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Abstract—Given the increasing volume and complexity of
network traffic nowadays, network operators often leverage
application-layer protocols to differentiate network traffic, so
as to improve quality-of-service control, security protection, and
resource profiling. We present ProGraph, a tool that accurately
infers protocol message formats at both byte-level and bit-level
granularities. Unlike existing approaches that mainly exploit
statistical features across packets, ProGraph exploits intra-packet
dependency among the values of different portions of a packet
payload. It systematically constructs a graphical model that
captures intra-packet dependency, using various techniques in
graph theory and information theory. It also achieves several
important design properties for real deployment, including fine-
grained inference, protocol independence, simple parameteriza-
tion, robustness to noisy training sets, and fast execution. We
show via trace-driven evaluations that ProGraph achieves more
accurate inference than existing approaches. We further show
how ProGraph can be used for classifying traffic.

I. INTRODUCTION

Network operators often leverage application-layer proto-

cols to differentiate network traffic, so as to achieve better

quality-of-service control [15] and enhance the designs of

security systems such as intrusion detection systems and

firewalls [14]. A protocol may perform different tasks (e.g.,

requests, responses, heartbeats, etc.), so classifying specific

tasks of a protocol is also critical for in-depth profiling.

Due to the lack of protocol specifications in general, proto-

col format inference provides a pre-processing step for traffic

classification. It often works by examining packet payloads

and inferring protocol formats, which specify the lengths and

positions of various fields that collectively define a protocol.

Existing protocol format inference approaches divide packet

payloads into consecutive bits (e.g., [3], [8], [9], [12], [16])

and parse the features of the bit groups via statistical analysis.

Each bit group needs to be sufficiently long (e.g., one byte

[9], [12], [16] or four bits long [3], [8]), so as to provide high

degrees of freedom for meaningful statistical analysis. On the

other hand, some protocols, such as DNS, define single-bit

fields, and this potentially complicates statistical analysis.

We present ProGraph, a fine-grained protocol format infer-

ence tool that can operate at both byte-level and even bit-

level granularities. Our observation is that the values of a

portion of a packet payload may determine the values of

another portion of the same packet payload. For example,

a field that identifies a specific task will affect how other

fields are defined related to the task. ProGraph leverages such

intra-packet dependency as the key payload features. This

differentiates ProGraph from previous payload-based inference

approaches that either consider the entire packet payload (e.g.,

[16]) or examine individual payload portions independently

(e.g., [3], [8], [12]). To our knowledge, ProGraph is the first

work that specifically addresses protocol format inference at

the bit-level granularity and exploits intra-packet dependency

to address this issue.

ProGraph characterizes intra-packet dependency by con-

structing a graphical model for a target protocol. The graphical

model defines the legitimate values associated with different

portions of a packet payload in the protocol. Starting with

a training set of packet payloads, ProGraph exploits various

techniques in graph theory and information theory to itera-

tively refine the graphical model with respect to the statistical

distributions of the values observed in different portions of

payloads. To this end, ProGraph aims for several design goals:

• Fine-grained inference: ProGraph accurately infers the

protocol formats in which fields are defined at the byte-

level or even bit-level granularities.

• Protocol independence: ProGraph builds on statistical

analysis, and can extract packet features from any pro-

tocol. It also does not rely on any protocol specification

for inference.

• Simple parameterization: ProGraph involves only few

configurable parameters. Also, the selection of parameters

is simple, without compromising the accuracy of the

inference results.

• Robustness to noisy training sets: In general, obtaining

a clean training set is non-trivial, as labor-intensive man-

ual inspection is often required to filter unwanted packets

[13]. ProGraph maintains accurate inference even only

when noisy training sets are available.

• Fast execution: ProGraph achieves high-throughput in-

ference in the face of the huge volume of network traffic.

We demonstrate that the graphical models constructed by

ProGraph enable us to classify network traffic. We conduct

trace-driven evaluations on ProGraph using IP packet traces

collected from real-world 3G cellular data networks. We show

that ProGraph works well for different protocols operating at

byte-level or bit-level granularities. Specifically, it achieves

low error rates in all cases we consider, and provides more ac-

curate classification than existing approaches based on longest

common subsequences (e.g., [12], [16]). It maintains high

accuracy even if we inject noisy packets to the training sets.

The rest of the paper proceeds as follows. Section II reviews

related work. Section III overviews the ProGraph design.

Section IV elaborates the graphical model construction of

ProGraph. Section V describes how to apply the graphicalISBN 978-3-901882-68-5 © 2015 IFIP



model to classify network traffic. Section VI presents trace-

driven evaluation results. Section VII concludes the paper.

II. RELATED WORK

Protocol format inference often operates by examining

packet payloads and extracting protocol features. Discoverer

[7] automatically infers the protocol format and extracts pay-

load signatures. It uses printable characters in payloads to

determine field boundaries, which is ineffective for binary

protocols. Polyglot [6], AutoFormat [11], dynamic taint anal-

ysis [18], and Netzob [4] leverage semantic information (e.g.,

execution logs) for reverse engineering, but their approaches

are difficult to generalize as the semantic information may

be unavailable. ProDecoder [17] applies n-gram techniques to

partition binary payloads into fixed-length fields, but fixed-

length partitioning is shown to degrade accuracy [19].

