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Abstract—We consider a wireless sensor network localization
problem, with range-free and anchor-free settings, i.e., each
sensor can only detect which sensors are in the neighbor. We
observe issues with existing algorithms that cause inaccurate
localization, and propose a new decomposition-based algorithm
for resolving these issues.

The proposed algorithm consists of three parts: (1) decompo-
sition of a sensor network into small networks that may have
large overlap with other small networks by a randomized ball-
decomposition algorithm; (2) localization of each network by
MDS-MAP and physical simulation-based local refinement; (3)
gluing of small networks by a divide-and-conquer algorithm.
Intuitively, our algorithm finds a good localization because it finds
almost optimal localization for each small graph, and moreover,
it glues them together optimally.

We conduct computational experiments in both synthetic
and realistic setting. The proposed algorithm is more accurate,
efficient, and memory-saving than existing algorithms. In fact,
it accurately localizes 200,000 sensors on European region in 3
hours, whereas other existing algorithms scale only up to 10,000
sensors. Thus, the algorithm can handle problem sizes several
dozen times as large as existing algorithms can.

I. INTRODUCTION
A. WSN localization problem

Wireless sensor networks (WSNs) are used in many appli-
cations such as environmental monitoring [1], vehicle track-
ing [2], health [3], and smart environments [4]. In many cases,
the actual locations of the sensors are unknown, however, loca-
tion information is necessary for the underlying applications.
Imagine a network of sensors scattered across a large building
or a forest. Typical tasks for such networks are sending a
message to a sensor at a given location (without knowing
which sensors are there, or even how to get there), retrieving
data from sensors in a given region, and finding other sensors
with data in a given range. Most of these tasks require knowing
the positions of the sensors, or at least the relative positions
among them.

WSNs provide information on spatial temporal characteris-
tics of the physical world. Hence it is important to associate
sensed data with locations to produce geographically meaning-
ful data. Location information also supports many fundamental
network services, including network routing, topology control,
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coverage, boundary detection, clustering, etc. Therefore, local-
ization has attracted significant attention and interest.

In this paper, we consider the WSN localization problem,
which determines the location (position) of each sensor from
the local information of each sensor. More precisely, we
consider the range-free and anchor-free localization problem,
which assumes that each sensor only detects the sensors in
the neighbor and we do not know the exact locations of
any sensors. In other words, we assume that each sensor
are not equipped neither ultrasonic sensors or GPS. This
is the least informative and the most difficult setting. Our
WSN localization problem is described as a graph embedding
problem. Let G = (V, E) be an undirected graph. Here V
denotes a set of sensors and E denotes the topology of a
network, i.e., sensors ¢ and j can communicate if and only if
(i,7) € E. We refer to amap z : V — R? as a localization of
G in d-dimensional Euclidean space. The WSN localization
problem is described as follows.

Problem 1 (WSN localization problem). Given an undirected
graph G = (V, E), find a localization x : V — R¢ such that
lz(?) —2(7)|| < 1if and only if (4, j) € E, where ||- || denotes
the Euclidean norm.

This problem is also known as the unit disk graph real-
ization problem, and is known to be NP-hard [5]. Thus, we
attempt to find a heuristic solution. See [6] for a survey of
localization problems.

B. Related work

The basic method for solving our WSN localization problem
is MDS-MAP, which is proposed by Shang et al. [7]. It applies
multidimensional scaling (MDS) [8] to the hop count distance
(the smallest number of edges between the vertices) of a given
topology. We shall review this algorithm in Section II.

The quality of a localization obtained by MDS-MAP de-
pends on the difference between the hop count distance and
the Euclidean distance. If sensors are distributed in a convex
region, these two distances might be close and hence it gives
a good quality localization. However, in anisotropic networks
with non-convex regions, the shortest path may be dramatically
bent [9]. Thus the hop count distance would significantly be
different from the Euclidean distance and hence it produces a
poor quality localization.



To solve this issue, some extensions of MDS-MAP have
been proposed. Shang and Ruml proposed MDS-MAP(P) [10],
which stands for MDS-MAP using patches of relative maps.
MDS-MAP(P) first constructs a local map for each sensor,
then it merges local maps one-by-one. Finally it refines the
localization by minimizing the difference of the obtained
distance and the hop count distance. Liu er al. proposed
the approximate convex decomposition based method, called
ACDL [11]. ACDL first decomposes a network into several
convex parts by identifying “concave” vertices using the
boundary detection algorithm [12]. Then it applies MDS-MAP
for each part of the decomposition. The obtained localizations
are expected to have good quality since the hop count distance
provides a good approximation of the Euclidean distance on
each part. Finally it unifies the localizations of all parts of the
decomposition.

