Dynamic Active Area Clustering with Inertial
Information for Fingerprinting based Indoor
Localization Systems

Fan Yang*, Jia-Liang Lu*, Fabrice Theoleyre f, Wei Shu** and Min-You Wu*
*Dept. of Computer Science & Engineering, Shanghai Jiao Tong University, Shanghai, China
TCNRS, ICUBE, University of Strasbourg, France
iDept. of Electrical & Computer Engineering, University of New Mexico, USA
Email: {jialiang.lu, xcyangfan, mwu} @sjtu.edu.cn, theoleyre @unistra.fr, shu@ece.unm.edu

Abstract—Fingerprinting based localization is one of the most
widely used indoor localization methods. This method is divided
into two phases: during the off-line training phase, fingerprints
within the area of interest are collected and stored in a fin-
gerprint database; during the on-line mapping phase, the real-
time location of a device is estimated by mapping itself to
the most accurate fingerprint in the database. The efficiency
of the mapping process is one of the key challenges of the
on-line phase, and is mostly characterized by the localization
accuracy and the response time. Clustering methods have been
introduced to reduce computational overhead. In this paper,
we propose a dynamic clustering method leveraging the inertial
information of the target device. An active area is dynamically
computed around the prior position. The target mapping space
is significantly reduced with this active area. This method can
be integrated with other clustering algorithms to overcome the
edge problem and remove outliers. We evaluate this method
compared with the state-of-the-art methods on a body sensor
based localization system. The results show that the accuracy,
precision and response time of the system are improved greatly.

I. INTRODUCTION

The rapid development of wireless communication technol-
ogy and smart mobile devices has resulted in a great aware-
ness on the research of localization. Indoor localization has
significant importance for an increasing variety of emerging
pervasive commercial, consumer and enterprise applications.
While the satellite-based positioning technique (used by GPS,
GLONASS, GALILEO and BEIDOU) becomes the standard
for out-door civil positioning [1], indoor localization is still
a battle field that various technology options such as infrared
(IR), ultrasound, radio-frequency identification (RFID), wire-
less local area network (WLAN), Bluetooth, sensor networks,
ultra-wideband (UWB), magnetic signals, vision analysis and
audible sound [2] are available for building solutions.

Each localization technology needs appropriate methods
and algorithms to locate the target efficiently. Response time
and accuracy are the most common performance metrics
for indoor localization systems. Response time is the time
consumption of a position estimation by a localization system,
including signal sampling phase, collecting time, computing
and matching operation time. In localization systems, the
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accuracy is characterized by the average value of the Euclidean
distance between the estimated results and the real location,
also known as average distance error. It is important to evaluate
the distribution of the error distance of a localization system.
Therefore the cumulative distribution function of error distance
is also used. Table I gives a classification of well-known
indoor localization systems and summarizes them with their
associated technologies and the performance metrics.

Generally, localization algorithms can be classified into
2 categories: signal-propagation-based and fingerprint-based
systems. Fingerprinting is the widely adopted approach in
Received Signal Strength (RSS) based systems. The key point
of fingerprint-based localization is to accurately cover the
whole area of interest. There are two phases: during the off-
line training phase, fingerprints within the area of interest
are collected and stored in a fingerprint database; during the
on-line mapping phase, the real-time location of a device is
estimated by mapping itself to the most accurate fingerprints
within the database. The efficiency of the mapping process
is the key challenge of the on-line phase. In [11], a graph
theoretic approach using Voronoi regions is used to filter
erroneous user data while organically growing a localization
database as supposed to do a site survey. In [12], [13], the
clustering methods which preprocess fingerprints are adopted
in order to reduce the computational overhead in mapping
process.

Clustering methods mentioned above are based on static
analysis which is related to the stochastic properties of the
off-line collected fingerprints. None of them uses real-time
information in an on-line mapping phase. We introduce Dy-
namic Active Area Clustering in this work to build a target area
on-the-fly. The mapping will be limited within this target area,
so that the data set is highly reduced. To dynamically generate
the active area, the system uses inertial information collected
from the target device. Although the inertial based localization
[14] suffers from cumulative errors, it accurately and quickly
estimates the shift distance from the previous position. This
property is exploited in our solution and ensures the locality
of the active area. The contribution of this work is threefold:

1) Compared with traditional clustering algorithms, our



TABLE I
COMPARISON OF INDOOR LOCALIZATION SYSTEMS [3]

System Technology Localization Method Accuracy Precision Response Time
RADAR [3], [4] WLAN RSS Fingerprinting kNN, Viterbi-like 3—5m 90% within 5.9m | = 4s

50% within 2.5m
Horus [5], [6] WLAN RSS Fingerprinting with Probabilistic method | 2m 90% within 2.1m | ~4 — 5s
WhereNet [3], [7] UHF TDOA RSS Least Square/RWGH 2—3m 50% within 3m ~ bs
Ubisense [8] unidirectional UWB | TDOA+AOA Least Square within 0.5m | 99% within 0.3m <I1s
LANDMARC [9] Active RFID RSS KNN 2m 50% within Im ~ 8s

90% within 1.8m
Zee [10] WLAN RSS Fingerprinting with Probabilistic method | ~ 5m 50% within 1.2m | Not mentioned

Inertial sensors Paritcle Filter 80% within 2.3m

method can adapt the clustering area on-the-fly. It ef-
ficiently reduces the mapping space and saves computa-
tional resources;

2) We not only utilize the inertial information to realize
a real-time localization in short distance, but also over-
come its shortage of error accumulation by combining
fingerprinting based localization and Dynamic Active
Area Clustering;

3) We built a wireless localization system with body and
environmental sensors and implemented the proposed
solution. This system demonstrates the ease of deploy-
ment of such solution with great performance.