Some inference approaches exploit the statistical features

of payloads to characterize protocol formats. ACAS [9] treats

payloads as features and applies machine learning algorithms.

Ma et al. [12] build statistical models for the payload dis-

tribution, and perform classification based on the likelihood

that a packet fits the distribution. Bonfiglio et al. [3] identify

Skype traffic by examining the extent of randomness of groups.

KISS [8] partitions payload into fix-length groups, calculates

the Chi-Square value of each group, and then applies machine

learning to perform classification. SANTaClass [16] extracts

keywords based on common substrings across flows. ProWord

[19] partitions payloads and identifies keyword boundaries

based on statistical models. However, they do not address

the inference of single-bit protocol fields. Instead, each group

needs to have high degrees of freedom (e.g., one byte [9],

[12], [16] or four bits long [3], [8]) for statistical features to

be characterizable.

III. PROGRAPH OVERVIEW

ProGraph is a tool that infers the message formats of a

network protocol by examining packet payloads. Our insight

is that there exists intra-packet dependency across the actual

values of different portions of a packet payload. Even though a

field may take multiple legitimate values defined by a protocol,

its actual value appearing in a packet payload is related to the

current values of other fields. For example, DNS uses bit 16 to

indicate whether a packet is a request (value 0) or a response

(value 1). If the packet is a response, DNS uses bit 24 of the

response to indicate whether a DNS server supports recursive

queries. Thus, if bit 16 is 1 (response), then both 0 and 1 are

legitimate values of bit 24; otherwise, if bit 16 is 0 (request),

then the only legitimate value of bit 24 is 0 as it is not used

by a request.

ProGraph exploits intra-packet dependency in its design. It

takes a training set containing the payloads of multiple packets

from a target network protocol as the input. It then constructs

a graphical model to characterize intra-packet dependency, so

as to (1) identify the set of legitimate values associated with

each portion of a payload, and (2) identify how the value

of a portion changes with respect to the value of another

portion. ProGraph uses various techniques in graph theory and

information theory to iteratively refine the graphical model.

The output graphical model defines the formats of fields and

the dependencies among them.

The graphical model can be used by traffic classification ap-

plications, such as deep packet inspection (DPI). For example,

in DPI, we can classify protocol types of network traffic by

inspecting if a packet matches the graphical model. If so, the

packet belongs to the protocol characterized by the graphical

model. With additional information, we can also determine the

task carried out by the packet within the protocol.

Assumptions: ProGraph operates on a per-packet basis. We

assume that protocol information is often embedded in the first

few bytes of packet payloads [10], so ProGraph can still infer

protocol formats even if a protocol encrypts sensitive user data.

However, not all packets contain protocol information. For

example, HTTP only puts the HTTP header in the first packet

of a request. ProGraph can tolerate the existence of packets

without protocol information in the training set. It regards

such packets as noisy packets and automatically excludes them

during the graphical model construction. While we focus on

per-packet inference, the same methodology applies to per-

flow inference as well.

IV. GRAPHICAL MODEL CONSTRUCTION

A. Model Definitions

Table I summarizes the major notation used by the model in

this paper. We consider payloads of multiple packets, such that

each payload consists of a sequence of bits or bytes (e.g., the

first 128 bits, or 16 bytes, of each packet payload). We divide

each packet payload into a sequence of variable-size chunks,

each of which corresponds to a consecutive portion of bits (or

bytes) at the same offsets of all packet payloads (e.g., a chunk

may represent bits 16 to 20 of every packet payload). A chunk

is of variable size: initially, a chunk is formed by one bit (or

byte), and the adjacent chunks may be merged depending on

their values, as explained in the following discussion.

ProGraph takes a training set T of multiple packet payloads

obtained from a protocol. It constructs a graphical model that

is represented as a weighted directed graph G = (N , E), where

N denotes a set of nodes and E denotes a set of edges. Each

node u ∈ N represents a chunk1. Let T (u) be the set of values

of node u observed in the training set T . However, a training

set may include some noisy packets that do not belong to the

protocol. Thus, each node u is also associated with a set of

legitimate values VN (u) actually defined by the protocol. If

T is noise-free, we have T (u) = VN (u); otherwise, we have

VN (u) ⊂ T (u). Each directed edge 〈u, v〉 ∈ E (where u, v ∈
N ) describes the dependency of the legitimate values of node v

on those of node u. We associate each edge with a weight

to quantify the dependency; a higher weight implies stronger

dependency. We will discuss how to determine the weights

and edge directions in Section IV-C1. Each edge 〈u, v〉 ∈ E

1The terms “node” and “chunk” are used interchangeably in this paper
when there is no ambiguity.



TABLE I
MAJOR NOTATION USED IN THE PAPER.