Localization algorithms based on neural networks have also
been proposed [13], [14]. The basic idea is to use non-linear
mapping techniques and neural network models, such as self-
organizing map (SOM). These ideas give rise to dimension
reduction of multidimensional data sets, yielding coordinates
of sensors that preserve the distance between the data points
of the input space and output space (in a 2D plane) as much
as possible. Note that the SOM method only finds the relative
location even for scaling. Thus we must estimate appropriate
scaling using some other method for localization.

There are some other techniques have been employed, such
as graph rigidity [15], [16], Ricci flow [17], and semidefinite
programming [18], [19]. Note that there are many studies of
range-based or anchor-based localization problems, but we do
not discuss them in this paper.

C. Contributions

We observe the following two issues in the existing algo-
rithms (particularly MDS-MAP):

1) Existing algorithms use the hop count distance. This
is problematic for two reasons. First, the hop count
distance does not approximate the Euclidean distance for
complicated shapes. Second, the hop count distance takes
discrete values, which also causes inaccurate localization.

2) The time and space complexities are expensive. Many
existing algorithms scale only up to a few thousand
Sensors.

In Section II, we discuss the above issues for MDS-MAP
and give several examples. In consideration of these issues,
we propose an algorithm that overcomes them. Our algorithm
consists of three parts.

(A) Decomposition: Decompose the original graph into small
diameter graphs that possibly have large overlap with
other small graphs.

(B) Localization: Localize each small graph by MDS-MAP
with a local refinement based on physical simulation.

(C) Gluing: Glue small graphs by a divide-and-conquer algo-
rithm with minimizing least square errors.

Intuitively, our algorithm finds a good localization because
it finds almost optimal localization for each small graph, and
it glues them together optimally. Note that, this three-step
framework has some similarity with ACDL [11]; however, our
method has the following two major improvements:

1) In decomposition, we allow the decomposed graphs to
have large overlap. This greatly simplifies decomposition,
and improves the accuracy and robustness when gluing
the decomposed graphs together. Additionally, we can
obtain a small decomposition.

2) In localization, our algorithm employs a local refinement
that reduces the discreteness issue. This refinement is
based on a simple physical simulation. Thus our algo-
rithm finds much better localization for each small graph.

In Section III, we discuss each point in more details. The
proposed algorithm has many appealing aspects.

1) The proposed algorithm is simple and easy to implement.
It does not require big machineries such as boundary
detection, graph rigidity, Ricci flow, or semidefinite pro-
gramming. It only requires a naive breadth first search
(BFS), MDS-MAP, and a simple physical simulation.

2) Compared to other algorithms (MDS-MAP, MDS-
MAP(P), ACDL, and SOM), the proposed algorithm
yields accurate localization. Our experiments show that
our algorithm can obtain a much better graph layout than
any other algorithm, even for complicated shapes.

3) The proposed algorithm scales up to 200,000 vertices
(distributed on European region) in 3 hours, whereas no
existing algorithms scale up to such instances. Although
the worst case for the time complexity is equal to that of
MDS-MAP, the proposed algorithm runs much faster than
MDS-MAP. Our experiments shows that the time com-
plexity of our algorithm is subquadratic whereas MDS-
MAP is quadratic. Moreover, the space complexity of our
algorithm is linear whereas MDS-MAP is quadratic.

Our algorithm can be applied to localization in more than
two dimensional space. However, to simplify the notation, we
mainly consider the two dimensional case. In our experiment,
we give a result of three dimensional localization. The algo-
rithm can also be extended to range-based or anchor-based
localization problems.

The rest of the paper is organized as follows. The MDS-
MAP algorithm is reviewed in Section II. The proposed
algorithm is given in Section III. Thorough experiments are
performed in Section IV, and Section V concludes the paper.

II. MDS-MAP

In this section, we review MDS-MAP [7], which is the basic
algorithm for the range-free and anchor-free WSN localization
problem. We also discuss several issues with this algorithm
that have motivated our research.