The rest of the paper is organized as follows: Section II re-
views several localization and clustering methods proposed in
the literature. We present our Dynamic Active Area Clustering
method in Section III followed by the system implementation
with body and environmental sensors in Section IV. The
performance evaluation through experiments is discussed in
Section V. The results show that the accuracy, precision and
response time of the localization system are improved with
17%, 121% and 17% compared with affinity propagation clus-
tering, and even higher compared with region-based clustering.
Section VI discusses the potential of this work and future
directions.

II. RELATED WORK

A. Pedestrian Dead-Reckoning

Pedestrian Dead-Reckoning (PDR) systems utilize inertial
sensory data to estimate the relative instead of absolute
position, which means the change from last location. These
systems need very little deployment or infrastructure installed
in the buildings and have a good reliability in short period.
However, they may suffer from error accumulation seriously
without other reference [15].

PDR systems can estimate a user’s displacement and di-
rection via a variety of inertial sensors such as accelerome-
ter, gyroscope, magnetometer etc. The displacement can be
calculated by double integration of acceleration or detecting
steps and estimating step length. The heading change is
provided by single integration of gyroscope readings. Mostly
magnetometers can be fused with the gyroscope signals to
perform better heading estimation [16].

However, the integration of sensory data usually results in
drift. For aviation and military, highly accurate sensors can
keep the low-level drift and the long-term tracking. But for
PDR systems, these highly accurate sensors are too expen-
sive. Micro Electro-Mechanical Systems (MEMS) sensors are
smaller and cheaper but the integration of MEMS inertial
sensors is feasible within one or two minutes before the drift
dominates [17].

There are several works that aim at reducing the drift and
cope with the error accumulation. In [16], Foxlin proposed
Zero Velocity Updates (ZUPTs) to counter drift by limiting
integrations only in the swing phase of the foot. Since it is a
such short period, the drift is controlled. An Extended Kalman
Filter (EKF) is also used for modeling the accelerometer and
gyroscope biases [16] [18]. To address the error accumulation,
a PDR system is likely to need corrections from other local-
ization methods. In [14], Hu er al. exploited the cooperative
efforts of PDR and radio-based localization system. They
employed an EKF to minimize the effect of drift and provide a
better location estimation with real-time inertial measurements
and RSSI information from environmental sensors. In [18],
[19], Woodman et al. combined the Particle Filter (PF) based
PDR with WiFi fingerprinting method to provide a hybrid
positioning system, which aims at overcoming shortcomings
of both. In [20], Frank et al. presented an indoor positioning
system combining WLAN RSS fingerprinting with inertial
positioning method, which employed the cascaded EKF to
achieve real-time processing.

B. Fingerprinting Based Localization

Generally, there are two kinds of indoor localization systems
utilizing RSS from wireless access points (APs) or other
radio-frequency (RF) devices: signal-propagation based and
fingerprint-based systems.

For a signal-propagation based localization system, first it
builds a signal propagation model which is used to convert
the RSS value to a certain propagation distance. After that,
it employs localization algorithms (such as trilateration) to
calculate the final position. However, building such an accurate
and general signal propagation model is not an easy job as
wireless channels are not always stable and lots of factors
affect the propagation of wireless signal such as walls, people
and objects in the room etc. Furthermore, the system needs
the positions of APs which may be hard to get in practice.



Instead of building a signal propagation model to calculate
the distance between the APs and the device, a fingerprint
database which describes the wireless signal signature of an
indoor environment is established in a fingerprinting based
system. There are two phases in a fingerprinting based local-
ization system: off-line training phase and on-line mapping
phase.

During an off-line training phase, the RSS readings are
collected at each Reference Point (RP). The set of RSS
readings collected at RP j is denoted {RSS;(t),t =1,2...n},
where n presents the total number of the wireless APs. As the
position of RP j is (z;,y;), the fingerprint of j is represented
as Fj = {(l‘j,yj),RSSj(t),t = 1,2...%}.

During an on-line mapping phase, a user carries a de-
vice collecting current RSS readings. The user’s position is
estimated by comparing the on-line RSS readings from all
APs with the off-line collections in the pre-built fingerprint
database.

