ID
and a MSG-Type fields, each of 16 bits. We expect parsing
DNS on this trace to be challenging due to the bias in
the collection: First, most of the C2S messages are “DNS
Requests” messages; Second, requests are directed to the most
popular DNS resolvers (in the TR1-2012 trace customers use
the local DNS server). Despite this, FieldHunter correctly
identifies some protocol fields.

Interestingly, in the C2S messages, FieldHunter reports the
presence of a 16 bit accumulator on top of the Trans-ID.
We manually verified that implementations of DNS clients
generate a “random” Trans-ID by using a global counter.
FieldHunter captured this peculiar but common behavior,
exposing more details about the protocol.

C. Evaluation on Textual Protocol

Table IV reports overall results for textual protocols as the
number of inferred fields, the number of key-value pairs (K-V)
and singletons (most of them MSG-Type) for each direction
(with the exception of the last two protocols for which the DPI
provided just one direction of the conversation). In addition,
we report those fields that we label as being identifiers (IDs),
detailing those that proved to be False Positives (FP). Here,
by IDs we mean Host-ID, Session-IDs, and Transaction-IDs.
Overall, from the 26 fields labeled as IDs, 22 are manually
verified as correct identifiers and only four are false positives.
In general, we observe that the majority of the fields of textual
protocols are successfully inferred by FieldHunter in both the

TABLE IV
Summary of the results from running FieldHunter on the textual

protocols

Protocol #Fields K-V CMD IDs FP-IDs
C2S/S2C C2S/S2C C2S/S2C C2S/S2C C2S/S2C

STUN 3/3 2/2 1/1 1/1 0/0
FTP 19/18 12/17 7/1 2/1 0/0

HTTP 9/14 9/14 0/0 3/0 1/0
POP3 9/28 5/24 4/4 2/0 0/0
SMTP 19/9 15/9 5/0 1/1 0/0
MSNP 3/4 3/4 0/0 2/0 0/0
RTSP 9/25 9/18 0/7 3/6 0/2

GAME */17 */15 */2 */2 */0
RSP 3/* 2/* 1/* 1/* 0/*

C2S and S2C directions. As for the binary protocols, we pick
two interesting textual protocols as case studies.

1) Microsoft Notification Protocol (MSNP): The MSN
protocol is present in all three traces. FieldHunter correctly
finds that USR field carries a Host-ID and indeed, it carries
the MSN’s user name. Another interesting field is CVR which
is used to send specific information about the client and its
OS to the server. This field is captured by FieldHunter since
system settings are different for each MSN user, but consistent
during the communication with the server. Although CVR is
not an actual Host-ID, this is a right interpretation for the field
type because the field behaves the same as Session-ID.

2) Real-Time Streaming Protocol (RTSP): The S2C
direction of this protocol gives many inferred ID fields. Out
of these six IDs, four are correctly labeled and two are false
positives. The latter occur when some fields that are supposed
to take different values actually always take the same value
for a given conversation, behaving similar to a Session-ID.
The FP fields are Last-Modified and Cache-Control.
For instance, Last-Modified is the timestamp of the last
modification for a given content. Since one single object is
requested using multiple RTSP conversations, its modification
time appears constant across conversations on the same IP pair.
Finally, the Cache-Control tends to take always the same
value among conversations used to retrieve the same content
as well. In general, we observe that the original collection may
be biased toward some specific subset of protocol fields and
values. This is challenging for FieldHunter and, in general,
any field inference algorithm that relies on traffic data.

D. Sensitivity Analysis & Parameter Tuning

We evaluated the sensitivity of FieldHunter to different
parameters and to external factors, such as the number of
conversations needed. As mentioned before, we performed
parameter tuning using one trace, and then we evaluated Field-
Hunter on all three traces. Next we show the design proved to
be robust to parameter tuning. This is partly confirmed by the
results in figures 6, 4, 5, which show a clear field inference.

In our tuning, first we focus on one of the most challenging
fields to infer, the MSG-Type for binary protocols. To the
tune parameters, we took all collections for those protocols
where we had the ground truth. Then for each collection,

Fig. 7. Parameter sensitivity for the MSG-Type.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

C
o
v
e
ra

g
e
 &

 A
o
C

Collection Size

Text Coverage
Text AoC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

C
o
v
e
ra

g
e
 &

 A
o
C

Collection Size

DNS Coverage
DNS AoC

Vuze DHT Coverage
Vuze DHT AoC

Fig. 8. Coverage and AoC versus the number of conversations. text-
based protocol (top); DNS and Vuze DHT binary-based protocols (bot-
tom).

the MSG-Type algorithm was executed manifold by tweaking
the thresholds (Min. Correlation and Max. Entropy). For each
threshold pair, the product between Coverage and AoC was
computed, providing a coefficient from 0 to 1, where values
close to 1 are desired. The results are reported in figure 7.
The darker the block, the better FieldHunter performs. As
observed, there is a large range of good parameters that yield
scores above 0.8, which means that in most cases FieldHunter
was able to correctly pinpoint the MSG-Type field. For other
field types, we observed qualitatively similar results and we
do not show them here due to space constraints.