Notation Description

T training set

N set of nodes in the graphical model

E set of edges in the graphical model

G graphical model G = (N , E)
〈u, v〉 edge from node u to node v, where u, v ∈ N
T (u) set of values of node u observed in T
VN (u) legitimate values for node u ∈ N
VE(〈u, v〉) legitimate value pairs for edge 〈u, v〉 ∈ E
B length of each payload in the training set

Xu random variable for the value of node u

P (Xu) probability distribution of Xu

P (Xu, Xv) joint distribution of Xu and Xv

P (Xv |Xu) conditional distribution of Xv given Xu

H(Xu) entropy of Xu

H(Xv |Xu) conditional entropy of Xv given Xu

di,j density of the single cluster composed of nodes
ui, ui+1, · · · , uj

Dj maximum sum of densities of all clusters induced
by nodes u1, u2, · · · , uj

Iu set of incoming clusters of node u

Ou set of outgoing clusters of node u

CI
u,v number of distinct elements in either Iu or Iv ,

but not both

CO
u,v number of distinct elements in either Ou or Ov ,

but not both

is associated with a set of legitimate value pairs VE(〈u, v〉),
such that a value pair (x, y) ∈ VE(〈u, v〉) if x ∈ VN (u),
y ∈ VN (v), and y is a function of x (i.e., the value y is used

due to the value x).

Figure 1 shows a graphical model for DNS packet payloads

from bit 16 to bit 31. Bits 18:19:20 form a chunk (node)

that corresponds to a part of the opcode field of DNS, while

bits 29:30:31 form another chunk (node) that corresponds to a

part of the response code field. Each of other chunks (nodes)

is a single bit and corresponds to a single-bit flag in DNS.

The figure details the legitimate values of all nodes, as well

as the legitimate value pairs of edge from bits 18:19:20 to

bits 29:30:31. For example, if bits 18:19:20 have value 0,

then bits 29:30:31 can take any legitimate value; however,

if bits 18:19:20 have value 4 or 5, then bits 29:30:31 can

only take value 0 or 5. Note that the graphical model does

not necessarily match the exact protocol format. For example,

DNS uses bits 17:18:19:20 as the opcode and bits 28:29:30:31

as the response code. However, our model partitions bit 17

and bit 28 as individual nodes because they always take value

0. Also, even though bits 18:19:20 and bits 29:30:31 can

have many possible legitimate values as stated in the DNS

specification, only a few of them appear in practice, and our

model only includes those that appear in our training set.

Our current graphical model has two open issues. First,

a protocol may contain variable-length fields, whose lengths

differ across packets. In the case, ProGraph partitions a long

field into multiple chunks that are dependent on each other.

Second, a field may be shifted to start at different offsets

of a packet. Shifted fields cause some chunks to represent

multiple fields in different packets. In this case, ProGraph

includes all legitimate values of the fields in those chunks.

Fig. 1. Graphical model for the DNS packet payloads from bit 16 to bit 31.

Despite the presence of variable-length and shifted fields, we

find that ProGraph remains accurate in characterizing inter-

packet dependency and classifying traffic, as shown in our

evaluations (see Section VI).

B. Overview of Model Construction

Algorithm 1 summarizes the procedure of the graphical

model construction of ProGraph. The inputs are the training

set T of packet payloads of a target protocol and the length

B (in units of bits or bytes) of each payload considered by

the model. ProGraph follows a bottom-up design. Specifically,

it starts with a number of small chunks of size one unit (in

one bit or one byte), and builds an initial graph with B nodes

and no edges (Line 1). ProGraph iteratively updates G, the

set VN (u) of legitimate values for every node u ∈ N , and

the set VE(〈u, v〉) of legitimate value pairs for every edge

〈u, v〉 (Lines 2-14), based on the statistical distributions of

the observed values in the training set. Let Xu be the random

variable of the observed values in T (u) of node u, P (Xu)
be the probability distribution of the observed values of node

u, and P (Xu, Xv) denote the joint probability distribution of

the observed value pairs of nodes u and v. In each iteration,

ProGraph computes P (Xu) for every node u and P (Xu, Xv)
for every pair of nodes u and v (Lines 3-4). It updates the

topology of G by adding/deleting edges and merging nodes

(Lines 5-6). It also recomputes P (Xu) and P (Xu, Xv) based

on the updated topology (Line 10) and updates the set of

edges (Line 11). Finally, it adds legitimate values and value

pairs for nodes and edges, respectively (Line 12), and filters

noisy packets from the training set T (Line 13). ProGraph

repeats the above steps until the topology of G has no further

update (Lines 7-9). It will output G, {VN (u) | u ∈ N}, and

{VE(〈u, v〉) | 〈u, v〉 ∈ E}. We elaborate the details in the

following subsections.

C. Updating the Graph Topology

There are two main operations of updating the topology of

G: (1) adding/deleting edges and (2) merging nodes.

1) Adding/Deleting Edges: ProGraph adds (resp. deletes)

edges to G between node pairs if they have high (resp. low)

dependency, which we quantify based on information theory

measures. We consider the entropy of Xu, which measures the

uncertainty of Xu over all values of node u observed in the

training set. It is given by:

H(Xu) = −
∑

x∈T (u)

P (Xu = x) log2 P (Xu = x).