There are serval kinds of algorithms applied to fingerprint-
ing based system. The Nearest-Neighbor (NN) and the k-
Nearest-Neighbor (KNN) approaches are reference solutions
in this research area [4], [9]. They use Euclidean distance
to describe the dissimilarity between on-line readings and
fingerprints. The Euclidean distance D between the on-line
RSS readings at location [ and the fingerprint of RP j is defined
as follows:

n

> (RSSi(i) — RSS;(i))? (1)

=1

D =

In the NN algorithm, the device is estimated at the most
similar measuring point (i.e. with the minimal euclidean
distance). The KNN computes the center of k closest neighbors
and uses Euclidean Distance as the weight of each neighbor.
These algorithms are easy to be implemented but they can not
provide highly accurate estimations [4], [9].

Other approaches in fingerprinting based systems are to
localize the target by statistical methods such as kernel func-
tions and Bayesian theory [21], [22]. Though these methods
can provide more accurate results, but they suffer from high
computational overhead.

C. Clustering Techniques for fingerprinting based systems

To reduce computational overhead, several approaches [12],
[13] use the clustering algorithms to preprocess the refer-
ence points. In such systems, once the collection of all the
fingerprints is finished during an off-line training phase, the
reference points will be partitioned into several clusters ac-
cording to certain characteristics such as radio signal similarity
(Euclidean distance), the geographic location or the strongest
AP coverage area. In the on-line phase, firstly the signal
samples are classified into one cluster, then the estimation will
be calculated based on the elements of the cluster.

Although the clustering method could improve the system
efficiency, reduce computational overhead, and shorten the
response time, it still faces two following problems:
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Fig. 1. Edge problem Fig. 2. Outliers problem

o Edge problem: if a user is located on the border between
clusters, choosing any of them may induce inaccurate
matching results. As shown in Fig. 1, the user is on the
position A which is the boundary of two clusters. If A is
assigned to the left cluster, the final estimation result is
B1, otherwise the result is B>. However, both By and By
are far from the real position A.

e Outliers problem: during the on-line mapping phase,
collecting outliers of RSS may cause an unreasonable
clustering and decrease the accuracy. For example, there
are 4 reference points distributed in the target area. A
user is now located on position A. Fig. 2. (a) shows an
inappropriate clustering on these points which generates
a bad positioning result B; caused by an outlier RP;. If
we can eliminate the outlier, adopting a better clustering
will improve the accuracy of the system as shown in
Fig. 2. (b).

1) Clustering Filtered KNN: Ma et al. [12] propose a Clus-
tering Filtered KNN (CFK) method which aims at improving
the precision of the KNN method by using clustering to filter
out some of the neighbors. The first step of CFK is to find
K neighbors, which is same as KNN. Instead of consider-
ing all these neighbors to calculate the final position, CKF
employs Hierarchical Clustering method to divide neighbors
into several clusters, which are based on physical distance of
each neighbor. However, during the on-line phase, this method
only chooses one cluster of neighbors to estimate the location,
which may lead to the edge problem.

2) Region-based fingerprinting: Xiao et al. [13] propose a
Region-Based fingerprinting method which divides reference
points into several groups and each group covers a part of
the target area. In their approach, each fingerprint is a region-
based group of the reference points instead of an individual
reference point. They calculate the sum of Euclidean distance
(SED) between the radio measurements and fingerprints in
each group to determine a best matching one. The region with
the minimum SED will be selected as the matched region.
But it remains shortcomings that the division of the groups is
done by human. If the system needs to update its fingerprint
database or be deployed to another place, the partition of
reference points has to be changed which is laborious and
static.



3) Affinity Propagation Clustering: In our system, we adopt
Affinity Propagation Clustering (APC) [23] to improve the
performance of fingerprinting method. The APC algorithm
divides roughly the database (and so the localization area)
into several parts (called clusters). It is a process done in
the off-line phase, right after the database recording. Since
we collect and build 4 RSSI databases for 4 directions (i.e.
north, east, south and west), we apply APC to these databases
individually to generate clusters for different directions. A
cluster regroups several reference points. An exemplar is the
most representative RP in the cluster. At beginning of this
algorithm, we need to initiate a set of exemplars which are
randomly chosen and refine this set to achieve a minimal
sum of squared errors. Because the initial set of exemplars
is randomly generated. It will take several trials to get a good
clustering unless the initial set is very close to the optimal set.
On the contrary, the APC algorithm views every RP as a node
in a network and considers all RPs as potential exemplars. In
the APC algorithm, clusters and exemplars are generated by
passing real-valued messages between each RP in the database.
More details can be found in [23].

The APC algorithm is performed after recording RSSI
databases for 4 directions to divide all the RPs into several
groups based on similarities of pairs of RPs. However, it
cannot help with the edge problem and outliers problem be-
cause it only utilizes the previous radio information statically
and collecting outliers is inevitable. In the next section, we
propose a new clustering method utilizing inertial information
to help APC deal with these two problems and achieve a better
performance.

III. DYNAMIC ACTIVE AREA CLUSTERING

Traditional clustering methods are based on static analysis
which are related to the stochastic properties of off-line
collected fingerprints. However the mapping occurs during
the on-line phase. It is helpful to use real-time information
to reduce the mapping space. Inertial information is more and
more adopted for personal devices. Although inertial based lo-
calization suffers from cumulative errors, it provides accurate
distance shift from previous position in short time interval.
Therefore we consider inertial information as reference in
clustering method.