MDS-MAP is based on multidimensional scaling (MDS),
which is a standard technique in statistics [8]. Thus we first
describe MDS. Suppose that we have Euclidean distance cflij
for all pairs of vertices ¢ and j. Then, the inner product matrix



Algorithm 1 MDS-MAP.

1: Compute the hop count distances d;; for all 4,5 € V

2: Compute the inner-product matrix B;;:= d?j —d? — d?o

3: Calculate the two largest eigenvalues A;, Ay and the cor-
responding eigenvectors qi, g2

: Return z(i) = (v A1q1(i), vV A2q2(i)) as a localization

B = (Byj) is obtained by B;; = d2; — d?, — d2, where o is
a specified vertex . Let z : V — R? be the exact localization.
Then, B is also expressed as B;; = x(i) " z(j). Therefore the
localization z is recovered from the eigenvalue decomposition
of B as z(i) = (vVA1q1(i), vV A2q2(i)), where Ai, A2 and
q1,qo are the two largest eigenvalues and the corresponding
eigenvectors of B, respectively.

Let us consider MDS-MAP for the WSN localization prob-
lem. Since we do not have the Euclidean distance for each pair
of vertices, we must estimate the Euclidean distance to apply
MDS. MDS-MAP approximates Euclidean distance by the hop
count distance (the smallest number of edges between two
vertices) and applies MDS to obtain localization. The detailed
procedure is shown in Algorithm 1. The time complexity of
MDS-MAP is O(|V||E|), which is dominated by computing
all-pairs hop count distances by BFS |V| times. The space
complexity of MDS-MAP is O(|V|?) since it must hold the
all-pairs distances. The accuracy of MDS-MAP is analyzed
by Oh ef al. [20]. They showed that, in a square region, the
average localization error is typically O(1).

There are three issues of MDS-MAP that have motivated
our research:

I

1) When a shape is complicated, the hop count distance
is far from the Euclidean distance. Thus MDS-MAP
produces inaccurate localization [10], [11]; see Figure 1a.

2) Even if a shape is simple, MDS-MAP often produces
biased localization due to the discreteness of the hop
count distance. Specifically an obtained localization may
have a striped pattern; see Figure 1b.

3) The time and space complexities of MDS-MAP are
O(|V||E|) and O(|V|?), respectively. This is too expen-
sive for application in real networks.

In the next section, we show that our proposed algorithm
solves issues 1 and 3 by a decomposition approach, and issue
2 by local refinement.

III. OUR ALGORITHM

As mentioned in Introduction, our algorithm consists of the
three steps, Decomposition, Localization, and Gluing. Let us
look at more details for each step.

A. Decomposition

A family of vertices S C 2V is said to be a cover of V if
Uses S = V. Each element S € S is called a sheet. In the
decomposition part, to deal with a complicated-shaped (e.g.,
non-convex) graph, we decompose a graph into a set of simple-
shaped sheets.

Let B,.(i) := {j
r centered at ¢ €

€ V | d(i,j) < r} be a ball of radius
V. A ball B,(i) can be obtained by r
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Fig. 1: Localization obtained by MDS-MAP. The red and blue
points are the original and obtained locations, and green lines
denote errors.

Algorithm 2 Decomposition.

1: Initialize U :=V, S := ()

2: while U is not empty

3 Pick 1 € U at random

4 S+ SU{B.(i)} and U «+ U\ B,_1(7)

steps breadth first search (BFS) starting from 4. The proposed
algorithm constructs a cover of a graph using small balls by re-
peated random sampling. The detailed procedure is described
in Algorithm 2. Note that each sheet obtained by this algorithm
is not necessarily simple due to the complicated underlying
shape. However, each ball of small radius is relatively easy
to localize because it does not contain a pair of vertices with
long hop count distance. Furthermore, if some sheets cause
incorrect localization, this effect is negligible because each
sheet is typically small and most sheets are simple.

Typical decompositions for some graphs are shown in
Figure 2. It should be noted that in Figure 2 the radius of a
ball is set to r = 6 to illustrate decomposition clearly; however
in later experiments we set = 2, which gives a better shape
in practice (see Section IV-B). Our decomposition approach
can be applied to a graph with vertices that are not uniformly
distributed, as shown in Figure 2b.
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Fig. 2: Typical decomposition of graphs obtained by Algo-
rithm 2. The vertices in the same sheet are the same color and
mark.