Algorithm 1 Graphical Model Construction of ProGraph

Inputs: Training set T ; Payload length B

Outputs: G=(N , E); {VN (u) | u∈N}; {VE(〈u, v〉) | 〈u, v〉∈E}
1: Create G with B nodes and no edges; set VN (.) and VE(.) empty
2: while true do
3: Compute P (Xu) for each node u ∈ N
4: Compute P (Xu, Xv) for each pair of nodes u, v ∈ N
5: Add/delete edges among nodes
6: Merge nodes
7: if no edge is updated and no nodes are merged then
8: return G, {VN (u) | u ∈ N}, {VE(〈u, v〉) | 〈u, v〉∈E}
9: end if

10: Recompute P (Xu) and P (Xu, Xv)
11: Update the edges as in Line 5
12: Add values to {VN (u)|u ∈ N} and {VE(〈u, v〉)|〈u, v〉∈E}
13: Filter noisy packets in T
14: end while

Also, for a pair of nodes u and v, we consider the condi-

tional entropy of Xv given Xu, which measures the expected

uncertainty of Xv conditioning on Xu and is given by:

H(Xv|Xu) =
∑

x∈T (u)

P (Xu = x)H(Xv|Xu = x).

We now quantify the dependency between nodes u and v

using the information gain ratio (IGR), which is defined as:

IGR =
H(Xv)−H(Xv|Xu)

min{H(Xv), H(Xu)}
.

The numerator H(Xv) − H(Xv|Xu) is the mutual infor-

mation, which measures the expected distance between the

distributions P (Xv) and P (Xv|Xu). It can be shown that

0 ≤ H(Xv) − H(Xv|Xu) = H(Xu) − H(Xu|Xv) ≤
min{H(Xu), H(Xv)}. Thus, the IGR can be viewed as the

normalized mutual information ranging from 0 to 1 inclusively.

We add (resp. delete) an edge between nodes u and v if their

dependency, which is quantified as the IGR, is above (resp.

below) a threshold. We select the threshold using an adaptive

approach, which we discuss in Section IV-E. The edge weight

is set to be the IGR.

Every edge is directed. We use the following heuristic to

determine the edge direction. We direct an edge from the

node with fewer legitimate values to the node with more

legitimate values (e.g., an edge is directed from bits 18:19:20

to bits 29:30:31); if there is a tie, we direct an edge from the

node at a lower offset to the node at a higher offset (e.g., an

edge is directed from bit 16 to bit 24). The edge directions

will determine how we identify the fields for task classification

(see Section V). Note that based on our heuristic, G is acyclic.

2) Merging Nodes: ProGraph merges strongly correlated

nodes whose legitimate values depend on each other. The

goal is to recover the fields from the partitioned chunks. For

example, in Figure 1, we merge bits 18, 19, and 20 as they

belong to the opcode field of DNS.

Our merge operation is motivated by three principles. First,

we merge adjacent chunks in a payload (e.g., bit 18 and bit 19

are adjacent 1-bit chunks), since a field typically comprises

contiguous bits or bytes. Second, if two nodes belong to

the same protocol field, then they should be connected by

an edge indicating that they have high dependency. Third,

the two nodes should be connected to, and hence have high

dependency with, the same (or similar) set of neighbors.

To merge nodes, ProGraph analyzes G at two levels: clus-

tering analysis and neighboring analysis, as described below.

Clustering analysis: Let |N | denote the number of nodes

in G. We sort the nodes of G in the order of their bit offsets

in a payload, and denote the ordered sequence of nodes by

u1, u2, · · · , u|N |. We partition the nodes into different clusters

(subsets), each of which consists of nodes corresponding to

adjacent chunks in a payload. Our observation is that nodes

of the same field likely belong to the same cluster and are

connected by edges with high weights. We define the density

of a cluster as the ratio of the sum of edge weights in the

cluster to the number of node pairs in the cluster. Our goal

is to find a partitioning solution (i.e., a set of clusters) that

maximizes the sum of the densities of the clusters that cover

all |N | nodes.

Let di,j (where 1 ≤ i ≤ j ≤ n) be the density of the

single cluster composed of nodes ui, ui+1, · · · , uj , and we

assume di,i = 0. Also, let Dj (where 1 ≤ j ≤ |N |) be the

maximum sum of densities of all clusters induced by nodes

u1, u2, · · · , uj . We can express Dj as a recursive equation:

Dj = max
1≤i≤j

{Di−1 + di,j}, where 1 ≤ j ≤ |N |.

We set D0 = 0. The maximum sum of densities of the clusters

that cover all |N | nodes is D|N |. The above equation can be

solved via dynamic programming. To identify all clusters, we

first determine the cut-point index (call it l) that maximizes

D|N |, i.e., l = argmax1≤i≤j{Di−1 + di,j}. The set of nodes

{ul, ul+1, · · · , u|N |} forms a cluster. We further identify the

next cut-point index that maximizes Dl−1. We repeat this

process until the cut-point index l = 1.

Neighboring analysis: After identifying all clusters, Pro-

Graph further considers the neighboring properties of nodes.

Specifically, if node u has an edge from (resp. to) another node

v and v belongs to a cluster that does not contain u, we say that

the cluster is an incoming cluster (resp. outgoing cluster) of u.