There are two kinds of possible estimated results in tradi-
tional fingerprint-based indoor localization systems. For sys-
tems with clustering methods, the estimated position is in one
of the clusters. The clustering of Reference Points (RPs) is
based on the similarities in wireless signal characteristics,
physical distance or wireless access point coverage region.
Most of these methods neglect the importance of user’s real-
time state. Meanwhile, the radio signal changes complexly
in indoor environment which increases the instability of the
partition of RPs as the fingerprint database needs to be
updated frequently. For systems without clustering, the result
is generated among all the RPs. More uncertain factors (such
as outliers) will affect the performance of the system compared
with systems with clustering.

We propose a Dynamic Active Area Clustering (DAAC)
method as demonstrated in Fig.3 to improve the positioning
performance by taking advantages of clustering methods while
solving their problems. The particle-filter-based inertial posi-
tioning module not only provides high accuracy and real-time
localization in short distance, but also becomes a preprocessing
module for fingerprinting. When the user is moving, the
system estimates his/her position by the particle-filter-based
inertial module in real-time. When the user stops, the system
switches to the RSSI fingerprinting localization module.

According to the user’s inertial information (orientation,
steps), we set up his/her active area dynamically by the
particle filter to divide all the RPs into 2 clusters: active
area RPs set and inactive area RPs set. The estimated area
restricts the possibilities. The fingerprinting module also pro-
vides correction for the particle filter, which is different from
some previous works requiring the floor map information
to constrain particles or position estimation [10], [24], [25].
Coupling both sources of information increases the accuracy.
All of these calculations are performed in the positioning
server, so the clustering during the on-line phase wouldn’t put
too much load on the mobile nodes in our solution.
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Fig. 3. Dynamic Active Area Clustering

A. The Particle Filter

The particle filter is one kind of approximate nonlinear
Bayesian filters [26]. It is based on a set of weighted samples
(i.e., the particles), which represent possible 2-Dimensional
positions. The weight of a particle is the probability of mobile
target being that position. The particle filter is iterative and
each iteration has three important steps [15]:

o Prediction phase: each particle updates its position ac-
cording to the motion model;

o Correction phase: the weight of each particle is up-
dated based on the similarity between the new observa-
tions/measurements and the motion model estimation;

« Resampling phase: in this phase, a new set of particles
is generated which ensures that the particles propagate
over likely positions.

B. Generation of an Active Area

As introduced above, an active area is the set of the user’s
most potential positions. To generate such an area, we adopt



the particle filter and incorporate RSSI fingerprinting to ensure
the existing particles with high weights.

The user’s motion status at time k is defined by a vector
X =[x yr Ox]T, where 2 and y; denote the coordinates
and 6j is the orientation. The probability density function
(PDF) of user based on measurements Zj.; (inertial sensors
measurements) is denoted as p(xy|Zp.r), which is approxi-
mated by a set of N particles Sy, = {s},...,sp }. The i-th
particle has the state vector x; and w! as the weight. At
the beginning (i.e. & = 0), all the particles are initialized
with identical weights. The weights are normalized such that
Ziv wp = 1.

1) Prediction phase: During this step, all the particles
propagate and update their locations according to the motion
model. The step detection module and the adaptive step length
algorithm [14] can provide the steps and the step length of the
user. The heading angle is measured by an inertial measure-
ment unit (IMU) with gyroscope. Based on these information,
the particle motion status at time &k can be predicted by the
following equation:

Tk—1
T, 1 0 cos(f—1) 0 O Yk—1
ye| =10 1 sin(fg—1) 0 O SLi_1
O (2)
Nap_1
+ nyk—l ’
N0k _1

where SLj_1 denotes the (k — 1)th step length and At is the
elapsed time between the (k — 1)th and the k-th step, f;_ is
the average angular velocity sensed by the gyroscope during
At. Furthermore, 7, _,,7y,_, and 19, , are the discrete white
Zero-mean noise processes.

When the number of particles is large, the posterior discrete
probability density function p(xy|Zp.;) and the expectation of
state estimation Xy, can be approximated by the following
equations [26]:

N
p(Xk|Z();k) = Zw}c '6(ch — X;) (3)
i=1

Xk = Exk| Zo.x] :/Xk'p(xk|Z0:k)ka

N
~> wj-xj
=1

where J(-) is the Dirac delta function.

2) Correction phase: Due to the measurement noises from
the inertial sensors, most of the particles may occasionally
propagate towards wrong positions, which leads to failed
estimations. Hence, the external location estimation from RSSI
fingerprinting localization module should be considered to
correct the weights of the particles [18], [19].

“4)

The proposal importance density ¢(-) can exert serious
impact on the efficiency of localization. In [26], Arulampalam
et al. proposed to choose the importance density to be the
prior:

(X |Xp—1: Zk) = p(xk[x_1) (5)
with the weight of particle:
wy, = wh_y - p(Zk]x;,) (6)

After updating the weights of particles, we can generate
active area by selecting particles with relatively high weights
(i.e. larger than a threshold o) and building an extremal
polygons region [27]. In this work, the threshold oy is dy-
namically chosen on the basis of the motion status: at the
beginning of the system and shortly after each stop, the inertial
positioning module can provide a good estimation. Thus, the
o is set relatively lower to include more particles. After a
long continuous movement, the oy is set higher in order to
filter out the particles with low possibilities.