This decomposition approach provides not only more accu-
rate localization but also a scalable algorithm. In practice, we
may assume that the maximum degree of a graph is bounded
by a small constant (i.e., each sensor communicates with a few
sensors). Thus the number of vertices in each ball is O(1).



Therefore the number of balls is O(|V]), and hence the time
complexity of decomposition is O(|V).

It should be noted that we allow each sheet to have large
overlap with other sheets (cf. ACDL [11] does not allow such
overlap). This greatly simplifies the decomposition procedure
from the decomposition part of ACDL that requires a boundary
detection and a convex decomposition procedure. In addition
we can get a smaller decomposition and this reduces time and
space complexities.

B. Localization

In the localization part, we find a local map of each sheet
in our cover. Since each sheet is a ball of small radius, MDS-
MAP gives relatively accurate localization; however, as shown
in Figure 1b, the result is somewhat biased. Therefore, in this
part, we improve MDS-MAP results by using local refinement.

Let S = B,(0) be a sheet in our cover obtained by the
decomposition. Let G(S) = (5, E(S)) be the graph induced
by S. A localization x of S should satisfy the following
constraint.

(i,4) € E(S) = [z(i) —2()] < 1. (1)

The proposed algorithm improves the initial localization z,
which is obtained by MDS-MAP, to satisfy this constraint. To
achieve this, we introduce the following potential function.

on)=v Y

(1,5)€C(5)

(1 = (i) = z(5)II)* 2)

where C(S) is a set of pairs of vertices that violates con-
straint (1) and k > 0 is a stiffness parameter. Note that ¢(z) =
0 indicates that there are no violated pairs, i.e., C(S) = 0.
Thus, we can find a good localization by minimizing this
potential function.

We minimize this potential function by a force directed
method, which is a standard technique in graph drawing [21]
and dates back to the seminal work of Tutte [22]. There
are many types of force directed methods [21]-[23], and the
following method is the simplest spring model with friction.

Let us regard vertex ¢ as a (moving) point in the plane with
position x (i) and velocity v(i). Our physical system of a force
directed method is described as follows:

1) A spring of stiffness k is placed between pairs of ver-
tices in C(S). A spring exerts a force opposite to the
displacement.

2) Frictional forces act to vertices as —yv(i) where v(i) is
velocity of a vertex i.

Then the potential energy of this system coincides with ¢(x).
The force directed method simulates this system up to time
T with small time step At. We set k = 2, v = 0.1, At =
0.1, and T' = 100. When a system is in a steady state, the
potential function ¢ attains a local minimum. Note that since
¢ is non-convex, a local minimum is not necessarily the global
minimum. The force directed method is shown in Algorithm 3.

Algorithm 3 Force directed method.

1: Initialize v (i) := 0 (Vi € S)

2: for t =0 to T by At do

3 Compute F (i) (Vi € S) by (3)
4. forive S do
5
6

v(i) + (1 — yAt)v(i) + F(i)At
x(i) < z(i) + v(i)At

Here, a force F(i) = —0¢/0x(i) to a vertex i, which is used
in the algorithm,is given by

Fi) =k % (= el - 2G)) o= o)

(ee() z()

.

3
e 3)
The complexity of the localization part is O(|S|?), because
it first applies MDS-MAP, which requires O(|S|?) , and
the local refinement part requires O(|S|?) since the number
of iterations of the force directed method is estimated as
O(]S|) [24] and the complexity per iteration is O(|S|), which
is the number of violated pairs (see also Remark 2 below).
As we decompose a graph to small balls, typically O(1),
the localization requires only O(1) time per ball for the time
complexity
Typical improvement by our refinement is shown in Fig-
ures 3¢ and 3d. Prior to the refinement, a localization ob-
tained by MDS-MAP has 1806 violated pairs, 0.485 average
localization error, and 1.11 maximum localization error (see
Section IV for the definitions of these criteria). However after
the refinement, the localization has no violated pairs, 0.0763
average localization error, and 0.527 maximum localization
error. From this example, it can be seen that our physical-
based refinement improves the average localization error by
a factor six, and the maximum localization error by a factor
two. The number of iterations in this refinement is 104.

Remark 2. In fact, the number of iterations of force directed
method is not well understood yet. Tunkelang [24] experimen-
tally showed the number of iterations is proportional to the
number of vertices when we start from random initial location.
In our case, since we start from the initial solution obtained
by MDS-MAP, we can expect that the number of iterations is
smaller than O(|V|). We here experimentally verify this.