We now evaluate the effect of the collection size for both
binary and textual protocols. For textual protocols, we first
selected nine protocols for which we knew all the fields present
in our traces. Then, we randomly extracted a reduced subset
of conversations from the collections and ran FieldHunter over
the subset. Results are compared against our ground truth
to compute the Coverage and AoC (figure 8). We see that
FieldHunter performs well even with limited number of textual
conversations. In fact, when 50 conversations are considered,
we identified 85% of all the fields, with 97% AoC. Overall,
using large enough collections, we were always successful
in identifying the Df delimiter for all the protocols we
tested. Most of the mis-labeling happened due to challenges
in inferring the Dk−v for some fields.

For binary, we repeated the same experimental setup as
before, but focused on two extreme protocol cases, DNS and
Vuze DHT. The results are shown in the bottom plot of
figure 8. As we can see FieldHunter for some protocols, it
may require a bigger collection size to produce the best results.
We believe that the heuristics apply differently on textual
and binary protocols as textual protocols are less sensitive

to diversity. Vuze DHT represents the protocol for which
we had highest diversity, with many end-points exchanging
messages. Conversely, DNS (from TR1-2012) represented a
challenging scenario due to little diversity in the collections:
typically only one MSG-Type (DNS requests) was found, and
conversations were very short (a single request/response). As
we see, eventually we achieved very good results for DNS,
but it required as many as 2,000 conversations.

V. RELATED WORK

Automatic inference of protocol formats from passively
network monitoring was first addressed by Beddoe [19]. The
authors applied the Needleman-Wunsch algorithm for align-
ment of byte sequences between network payloads. The same
algorithm has been used in Scriptgen [20] and RolePlayer [10]
for automating the learning of protocols in honey-nets. Their
works aim to find variant and invariant segments in textual
protocols, although our aim is to identify a broader selection
of field types.

The problem of extracting message format specification for
security applications was later addressed by Discoverer [9].
They first clustered messages with similar formats together
using sequence alignments and then identified parts of the
messages that change across flows. In contrast to FieldHunter,
Discoverer has the same limitations as in [10], [19], [20],
where fields of the protocols are expected to appear in pre-
defined order. In [13] authors propose Prodecoder that uses
semantic information for field extraction, by using the LDA
model. Their approach looks promising on identifying keys
and the syntax of textual protocols, but it is not clear how LDA
can properly merge n-grams into fields of binary protocols.

In [8], [11], [12], [14], [21] authors automatically derive
protocol signatures purely from network traces. In PEXT [11]
and ReveX [8] signatures are extracted for protocols using
similar tokens to cluster flows. On the other hand [21] uses
semantic information found in the protocol to group messages
with similar formats. Authors in [14] propose a system that
can automatically produce signature for botnets’ command
and control traffic. This is an interesting application since
command and control traffic is obscured and undocumented by
default. However our work does not aim to obtain signatures
for network protocols, FieldHunter can help considerably
with such applications as mentioned in their future work.
Automatically generated signatures can be good for classi-
fying traffic, but understanding the mechanics and semantic
of the protocol is valuable complimentary information for a
system expert to verify the quality of the signatures. Indeed,
preliminary experiments on decrypted Ranmit traffic shows
that FieldHunter is able to identify some binary fields of its
Command and Control protocol header.

Other authors have tackled the problem of protocol reverse
engineering by using binary execution analysis. For instance
Prospex [7] is a system that analyzes both binary execu-
tion traces combined with network traffic. Binary analysis
requires an instrumented system with enough privileges to read
protected memory of the application that uses the protocol.

Similar in spirit, in Dispatcher [22] the authors focused on
protocol reverse-engineering for botnet infiltration. All the
above works rely on binary analysis and they are therefore
very different from what we want to achieve with FieldHunter
where we only have passive access to network traffic.

Our technique is complimentary to other systems that aim
to extract message format and syntax as our goal is to identify
containers/fields of information, and as such it can potentially
improve their results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented FieldHunter, a system that auto-
matically infers protocol field types from passive observation
of network traffic. We showed that FieldHunter is able to
provide a comprehensive set of fields and their types for both
textual and binary protocols that may not have a publicly
available specification. Therefore, we believe that a system
such as FieldHunter can significantly improve the effectiveness
of modern network security tools.

As future work we want to extend FieldHunter to infer
fields from protocols of mobile applications since those are not
well documented. Such knowledge can be used to create fine
grained policy engines to block specific events like uploads
or downloads, in enterprise networks where users bring their
own devices and connect to Internet.