Since the active area is the region where the user locates
with high possibilities, it can be used to reduce the number
of candidate reference points by choosing them only within
this region. Once the RSSI fingerprinting localization module
returns a position denoted X,gs, it is possible to correct the
weight of particles:

p(Zlx}) = Ae P2

(7
where A is the weighting factor and Xxi denotes the coordi-
nates [y yx)T.

3) Resampling phase: A common problem of the particle
filter is the particle degeneracy, which means a large amount
of computation is updating particles whose contribution to the
approximation to p(xy|Zp.r) is zero. A suitable measure of
degeneracy is the the effective sample size defined as [26]:

Nejp= —r (8)

When the ]Vp t s lower than a threshold, it indicates severe
degeneracy and the particle filter needs to resample. We adopt
the resampling algorithm proposed in [28], since it introduces
a new diversity locally and adds a small noise to the particle’s
position to avoid degeneracy.

Since the active area is generated by user’s inertial informa-
tion instead of similarities between different RPs. Even if there
exists outliers, they would not affect the clustering results.
Therefore, the DAAC can deal with the outliers problem. After
the clustering, the mapping operation will be only applied
within the RPs inside the active area, where the user locates
with high probabilities. In this way, the DAAC overcomes the
edge problem.



IV. SYSTEM IMPLEMENTATION

The main contribution of this work is proposing the DAAC
algorithm for fingerprinting based indoor localization systems.
The DAAC algorithm can be implemented in various ways
with different specific hardwares. In this work, we implement
the DAAC in a prototype system with on-body inertial sensors
and environmental sensors. As depicted in Fig. 4, the improved
system consists of two phases:

1) Oft-line phase with RSSI fingerprinting: the system has
an off-line phase in which RSSI samples at specific
positions within the area of interest are collected. Each
RP is stored as a RSSI distributions in the database.
Affinity Propagation Clustering algorithm is performed
to divide all RPs into several Clusters with exemplars,
which is discussed in II-C3;

2) On-line phase combining real-time RSSI distribution
with inertial information: the online phase is composed
of a coarse positioning and a fine positioning. The
inertial data can be used for short-distance real-time
positioning and as a input of DAAC algorithm, which
divides the whole RSSI collection into active area RPs
and inactive area RPs collection. The fine positioning
takes only the active area RPs into account.

Offline phase

Recording
Reference Points

Building
Reference Points
databases for 4
directions

RSS! values for 4
directions

Online phase

Final
position

Inertial . o
data Inertial Positioning Module

Clusters
Matching
algorithm

Dynamic Active
Area Clustering
algorithm

Current RSSI
distribution

L J L J
Y Y

Coarse positioning Fine positioning

Fig. 4. System Block Diagram

A. RSSI fingerprinting module

We use IRIS sensor nodes [29] instead of WLAN or WiFi
access points to implement this module based on the following
reasons: firstly, we plan to build an indoor localization system
with low power consumption on-body sensors, hence the
IRIS nodes are more suitable. Besides, the IRIS nodes are
programable and can be deployed quickly.

There are 8 environmental IRIS sensor nodes deployed
on the edge of the target area. During the off-line training
phase, the user is tied an IRIS node which is broadcasting
packets on his chest. The frequency of it is 50 Hz. When the
environmental IRIS sensors receive broadcasting packets, they
will calculate the RSSI values of them and send the values to

the sink node which connects to the positioning server directly
through a serial port. It is better to let the IRIS node tied on
the user instead of the environmental nodes broadcast packets
due to the memory and energy constraints of the sensor node.
The environmental nodes will lose their energy in a short
time if they are continuously broadcasting. In our solution,
the environmental nodes do not transmit unless they receive
the broadcasting packets.

A RSSI sample contains 8 RSSI values from all the en-
vironmental IRIS sensors. We collect 40 RSSI samples at 4
directions (north, east, south and west) of each RP to establish
a RSSI distribution for environmental IRIS sensors and build
4 RSSI databases for each direction. After that, the APC
algorithm divides each of them into several clusters of RPs.
Each cluster is affected with one exemplar.

During the on-line phase, the system switches between the
inertial positioning module and RSSI fingerprinting module
according to the user’s real-time motion status. If the user is
moving within a short distance (i.e. small number of stpes),
the system utilizes the inertial data directly to perform a dead-
reckoning positioning. Otherwise, the system will first perform
the coarse positioning with the DAAC and clusters matching.
Then the position is estimated within the active area by Kernel
regression as discussed in IV-C2.