Let us consider randomly generated circle shaped graphs
having |V| = 50, 100, 200, and 400 vertices. We then
apply our local refinement algorithm for these graphs and
measure the potential for each iteration. The result is shown in
Figure 4 and typical loci of convergence are shown in Figure 5.
This shows that the initial solution obtained by MDS-MAP
accelerates the convergence. As shown in Table I later, the
typical size of each sheet is about a few hundreds. Hence our
refinement algorithm converges in about 100-200 iterations.

C. Gluing

Finally, we glue local maps together to construct a global
localization. We first show how to glue two sheets. Let Sy, .52
be two overlapping sheets, and let z, xo be their correspond-
ing localizations, respectively. To construct a localization of
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(a) Decomposition of an I-shape
graph with 1000 points, where
one component is marked with
red.

(b) Original graph of the marked
component.

3 2 4 0 1 2 3
(c) Result of MDS-MAP: poten-
tial 93.94, #violate 1806, avg LE
0.485, max LE 1.11.

(d) After local refinement: poten-
tial 0, #violate 0, avg LE 0.0763,
max LE 0.527.

Fig. 3: Typical improvement by Algorithm 3.
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Fig. 4: The number of iterations versus potential value in
localization part. We use a circle-shaped graph with constant
density (20 sensors per unit circle). Solid lines are for initial
locations obtained by MDS-MAP, and the dotted lines are for
random initial locations.

S1 U Sy, we first solve the following least squares problem.

1 (2) = Tpp(w2(0))], 4)

min
Pb
1€S1NS2

where Tpﬁb(ﬂ?) := Px + b is an Euclidean isometry, i.e., P is
a 2 x 2 orthogonal matrix and b is a two-dimensional vector.
We then construct the localization x5 of S; U Sy as follows.

xl(i), 1€ Sl,
Tp,b(xg(i)), i €Sy \ Sy.

The problem (4) is known as Orthogonal Procrustes prob-
lem [25], which is a classical problem in statistics and com-
putational geometry. A closed form solution for this problem
is as follows. For k¥ = 1 and 2, let T; be the center

®)

T19(i) =

(a) MDS-MAP (b) random

Fig. 5: Loci of convergence of local refinement algorithm; (1)
starts from MDS-MAP solution and (2) starts from random
location. Red points are for initial location and blue points
are the converged location. The connecting curves denote the
loci.

of gravity (i.e., average) of {z(i) | ¢ € S; N Sy}. Let
Xy = [zr(t) — T | © € S1 N S2] be a matrix of size
2 x |S1 N Ss|. Then, the optimal Euclidean isometry is given
by P=U'V and b = Z; — PZy where U and V are
left and right singular vectors of X Xy, i.e., U and V are
orthogonal matrices that satisfy U XV = X| X, for some
diagonal matrix X. Once the localization x12 is obtained, we
refine this map by the force directed method (Algorithm 3).
The complete algorithm is shown in Algorithm 4 and the time
complexity is expected to be O(|S7 U Ss|).

We then consider how to glue all sheets efficiently. We use
the divide-and-conquer framework:

1) divide the sheets into two components,

2) recursively compute localizations for the two compo-
nents, and

3) glue the two components (by the above procedure).

The issue is that how to divide the sheets. It should satisfy the
following two conditions.

a) The overlap of two components is large.
b) The sizes of two components are almost the same, and
the overlap of the components is not too large.

Condition a) is important for the accuracy of the localization;
there should be an appropriate “margin to paste” between
two components. Condition b) is important for the time com-
plexity; if this condition holds, the depth of the recursion is
O(log |V]) and the total complexity becomes O(|V'|log|V]).
To satisfy these two conditions, we adopt the following
strategy: We pick the (approximately) farthest sheet pair S;
and S5, and then divide all sheets into two parts S; and S
such that each sheet in S; is closer to S; (than S5_;). See
Algorithm 5.

Ideally, as mentioned above, our algorithm runs in
O(|V]log|V|) time. However, in practice, the sizes of two
components are biased, and hence the time complexity be-
comes worse; it practically runs in subquadratic time, i.e.,
O(|V]*) time for some 1 < a < 2. Our algorithm requires
only O(|E|) = O(]V|) space. These show that our algorithm



Algorithm 4 Glue S; and Ss.