Let Iu and Ou be the sets of incoming clusters and outgoing

clusters of node u, respectively. Let CI
u,v = |Iu∪Iv−Iu∩Iv|

and CO
u,v = |Ou ∪ Ov − Ou ∩ Ov|, where CI

u,v (resp. CO
u,v)

denotes the number of distinct elements that reside in either

Iu or Iv (resp. either Ou or Ov), but not both. Intuitively,

if CI
u,v and CO

u,v are small, then the neighboring clusters of

nodes u and v are similar. We say that nodes u and v have

similar neighbors if both CI
u,v ≤ 1 and CO

u,v ≤ 1, where the

threshold value 1 is empirically chosen based on our traces

(see Section VI).

Putting it all together: We merge two nodes u and v

if and only if all the following conditions hold: (1) both

correspond to the adjacent chunks in a payload; (2) both are

in the same cluster from our clustering analysis; and (3) both

have similar neighbors from our neighboring analysis. We

recompute the probability distributions after merging (Line 10



Fig. 2. Example of the merging operation for the DNS packet payloads. Each
dotted rectangle identifies a cluster of nodes. The merge operation will merge
bit 18 and bits 19:20, as well as merge bit 30 and bit 31.

of Algorithm 1). Since the probability distributions are up-

dated, we add/delete all edges again as stated in Section IV-C1

(Line 11 of Algorithm 1).

Example: Figure 2 illustrates an example of the merging

operation for the DNS packet payloads. The figure is taken

from part of Figure 1 in the middle of the graphical model

construction. The clustering analysis forms multiple clusters

(in dotted rectangles), in which bit 18 and bits 19:20 form

one cluster, bit 30 and bit 31 form another cluster, and the

other clusters are all single nodes. In the cluster of bit 18

and bits 19:20, both nodes have no incoming cluster and

identical outgoing clusters (i.e., bit 23, bit 29, and the cluster

of bits 30 and 31). Thus, we can merge bit 18 and bits 19:20.

Similarly, we can also merge bits 30 and 31, as neither of

them has any outgoing cluster and their incoming clusters

only differ by one (bit 29 is an incoming cluster of bit 31

but not bit 30). Regarding the edge directions, we follow the

heuristic in Section IV-C1. Before merging, all nodes have two

values, so every edge is directed from the node with a lower

offset to the one with a higher offset. After merging, there

are three values in bits 18:19:20. This reverses the directions

of the edges between bits 18:19:20 and bit 23 and between

bits 18:19:20 and bit 29.

3) Chunks with Constant Values: A chunk may take a

constant value (i.e., the value at the same position of all

payloads in the training set is a constant). Its corresponding

node has no edge connecting any other node in the graphical

model, because its value is independent of the values of other

chunks. For example, in Figure 1, bits 17 and 28 (which belong

to the opcode field and the response code field, respectively)

always take value 0, and they form individual nodes in the

graph. We call such individual nodes as constant nodes.

If the constant nodes reside at the beginning or the end

of a field, the other nodes of the same field can still be

merged (e.g., bits 29:30:31 of the response code field). In some

cases, a constant node may appear in the middle of a field,

thereby preventing other nodes of the same field from being

merged. For example, the opcode field of DNS comprises

bits 17:18:19:20 (see Figure 1), but in practice, it takes only

three values 0, 4, and 5. Thus, both bit 17 and bit 19 have

the constant value 0, but bit 19 separates bit 18 and bit 20. To

address the problem, ProGraph applies a heuristic to merge the

constant nodes with other non-constant nodes before running

the merge operation in Section IV-C2. Consider two nodes u

and v whose corresponding chunks are non-adjacent. If there

exists an edge connecting nodes u and v and all chunks

between u and v correspond to constant nodes, then we merge

all constant nodes into either node u or node v (the results will

be unaffected). For example, referring to Figure 2, bit 19 is

merged with bit 20 because it takes a constant value 0 and

bits 18 and 20 are connected by an edge. Note that merging

constant nodes into a non-constant node does not alter the

dependency with the remaining nodes in the graph.

D. Extracting Legitimate Values and Pairs

We now extract legitimate values for each node u ∈ N
and legitimate value pairs for each edge 〈u, v〉 ∈ E (Line 12

of Algorithm 1). One challenge is that the training set may

include noisy packets that do not belong to the target protocol.

Our goal is to exclude all noisy packets from the training set.

We assume that for each node, its values due to the

noisy packets occupy only a small fraction of the packet

payloads in the training set, so ProGraph can leverage the

probability distributions to extract legitimate values and value

pairs. ProGraph employs a threshold-based approach. For any

value x associated with node u in the training set T (i.e.,

x ∈ T (u)), if P (Xu = x) of value x exceeds a threshold,

then we include x into VN (u). Similarly, for any value pair

(x, y) associated with edge 〈u, v〉, if both P (Xu = x|Xv = y)
and P (Xv = y|Xu = x) exceed the respective thresholds

for the distributions, we include x into VN (u), y into VN (v),
and (x, y) into VE(〈u, v〉). We select the thresholds adaptively

based on the distributions, as described in Section IV-E.