B. Inertial positioning module

This module is based on gyroscopes and accelerators which
supply the orientation information and acceleration values
used to infer the person’s orientation and steps. We de-
signed a inertial sensor node based on a Razor Wireless
Inertial Measurement Unit (WIMU) sensor [30]. We select
Razor WIMU because it incorporates three sensors: ITG-
3200 (MEMS triple-axis gyro), ADXL345 (triple-axis acceler-
ator), and HMC5883L (triple-axis magnetometer) to give nine
degrees of inertial measurement. For sending those inertial
information, we also connect a XBee adapter with a XBee
2 RF module with it. Both of them are supplied with a
rechargeable 900 mAh lithium battery. All of these modules
are placed in a 6cmx4cmx1.5cm plastic box. Two inertial
sensor nodes fixed on ankles are used to detect steps, while the
inertial sensor node tied on the shoulder is used for orientation
estimation. In order to reduce the sliding friction between
the clothes and the body, we use tapes to secure the sensor
nodes. By installing an XBee chip and an Ethernet adapter
on an Arduino Mega board, inertial data can be transmitted
to the Arduino Mega board in wireless and forwarded to the
positioning server through the Ethernet.

C. Coarse and fine positioning

The localization process works in two parts. During the
coarse localization, the system selects a part of the area (the
database) where the target locates. In the fine localization
it runs more accurate algorithms consuming memory and
computation time. Hence, we first need to reduce the size of
potential RPs.



1) Clusters Matching combined with DAAC algorithm:
Given the RSSI readings from the current position of the
target and the orientation information, the clusters matching
(CM) algorithm selects a part of clusters computed previously.
The CM algorithm will compute the pairwise similarity values
between the RSSI readings and the exemplars RSSI values
and select the exemplars which are the closest to the current
position of the target. Once the exemplars are determined, the
system selects the corresponding clusters.

Given the user’s inertial data, the DAAC algorithm com-
putes an active area where the target may locate. The results
of the CM and the DAAC algorithm are then compared. If they
share some RPs, the system chooses intersection elements as
the final clustering result. Otherwise, the system keeps only the
DAAC results since DAAC can overcome the edge problem
and the outliers problem.

2) Probability kernel based mapping algorithm: During the
on-line mapping phase, the position is estimated by the method
that takes the full RSSI distribution into account for computing
similarities among fingerprints in the final clustering result
using Kullback-Leibler divergence (KLD). Then the system
performs localization through kernel regression similar to [21].

In information theory, the KLD is a non-symmetric measure
of the difference between two probability distributions. In
the discrete case, where the random variable RSSI takes
discrete values, for RSSI distribution at RP j and k, we have:
KL(D|[Dy) = Y,,,(D;(rss) log(D; (rss)/ Dy (rss))). The
symmetrized KLD between D; and Dy, can be simply defined
as:

KLD(Dj;,Dy) = KL(D,||Dy) + KL(Dg||D;). (9)

A kernel function k(Dj, Dy) is a symmetric function to
calculate the dissimilarity of the two distribution which is
equal to one if D; = D, and decaying to zero as the
dissimilarity increases. Follow [31], and for a data-dependent
range of values «, A kernel function can be defined as follows:

k(Dj, Dy) = e~ KLD(D;.Dy) (10)

Using DAAC we obtain a set of RPs {F,l € F}. We per-
form the Weighted Kernel Regression to estimate the location
using on-line sampled RSSI distribution D :

o 2@ )k(Dy, D)
(«ijyj) - Elk(Dj,Dl)

V. EXPERIMENTS AND EVALUATION

(1)

In this section, we introduce our experiment environment
and evaluate the performance of the DAAC method with some
previous works. All of the solutions are implemented on the
same devices in the experiments.

A. Experiment set-up

We deploy our system in an indoor environment which is
18m long and 3m wide as shown in Fig. 5. The experiments
are operated under real scenarios (i.e. other people may walk
through this area during the experiments) to demonstrate the
validity of our approach. We perform our experiments with

IRIS node

WIMU  Arduino mega Sink node

Fig. 5. Experiment equipments and target area

different numbers of RPs from 10 to 40. For 10,20,30,40
RPs, the average distance between 2 RPs is 2.42m, 1.53m,
1.43m and 1.34m respectively. To evaluate the performance
of DAAC, we do experiments under different number of steps
from 2 to 10 steps.

As discussed in I, the efficiency of localization systems
consists of:

1) the accuracy is measured as the average distance from
the estimated position to the real position on all tested
points;

2) the precision is measured as the cumulative distribution
function of the error distance on all points. The precision
being 90% within 3.4 m means that 90% of test points
fall into a distance error smaller than 3.4 m;

3) the response time is recorded from the moment that
a new query occurs to present the final result on the
screen. So it includes the time for collecting enough
samples, clustering, computing, matching operation and
displaying the final estimated position.

We also explore the effect of number of steps on the
performance of the DAAC. Two metrics are considered in the
experiments: correct cluster matching rate and average cluster
size. The first metric means the rate of correctly choosing
a cluster in which the user is located. It has an impact on
the maximum error distance of a positioning system. Because
the main reason for the maximum error distance is choosing
a wrong cluster. The average cluster size also affects the
performance of localization because the clustering method
constrains the error distance within the size of one cluster.

B. Experiment Results

The DAAC is evaluated with the Region-Based Clustering
(RBC) [13], APC and a raw fingerprinting mapping algorithm
without clustering. Identical parameters are used in all exper-
iments.