1: Compute the center T of {xx(i) | ¢ € S; N Sy} and
Xk = [xp(i) — T |1 € SN Sy for k=1,2.

2: Compute the singular value decomposition U 'YXV =
X' X,

3 Let P=U'"V, b=z, — PZ, and construct z15 by (5)

4: Refine x12 by the force directed method (Algorithm 3)

Algorithm 5 Glue all sheets

1: Let S be sheets to glue.
2: if |S| = 1 return localization by MDS-MAP and the force
directed method (Algorithm 3)
3: else
Construct sheets graph Gs = (S, Es) and let d denote
the hop count distance in Gs, where Es := {(S1,952) €
S? | S1N Sy 75@}
Pick S € S at random.
Let S; € S be a farthest sheet from S in G.
Let S; € S be a farthest sheet from S; in G.
S1:={SeS§|d(S,51) <d(S,52)}.
Sy :={5eS&|d(S,51) > d(S,S2)}.
Compute localization of &7 and Ss, recursively.
Return a localization of S by Algorithm 4.

7o Y X e

—_

is scalable for large scale WSNs. See Section IV for more
details.

IV. EXPERIMENTS

Here we present experimental results for the proposed
algorithm. We first show our results in Section IV-A, and then
we compare them with existing algorithms in Section IV-C

All experiments were performed on a machine with In-
tel Xeon E5-2690@2.90GHz processor. Here, the quality is
evaluated by the following three criteria: (1) The localization
error; (2) The number of violated pairs; (3) The value of the
potential function. The localization error is the sum of the
Euclidean distances between the obtained location x and the
exact location z*. It should be noted that the exact locations
of the sensors were known in the experiments. The range-free
and anchor-free localization problems only require a relative
location; thus we transform a location by the optimal isometry.

LE := min z¥(3) — Tpp(x(1))].
s 3 () = Trale(@)
This optimization problem can be solved by the method
discussed in Section III-C. Note that the localization error is
widely used in the literature [11], [13]; however, large local-
ization error does not always imply poor localization quality
because the localization may not be uniquely determined under
given connectivity information. In such cases, the number of
pairs that violate constraint (1) is often more suitable measure.
The value of the potential function (2) is a quantitative version
of the number of violated pairs.

A. Our results

Random placement on a region: We here validate our al-
gorithm for randomly generated graphs. We first specify some

region, and then generate sensors uniformly and randomly
on the region. The qualities of the obtained localizations are
shown in Table I. and the obtained localizations are shown in
Figures 9 and 10.

Our algorithm produces good localization for all the exper-
imented graphs. Note that for “H-shape 1500,” the number of
violated pairs is zero, and the maximum localization error is
about 2. The reason for this is, as mentioned above, there are
many possibilities for feasible localization that satisfy a given
topology.

TABLE I: Computation time and quality of localization of
randomly placed vertices.

avg | ume . ; av
Topology |V| degr%ee (s) #sheets sgiezeetb potential Vf)(e)xlr?ge L]g: TE
300 5.49 |0.68 45 29.0 2.24e-10 10 0416 133
circle 1K 185 (322 53 111 0 0 0.0540 0.247
2K 364 | 153 58 231 0 0 0.0232 0.129
25K 738 |9.78 298 40.1 0 0 0510 1.28
sake 5K 228 231 221 140 0 0 0337 0.835
10K 46.1 | 122 221 288 0 0 0235 1.15
300  7.40 ]0.38 33 352 2.93e-7 4 0597 157
O-shape 300 129 {089 38 63.0 0 0 0231 0.640
1K 249 |3.94 40 132 0 0 0.231 0.427
1500 6.47 |6.71 200 344 0 0 0625 1.96
Mshape SK 213 [229 233 132 0 0 0.0777 0.294
10K 427 | 173 243 278  4.12e-7 270 0.0770 0.280
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(a) MDS-MAP: potential 113.4, (b) Proposed algorithm: poten-
#violate 1581, avg LE 3.77, tial 0.71e-9, #violate 3, avg LE
max LE 9.35. 1.38, max LE 2.94.

Fig. 6: Results for grid graphs.