We remove noisy packets from the training set (Line 13

of Algorithm 1) after we extract the legitimate values and

value pairs. Specifically, for a given packet, if there exists a

chunk whose value is not treated as a legitimate value, or there

exists a pair of chunks such that the corresponding nodes are

connected by an edge but the value pair is not treated as a

legitimate value pair, then the packet is regarded as a noisy

packet and is removed from the training set.

E. Adaptive Threshold Selection

ProGraph employs thresholds to differentiate values in two

cases: (1) in Section IV-C1, we differentiate node pairs with

strong and weak dependencies to decide whether to add

or delete edges; and (2) in Section IV-D, we differentiate

legitimate values and value pairs from those that belong to

noisy packets. In both cases, our goal is to select an appropriate

threshold that partitions a set of values into two subsets.

We formulate the threshold selection problem as follows.

Consider a multi-set of n floating-point values in the range

[0, 1]. In the case of adding/deleting edges (Section IV-C1),

the floating-point values correspond to the IGRs of node

pairs; in the case of extracting legitimate values and value

pairs, the floating-point values correspond to probabilities

of observed values or value pairs in the training set (see

Section IV-D). However, it is non-trivial to determine an

appropriate threshold, as we iteratively refine the distributions

{P (Xu)} and {P (Xu, Xv)}. Thus, we need an adaptive

approach to determine the most appropriate threshold.

ProGraph determines the appropriate threshold for the n

floating-point values using the minimum-description-length



(MDL) technique [1], as it fulfills our design goals of simple

parameterization and fast execution. We first transform the

input floating-point values into integers by multiplying them

with a large value (e.g., 106) and rounding them off to the

nearest integers. We sort the n integers in descending order

and denote them by a1 ≥ a2 ≥ . . . an. The MDL technique

searches for a cut-point k (where 1 ≤ k ≤ n) to partition

the n sorted integers into two subsets {a1, a2, . . . , ak} and

{ak+1, ak+2, . . . an}, such that the total description length for

the two subsets is minimized. Specifically, we calculate the

means of the integers in both subsets (denote them by µ1 and

µ2) and the difference of each integer from the mean in the

same subset. The total description length is the total number

of bits to represent the means and all differences:

⌈log2(µ1)⌉+
∑

1≤i≤k

⌈log2 |ai − µ1|⌉+ ⌈log2(µ2)⌉+
∑

k<i≤n

⌈log2 |ai − µ2|⌉.

The MDL technique returns the corresponding floating-

point value of ak∗ as the threshold, where k∗ minimizes the

above expression.

Note that the threshold selection does not require any

manually specified parameters. The complexities of the sorting

and the cut-point search are O(n log n) and O(n), respectively.

In adding/deleting edges, n is the number of node pairs in G
(i.e., n = O(|N |2)); in extracting legitimate values and value

pairs, n is the number of observed values and value pairs in the

training set. Our evaluations show that the threshold selection

can be done quickly (see Section VI).

V. APPLICATION

After we construct a graphical model for a target protocol

from ProGraph, we can use it to classify traffic at two levels:

we can first check if a packet belongs to the target protocol; if

so, we can identify the specific task associated with the packet.

Protocol classification: Given an input packet, we traverse

every node and its outgoing edges. For each traversed node, we

check if the corresponding chunk value and value pairs of the

input packet belong to the sets of legitimate values and value

pairs, respectively. If all nodes and edges pass the checking,

then we associate the input packet with the target protocol.

The complexity is O(|N | + |E|), where |N | and |E| are the

total numbers of nodes and edges in G, respectively.

Task classification: To identify the specific task of a packet

in a protocol, we propose a heuristic, in which we focus on

the set of nodes with zero in-degree and non-zero out-degree,

and we call such nodes as source nodes. According to our

definition of edge direction (see Section IV-C1), a source node

is more likely to be a field for task identification based on two

observations. First, a single value of the task identification

field determines multiple values of other protocol fields, so a

node with fewer legitimate values is more likely used for task

identification. Second, if two protocol fields have the same

number of legitimate values, the task identification field likely

appears at a lower offset. Both of these observations guide us

to choose the source nodes for task classification.

Note that the source nodes are not the unique choices for

task classification. For example, in DNS, we may either use

bit 16 to distinguish request and response packets, or use

bits 18:19:20 to classify the packets into three types: query,

update, and notify. Nevertheless, our evaluations show that the

source nodes provide useful information for task classification

in some common protocols (see Section VI).

VI. EVALUATION

A. Datasets

We run ProGraph on two real-world IP traces (denoted

by Trace 1 and Trace 2) collected from the 3G cellular

networks in two different cities in mainland China. Trace 1

has around 4.1 billion packets with 2.2TB of traffic in one day

of November 2010. Trace 2 has around 450 million packets

with 480GB of traffic in 15 heavy-loaded hours over three

days (5 hours per day) of November 2013. We focus on the

data-plane IP traffic, while the 3G-specific control-plane traffic

is not our focus here. Our evaluations only consider the first

16 bytes of the payload of an IP packet, which suffice for

traffic classification [10]. We do not examine the remaining

payload and ensure that the privacy is preserved.