Fig. 6 shows the average accuracy of the localization system
using RBC, APC, DAAC, APC combined with DAAC, and
without clustering is 6.16 m, 5.34 m, 4.58 m, 4.21 m and
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Fig. 6. Average Accuracy

8.29 m. Stated otherwise, the average accuracy of system
using DAAC is improved by 17%, 34% and 81% compared
with APC, RBC and without clustering respectively. It is easy
to understand that clustering methods constrain the maximum
error distance within the scale of one cluster. Moreover, the
APC combined with DAAC method achieves the highest
average accuracy, which indicates that DAAC can help to
improve other clustering methods.

With increasing number of RPs, all clustering methods
achieve better accuracy due to the decrease of average distance
between 2 RPs. The reason why the performance of DAAC is
better than RBC and APC under every different numbers of
RPs is that DAAC has a self-adapted cluster size according to
the movement of the target. The clusters formed in DAAC are
based on the active area which is the user’s most potential
position set and ensures the accuracy. Compared with static
clustering such as RBC and APC, DAAC is more efficient in
term of mapping space reduction in an indoor environment.

Fig. 7 is the error distance CDF plot for different techniques.
We can deduce from this figure that the precision of system
using DAAC is 90% within 2.4 m, while the precision using
RBC , APC and without clustering are 90% within 5.7 m, 5.3
m, and 9.5 m respectively. In another word, the precision of
system using DAAC technique is improved by 121%, 138%
and 332% compared with APC, RBC and without clustering
respectively. Since the APC combined DAAC method chooses
the intersection elements of these two methods, it achieves a
better precision and robustness. It also demonstrates the high
relevancy of inertial information on the localization.

Fig. 8 shows the average response time for different tech-
niques. The system without using clustering takes more time
to locate the user due to no preprocessing on the RPs. The av-
erage response time increases in a linear way according to the
number of RPs. The average response time for DAAC, RBC,
APC and without clustering is 2.53 s, 3.45 5,2.96 s and 4.19 s.
Stated otherwise, the average response time of system using
DAAC is improved by 17%, 37% and 67% compared with
APC, RBC and without clustering respectively. The time for
collecting samples and the mapping algorithm are the same in
these three methods. The decrease of response time indicates
the clustering methods can reduce the computational overhead
of the mapping process. The size of each cluster in RBC

Fig. 7. Error Distance CDF

Fig. 8. Average response time

and APC is bigger than that in DAAC (as shown in Fig.10),
which means the system needs to process more RPs. That
also explains DAAC outperforms the other two methods in
term of response time with even better accuracy and precision
(as shown in Fig. 6 and Fig. 7). The APC combined DAAC
method spends more time than APC when the number of PRs
is relatively small (i.e. 10 and 20). Because it takes more
operations to perform DAAC and get the intersection elements.
When the databases become larger, the time of processing the
on-line RSSI collections dominates the response time. Hence,
the APC combined DAAC method spends less time than APC
with the help of DAAC in reducing the number of potential
RPs.
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—a—RBC

Correct Cluster Matching Rate
3
N

Number of Steps

Fig. 9. Correct Cluster Matching Rate

The correct cluster matching rate is shown in Fig.9. We
can see the average rate of DAAC is about 93%, which is
higher than the rate of APC and RBC under different number
of steps. It is because the DAAC method utilizes the current
and previous inertial information to ensure the user is standing
within the potential area. However, the other two methods only
rely on the statistical analysis of the RSSI variation, which is
affected by many factors. The DAAC method maintains higher
rate under different steps which also shows its good robustness.

The average cluster size is shown in Fig.10. With the
growing number of steps, the cluster size of DAAC also
increases. However, the step number does not impact on the
cluster size of APC or RBC greatly. This is because the Active
Area is growing with increasing number of steps, which will
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cover more and more RPs.

VI. CONCLUSION

A new clustering algorithm exploring inertial information,
Dynamic Active Area Clustering, was proposed for fingerprint-
ing based indoor localization in this paper. Compared with
previous works, our solution can set up clusters of RPs in
real-time to reduce computational overhead by utilizing user’s
inertial information in mapping process. We implemented it
in our body sensor platform. Performance of DAAC was
evaluated through experiments and compared with Region-
Based Clustering and a raw fingerprinting system without
clustering. It was shown that DAAC can improve significantly
the accuracy, precision and response time of the localization
system. Our implementation is also portable and easy to deploy
for providing localization information to other applications.
One of target applications is interactive stage performance that
is under development with Shanghai Conservatory of Music.

ACKNOWLEDGEMENTS

This research was supported partially by NSF of China
under grant No. 61100210, STCSM Project No. 13511507800,
Doctoral Program Foundation of Institutions of Higher Educa-
tion under grant No. 20110073120021, by the French National
Research Agency (ANR) project IRIS under contract ANR-11-
INFR-016.

REFERENCES

[1] J. Thurston. GALILEO, GLONASS And NAVSTAR A Report on GPS
for GIS People. In GISCafe.com, 2002.

[2] Y. Gu, A. Lo, and I. Niemegeers. A Survey of Indoor Positioning
Systems for Wireless Personal Networks. IEEE Communications Surveys
& Tutorials, 11(1):13-32, Mar. 20009.