Grid placement: Here, we demonstrate our algorithm
for graphs of grid placement which is an example of a
realistic placement. As Shang et al. [7] showed, with the same
connectivity level, MDS-MAP obtains a better location for grid
graphs than that for random graphs. The proposed algorithm
can further improve this result. Here, a graph is generated as
follows. Consider a k x k grid of width h (i.e., the distance
between adjacent sensors). Each vertex is placed on the point
of the grid with 10% placement error. With h = 0.75, the
average connectivity is slightly greater than four.

The results are presented in Figure 6, which show that the
proposed algorithm significantly improves MDS-MAP. Our
algorithm finds nearly the exact solution relative to the number
of violations. This improvement can be explained as follows.
Consider the vertices on the lower-left corner and the upper-
right corner. The hop count distance between these vertices is
2k and the Euclidean distance is h+/2k. This implies that, if a
grid gets larger, the difference between hop count distance and
Euclidean distance gets larger. However, since our algorithm



(a) 33,108 towns and cities in  (b) 200,000 random locations on
the US: potential 0.03, #violate Europe: potential 0.65, #violate
4441, avg LE 0.38, max LE 2.24. 37473, avg LE 0.77, max LE 3.92.

Fig. 7: Results on geographically generated graphs.
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Fig. 8: Result for random placement of 2000 sensors on a
double torus shape: potential O, #violate 0, avg. LE 0.181,
max LE 0.300.

only localizes small diameter sheets by MDS-MAP, it does not
have this problem. Note that, for this graph, ACDL coincides
with MDS-MAP because ACDL determines a boundary node
as convex. Therefore, this simple example demonstrates that
the proposed algorithm outperforms ACDL as well.

Realistic placement: We compute localization for a graph
of 33, 108 towns and cities in the United States, and a graph of
200,000 sensors randomly generated on Europe shape region.
The results are shown in Figures 7a and 7b. The proposed
algorithm outputs the result for the graph of 200,000 in 3
hours.

Localization on three dimensional networks: For some
applications, such as underwater sensor networks and smart
buildings, dimensionality plays a crucial role [26]. The pro-
posed algorithm can be extended to a three dimensional
localization problem in a straightforward manner. We here
demonstrate three dimensional version of our algorithm for a
randomly generated graph on a double torus shape. The result
is shown in Figure 8.

B. Radius of balls

We compare localizations obtained by our algorithm when
the radius of ball r is 1,2, 3 and oco. Here, 7 = oo means that
we do not decompose the graph. We use three circle-shaped
graphs with different densities. The results are presented in
Table II, which show that » = 2 gives better computational
time and localization errors for the graphs. We performed the
same experiments for other shaped graphs and we obtained
similar results.

TABLE II: Computational time in seconds and localization
errors for circle-shaped graphs.

avg.

|V]| degree Measure | r=1 r=2 r=3 r=o00
#violate 0 10 1 252
avg LE 0.32 0.42 0.50 0.69

3000549 X LE| 098 133 137 172
time(s) 1.77 0.68 1.38 0.81
#violate 0 0 0 167
avg LE | 6.1e-2 5.0e-2 6.4e-2 0.15

1000185\ xLE | 026 023 024 039
time(s) 243 28 24 37
#violate 0 0 0 0
avg LE | 8.3e-3 8.1e-3 Il.le2 1.0e-2

3000 182 max LE | 5.0e-2 5.0e-2 7.6e-2  6.le-2
time(s) | 3577.7 1284 150.1 229.2

C. Comparison with existing algorithms

Here, we compare the proposed algorithm with some ex-
isting algorithms. We implement the following existing algo-
rithms: (1) MDS-MAP by Shang et al. [7]. (2) MDS-MAP(P)
by Shang and Ruml [10]. (3) ACDL by Li et al. [9]. Since
the implementation of convex decomposition (particularly,
boundary detection) in ACDL is complicated, we manually
decompose the domain into some convex parts. (4) SOM
by Giorgetti et al. [13]. Since SOM only finds the relative
location, we find the optimal scaling to minimize localization
error by solving an optimization problem.

We compare the quality of localization and computational
time of the algorithms. The results are shown in Figures 9 and
10 and summarized in Table III.

As can be seen here, the proposed algorithm outperforms
all other algorithms. In particular, the number of violations is
significantly lower. A brief comparison with each algorithm is
given as follows.

1) MDS-MAP produces a poorer localization than other al-
gorithms. In particular, for the snake shape, since the hop
count distance does not approximate Euclidean distance,
its localization is quite poor.