We consider four application-layer protocols in the eval-

uation: HTTP, DNS, BitTorrent, and WeChat. We use HTTP,

DNS, and BitTorrent for our validations, as their specifications

are available and provide the ground truths. On the other hand,

WeChat is one of the most popular mobile messaging applica-

tions worldwide [5], but its specifications are proprietary and

unknown to the public. We use WeChat to show how ProGraph

is applied in traffic classification.

Preparation of training sets: For each protocol, we prepare

a training set for the graphical model construction. For HTTP,

DNS and BitTorrent, we leverage their protocol specifications

as ground truths and construct the training sets based on our

real-world traces. The training sets of HTTP and DNS come

from Trace 2, while that of BitTorrent comes from Trace 1.

We first extract all packets of the protocols from the respective

traces based on the protocol specifications. We then uniformly

sample 1% of the packets as the training sets. Thus, each

training set only covers a subset of the protocol packets, and

this enables us to verify the robustness of ProGraph. We regard

the training sets as pure, in the sense that they do not contain

other noisy packets that belong to other protocols. Later in

our experiments, we inject noisy packets to the pure training

sets. Our training sets of HTTP, DNS, and BitTorrent contain

200, 596, 98, 458, and 60, 564 packets, respectively.

However, building the training set for WeChat is challenging

due to its lack of specification. Thus, we capture WeChat

traces in a controlled environment. Specifically, using a mobile

device that has WeChat installed, we perform various WeChat

operations and capture traffic traces. We observe that WeChat

traffic comprises both TCP and UDP traffic. In our experi-

ments, we focus on the UDP packets destined to the server

voip.weixin.qq.com. Such UDP packets correspond to

real-time chatting functionalities of WeChat. We use them

as the training set, which comprises 4, 077 packets. We do

not assume that the training set is pure, but ProGraph can

effectively remove noisy packets as shown in our experiments.



B. Setup

Testbed: We implement ProGraph, including the algorithms

for model construction and classification, in C++ with 2000+

lines of code. We deploy ProGraph on a server equipped with

2.40GHz CPU. The server runs Linux 2.6.32. We compile our

code using g++ 4.3 with the -O3 option.

Metrics: We mainly evaluate the accuracy and execution

speed of ProGraph. We consider the following metrics:

• False negative rate: The classification of a packet is a

false negative if it belongs to the target protocol but is

misclassified as not belonging to the protocol. The false

negative rate is the ratio of the number of false negatives

to the total number of packets that actually belong to the

target protocol.

• False positive rate: The classification is a packet is a false

positive if it does not belong to the target protocol but

is misclassified as belonging to the protocol. The false

positive rate is the ratio of the number of false positives

to the total number of packets that do not belong to the

protocol.

• Throughput: It is the total IP payload size that has been

processed by ProGraph divided by the execution time. To

eliminate disk seek overheads, we load all packets (first

16 bytes each) into main memory before measurements.

C. Performance Results

We present performance results of ProGraph using HTTP,

DNS, and BitTorrent, all of which can be validated through

their specifications. In particular, both HTTP and BitTorrent

operate at the byte level, while DNS operates at the bit

level. After constructing the graphical models, we run protocol

classification (see Section V) on all packets from the combined

traces of Trace 1 and Trace 2.

Experiment 1 (Accuracy of protocol classification): We

compare the accuracy of ProGraph on protocol classification

with that of the longest common subsequence (LCS) ap-

proaches, whose idea is to identify the longest subsequence of

elements (where the elements need not be contiguous) appear-

ing in two packet payloads. Since there can be many LCSes,

the LCSes are usually selected with two thresholds [12]: (1)

the length of a selected LCS should exceed a minimum length

threshold; and (2) the fraction of packets that contain a selected

LCS should exceed a minimum coverage threshold. The

classification is to check whether a packet payload matches

the selected LCSes. We consider two variants of LCS-based

classification: (1) LCS-baseline, which selects the LCSes that

pass the minimum length and minimum coverage thresholds;

(2) LCS-refined, which refines the selected LCSes with the

subsequence handling heuristic proposed by SANTaClass [16]:

if an LCS is a subsequence of another LCS, the one that

appears in a larger number of occurrences is retained; if both

LCSes have the same number of occurrences, the longer one

is retained. We do not consider other refining techniques in

[16] because they are used for text-based protocols and fail to

work for DNS and BitTorrent in our evaluation.
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Fig. 3. Experiment 1 (Accuracy of protocol classification).

In our implementations of the LCS approaches, we extract

the first 64 bytes of packets [12] (as opposed to first 16 bytes

in ProGraph). We store and match the selected LCSes using a

finite state machine [16]. We set the minimum length threshold

as 4 bytes and the minimum coverage threshold as 5%, which

give the best results in our evaluation. Both ProGraph and the

LCS approaches operate on the pure training sets.

Figure 3 presents the results. LCS-baseline has a low false

negative rate (< 1%), but its false positive rate is above 10%
for all three protocols. LCS-refined significantly reduces the

false positive rate to less than 1%, yet it also incurs a false

negative rate of above 30%. The reason is that the subsequence

handling heuristic may drop many important LCSes. For

example, both “GET /” and “GET http://” may be the

LCSes in HTTP, and the former is a subsequence of the latter.