ACKNOWLEDGMENTS

We acknowledge the help of Lorenzo De Carli, who pro-
vided us unencrypted samples of Ramnit command and control
traffic extracted from one of our datasets. Without his help we
could not prove how useful is FieldHunter on automatically
identifying fields for this very specific kind of application.

REFERENCES

[1] Checkpoint Application Intelligence.
http://www.checkpoint.com/products/technologies/ai.html.

[2] Z. Li, G. Xia, H. Gao, Y. Gao, Y. Chen, B. Chen, J. Jiang, and Y. Lv.
NetShield: Massive Semantics-based Vulnerability Signature Matching
for High-speed Networks. In ACM SIGCOMM, 2010.

[3] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic
Extraction of Protocol Message Format using Dynamic Binary Analysis.
In ACM Conference on Computer and Communications Security, 2007.

[4] P. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. Prospex:
Protocol Specification Extraction. In IEEE Security and Privacy, 2009.

[5] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Irun-Briz. Tupni:
Automatic Reverese Engineering of Input Formats. In ACM Conference
on Computer and Communications Security, 2008.

[6] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Protocol Format
Reverse Engineering through Context-Aware Monitored Execution. In
Symposium on Network and Distributed System Security, 2008.

[7] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, and
Engin Kirda. Automatic network protocol analysis. In 15th Symposium
on Network and Distributed System Security (NDSS), NDSS ’08, San
Diego, CA, 2008. ISOC.

[8] Joao Antunes, Nuno Neves, and Paulo Verissimo. Reverse engineering
of protocols from network traces. In Reverse Engineering (WCRE), 2011
18th Working Conference on, WCRE ’11, pages 169–178, Limerick, IR,
2011. IEEE.

[9] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. Discoverer:
Automatic protocol reverse engineering from network trace. In Pro-
ceedings of 16th USENIX Security Symposium on USENIX Security
Symposium, USENIX Security ’07, pages 1–14, Boston, MA, 2007.
USENIX Association.

[10] Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H Katz.
Protocol-independent adaptive replay of application dialog. In Pro-
ceedings of the 13th Annual Network and Distributed System Security
Symposium (NDSS), NDSS ’06, San Diego, CA, 2006. ISOC.

[11] Maxim Shevertalov and Spiros Mancoridis. A reverse engineering
tool for extracting protocols of networked applications. In Reverse
Engineering, 2007. WCRE 2007. 14th Working Conference on, WCRE
’07, pages 229–238, Vancouver, BC, CA, 2007. IEEE.

[12] A. Tongaonkar, R. Keralapura, and A. Nucci. SANTaClass: A Self
Adaptive Network Traffic Classification System. In TC6/IFIP Network-
ing, 2013.

[13] Yipeng Wang, M. Zubair Shafiq, Liyan Wang, Alex X. Liu, Zhibin
Zhang, Danfeng Yao, Yongzheng Zhang, and Li Guo. A semantics
aware approach to automated reverse engineering unknown protocols.
2012 20th IEEE International Conference on Network Protocols (ICNP),
pages 1–10, October 2012.

[14] Christian Rossow and Christian J. Dietrich. Provex: Detecting botnets
with encrypted command and control channels. In Proceedings of the
10th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA’13, pages 21–40, Berlin, Heidel-
berg, 2013. Springer-Verlag.

[15] Christian Kreibich and Jon Crowcroft. Honeycomb: creating intrusion
detection signatures using honeypots. ACM SIGCOMM Computer
Communication, 34(1), 2004.

[16] A. Tongaonkar, R. Torres, M. Iliofotou, R. Keralapura, and A. Nucci.
Towards self adaptive network traffic classification. Elsevier’s Commuter
Communications Journal, April 2014.

[17] YY Yao. Information-theoretic measures for knowledge discovery and
data mining. In Entropy Measures, Maximum Entropy Principle and
Emerging Applications. Springer, 2003.

[18] Vuze Wiki. Distributed hash table, October 2012.
[19] Marshall A Beddoe. Network protocol analysis using bioinformatics

algorithms. Technical report, Baseline research, 2005.
[20] C. Leita, K. Mermoud, and M Dacier. Scriptgen: an automated

script generation tool for honeyd. In Computer Security Applications
Conference, 21st Annual, CSAC ’05, pages 214–226, Tucson, AZ, 2005.
IEEE.

[21] Vinod Yegneswaran, Jonathon T Giffin, Paul Barford, and Somesh Jha.
An architecture for generating semantics-aware signatures. In USENIX
Security, pages 34–43, 2005.

[22] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn
Song. Dispatcher: Enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proceedings of the 16th ACM confer-
ence on Computer and communications security, CCS ’09, pages 621–
634, Chicago, IL, 2009. ACM.