2) MDS-MAP(P) is slightly better than MDS-MAP, how-
ever, its performance is still poorer than the proposed
algorithm. Furthermore, MDS-MAP(P) is too expensive
because it must solve an optimization problem for each
merge step.

3) ACDL produces the same localization as MDS-MAP for
circle and O-shape graphs, because the convex decom-
positions of the graphs obtained by ACDL are the same
shape as those obtained by MDS-MAP. ACDL outputs a
good localization for the snake shape; however it outputs
a poor localization for the H-shape. The reason is that
gluing of ACDL is very sensitive to the quality of the
MDS-MAP for each convex part because the convex
parts have only small overlap. In contrast, the proposed
algorithm allows to have large overlap for each sheet.
Thus it can glue the sheets more robustly.

In our experiments, we manually give a convex decompo-
sition of the given graphs because convex decomposition
is difficult to implement. With good convex decomposi-
tion, ACDL is the fastest algorithm. However, the convex



TABLE III: Localization errors; the bold values denote the

best results.

proposed algorithm is easy to implement, and the obtained
localization significantly outperforms existing algorithms in
accuracy. Our algorithm produces much accurate localizations
than other existing algorithms using similar time and memory
even when the input of our algorithm is several dozen times

Topology [V [Measure | Proposed MDS-MAP M.-MAP(P) ACDL SOM
#violate 10 887 806 887 305
circle 300 | AvE LE 0.416 1.29 138 129 0.338
max LE 1.33 3.90 367 390 0.945
time(s) 0.68 0.138 543 0138 0.833
#violate 1 1378 1055 1378 832
avg LE 0.597 2.60 172 260 0.859
O-shape 300 ma%( LE 1.57 425 276 425 265
time(s) 1.129 0.38 7.694 0.144 0.733
#violate 0 29909 8609 9539 10193
avg LE 0.510 9.950 477 122 116
snake 2500 mai LE 1.28 27.0 120 330 340
time(s) 9.78 21.8 6450  4.00 22.0
#violate 0 6155 5082 8301 1542
avg LE 0.625 2.63 310 727 0.388
f-shape 1500 ma%g LE 1.96 5.58 8.15 203 223
time(s) 6.71 4.07 831 181 827

TABLE IV: Computational time in seconds for circle-shaped
graphs with constant density (30 sensors per unit circle). ‘—’
denotes that it takes over 1 hour (3600 seconds).

V] 1K 4K 7K 10K 40K 70K 100K
proposal algorithm | 2.44 143 352 51.4 498.7 1242.0 2335.5
time(s) | MDS-MAP, ACDL | 1.35 938 486.7 14632 — — —
MDS-MAP(P) 111.0 16289 — — — — —
SOM 351 5705 — — — — —

decomposition may be the bottleneck.

4) SOM only finds a relative location even for scaling.
Thus we first compute optimal scaling for SOM. In this
case, the localization of SOM is better than the existing
algorithms for square-like shapes; however, it performs
poorly for the snake shape. The proposed algorithm
always outperforms SOM.

Computing time and space: We randomly generate circle-
shaped graphs with constant density for |V| = 1,000 to
100,000, and then measure the computational time required
to localize each graph. We performed this experiment 10
times to calculate the average computation time. The results
are shown in Table IV. The results show that the proposed
algorithm scales up to 100,000 vertices in 40 minutes at this
setting. The total time complexity is subquadratic of |V| (the
exponent is about 1.72), which coincides with our analysis in
Section III-C. Our proposed algorithm required only SOMB
to localize the graph with 10,000 sensors, where MDS-MAP
required 2,739MB. The algorithm required only 910MB even
for the graph with 100,000 sensors. Thus, our algorithm can
handle problem sizes several dozen times as large as the
existing algorithms can.

V. CONCLUSION

In this paper, we propose a simple and scalable algorithm
to localize a WSN using only connectivity. The proposed
algorithm consists of three parts: (1) Sensors are decomposed
into small sheets that possibly have large overlap with other
sheets; (2) MDS-MAP and a physical simulation-based local
refinement are performed to obtain a local map of each sheet;
(3) A global map is obtained by gluing each local map by
divide-and-conquer algorithm. Our algorithm finds a good
localization because it finds almost optimal localization for
each small graph, and it glues them together optimally. The

larger than that of other existing algorithms.
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Fig. 9: The original graphs for the comparison of algorithms. The red points denote original location, and the blue lines denote

communicating pairs.
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