[3] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor
positioning techniques and systems. [EEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews,, 37(6):1067—
1080, 2007.

[4] P. Bahl and V. Padmanabhan. RADAR: an In-building RF-based User
Location and Tracking System. IEEE INFOCOM, Tel Aviv, Israel, 2:775—
784, Mar. 2000.

[5] M.A. Youssef, A. Agrawala, and A. Udaya Shankar.
determination via clustering and probability distributions.
PerCom 2003, pages 143-150, 2003.

Wlan location
In /EEE

[6]

[7]
[8
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]
(31]

M. Youssef and A. Agrawala. Handling samples correlation in the horus
system. In IEEE INFOCOM 2004., volume 2, pages 1023-1031 vol.2,
2004.

WhereNet : http://www.zebra.com/.

Ubisubisense : http://www.ubisense.net/.

LM. Ni, Y. Liu, Y. C. Lau, and A.P. Patil. Landmarc: indoor location
sensing using active rfid. In IEEE PerCom 2003, pages 407415, 2003.
A. Rai, K. K. Chintalapudi, V.N. Padmanabhan, and R. Sen. Zee: Zero-
effort crowdsourcing for indoor localization. In Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking,
Mobicom ’12, pages 293-304, New York, NY, USA, 2012. ACM.

J. Park, B. Charrow, D. Curtis, J. Battat, E. Minkov, J. Hicks, S. Teller,
and J. Ledlie. Growing an organic indoor location system. Proc. of
the 8th international conference on Mobile systems, applications, and
services, Califonia, U.S.A, pages 271-284, June 2010.

J. Ma, X. Li, X. Tao, and J. Lu. Cluster filtered KNN: A WLAN-based
indoor positioning scheme. In WoWMoM, Newport Beach, U.S.A, pages
1-8. IEEE, 2008.

W. Xiao, W. Ni, and Y. K. Toh. Integrated wi-fi fingerprinting and
inertial sensing for indoor positioning. In IPIN, pages 1-6, 2011.

W.Y. Hu, J. Lu, S. Jiang, W. Shu, and M.Y. Wu. WiBEST: A hybrid
personal indoor positioning. Proc. of IEEE Wireless Communications
and Networking Conference (WCNC), Shanghai, China, pages 2149 —
2154, 2013.

R. Harle. A survey of indoor inertial positioning systems for pedestrians.
Communications Surveys Tutorials, IEEE, 15(3):1281-1293, Third 2013.
E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. /[EEE
Comput. Graph. Appl., 25(6):38-46, November 2005.

0. J. Woodman. An introduction to inertial navigation. Technical Report
UCAM-CL-TR-696, University of Cambridge, Computer Laboratory,
August 2007.

0. Woodman and R. Harle. Pedestrian localisation for indoor envi-
ronments. In Proceedings of the 10th International Conference on
Ubiquitous Computing, UbiComp ’08, pages 114-123, New York, NY,
USA, 2008. ACM.

O. Woodman and R. Harle. Rf-based initialisation for inertial pedestrian
tracking. In Pervasive Computing, pages 238-255. Springer, 2009.

K. Frank, B. Krach, N. Catterall, and P. Robertson. Development and
evaluation of a combined wlan & inertial indoor pedestrian positioning
system. In JON GNSS, 2009.

P. Mirowski, H. Steck, P. Whiting, R. Palaniappan, M. MacDonald, and
Ho T.K. KL-Divergence kernel regression for non-Gaussian fingerprint
based localization. International Conference on Indoor Positioning and
Indoor Navigation, Guimaraes, Porgutal, pages 1-10, September 2011.
R. Singh, L. Macchi, C. S Regazzoni, and K. N. Plataniotis. A statistical
modelling based location determination method using fusion technique
in wlan. Proc. IEEE IWWAN, 2005.

B. J. Frey and D. Dueck. Clustering by passing messages between data
points. science, 315(5814):972-976, 2007.

C. Wu, Z. Yang, Y. Liu, and W. Xi. Will: Wireless indoor localization
without site survey. Parallel and Distributed Systems, IEEE Transactions
on, 24(4):839-848, 2013.

Y. Liu, M. Dashti, and J. Zhang. Indoor localization on mobile phone
platforms using embedded inertial sensors. In Positioning Navigation
and Communication (WPNC), 2013 10th Workshop on, pages 1-5,
March 2013.

M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking.
Signal Processing, IEEE Transactions on, 50(2):174—188, Feb 2002.
James E. Boyce, David P. Dobkin, and Leo I Guibas. Finding extremal
polygons. In Proc. 14th Annual ACM Symp. on Theory of comput, pages
282-289, 1982.

Christian Musso, Nadia Oudjane, and Franois Le Gland.
Regularized Particle Filters. 2001.

IRIS mote : http://www.memsic.com/wireless-sensor-networks/.
Sparkfun 9 dof razor imu: http://www.sparkfun.com.

P.J. Moreno, P.P. Ho, and N. Vasconcelos. A kullback-leibler divergence
based kernel for svm classification in multimedia applications. In

Improving

Advances in neural information processing systems, 2003.