Since the LCS “GET http://” appears more frequently in

our training set, the LCS “GET /” is dropped. However, this

incurs many false negatives containing the LCS “GET /”.

In contrast, ProGraph has low error rates: for HTTP, it

achieves perfect classification; for DNS, its false negative rate

is below 0.0001% and its false positive rate is around 0.1%;

for BitTorrent, its false negative rate and false positive rate

are around 0.1% and 0.01%, respectively. ProGraph associates

legitimate values to the chunks so as to accurately characterize

the payload features. For example, it includes both subse-

quences “GET /” and “GET http://” as the legitimate

values, so as to control the false negative rate. In addition,

ProGraph controls the false positive rate by ensuring that the

value of a subsequence is legitimate for specific chunks.

Experiment 2 (Robustness to noisy training sets): We

show that the ProGraph achieves accurate classification even

in the presence of the noisy training sets. To construct a noisy

training set for a protocol, we uniformly select from our traces

a fraction of packets that do not belong to the target protocol

into the pure training set. We define the noise ratio as the

ratio of the number of noisy packets to the number of packets

in the pure training set, and we vary the noise ratio from

100% to 300%. ProGraph generates the graphical models of all

protocols using the noisy training sets, and performs protocol

classification on all packets in the traces. Although we inject a

huge number of noisy packets, we expect that their values only

occupy a small fraction in packet payloads (see Section IV-D).

Figure 4 shows the results. For HTTP, ProGraph still has

zero error rates. However, the noisy training sets increase the
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Fig. 4. Experiment 2 (Robustness to noisy training sets).
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error rates for DNS and BitTorrent. For example, when the

noise ratio is 300%, the false negative rates for DNS and

BitTorrent increase to 1.27% and 6%, respectively (see Fig-

ure 4(a)). The reason is that the noisy packets introduce new

values for the chunks, making the model construction remove

the legitimate values that appear with low probabilities. The

false positive rates for DNS and BitTorrent also increase to

0.7% and 0.2%, respectively (see Figure 4(b)), mainly because

the graphical models wrongly include noisy values as the

legitimate values. Nevertheless, ProGraph still achieves low

error rates in general (less than 6% in all cases).

Experiment 3 (Throughput): We measure the throughput

of ProGraph in both model construction and classification,

using the noisy training sets. Figure 5(a) shows the throughput

for model construction. We see that the throughput of HTTP

and BitTorrent exceeds 1100KB/s, while that of DNS is

around 540KB/s. In particular, the threshold selection (see

Section IV-E) only accounts for 10% of the overall running

time (not shown in the figure). Model construction is an offline

procedure and is expected to be less frequently executed.

Nevertheless, our throughput values are considered to be

high, compared to those of the LCS-based approaches, which

achieve only 10-20KB/s for model construction. ProGraph

also outperforms some existing offline traffic classification

techniques, such as ProDecoder [17] (0.31KB/s) and ProWord

[19] (10-20KB/s), under similar hardware configurations.

Figure 5(b) shows the classification throughput. The

throughput of both HTTP and BitTorrent is nearly 800MB/s,

while that of DNS is only 230MB/s. DNS has a slower speed

because it operates at the bit level and its graphical model has

much more nodes and edges than the other two.

Experiment 4 (Comparisons of bit-level and byte-level

classifications): We evaluate the impact of the operational
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Fig. 6. Experiment 4 (Comparison of bit-level and byte-level classifications).

granularity on the accuracy of traffic classification. Figure 6

compares the error rates of both bit-level and byte-level

classifications on HTTP, DNS, and BitTorrent. As expected,

ProGraph achieves effective bit-level classification for HTTP

and BitTorrent, and the error rates are close to those of byte-

level classification. In contrast, the accuracy of byte-level

classification for DNS is significantly worse than that of bit-

level classification, and has at least 60% of false negative rate

in all cases. The reason is that byte-level classification misses

many bit-level protocol fields defined in DNS.

Since bit-level classification also provides accurate results

for the protocols that operate at the byte-level granularity, in

practice, we can always configure ProGraph to work at the

bit level for the unknown protocols, with trade-off of having

lower throughput (see Experiment 3).

D. Protocol Formats

We examine how ProGraph facilitates task classification (see

Section V). Figure 7 present the constructed graphical models

for the four protocols. We summarize the key findings below.

Source nodes for task classification: We identify the

source nodes from different protocols for task classification

(the shaded nodes in Figure 7). For HTTP, the source node

comprises the first four bytes. It distinguishes the HTTP

response (“HTTP”) and various HTTP request methods (e.g.,

“GET ”, “POST”, “CONN”). For DNS, the source node is

bit 16, which indicates if a packet is a request or a response.

For BitTorrent, the source node is byte 4, which distinguishes

the handshake messages (value “T”) and ten types of messages

exchanged between peers (values from 0 to 9) [2].

For WeChat, we have tested both bit-level and byte-level

classifications, and obtained identical results. Thus, we present

the model based on byte-level classification for brevity (see

Figure 7(d)). We identify around 1.36M WeChat UDP packets

with 810MB of application payloads in our traces. The source

node is byte 1, while all other nodes depend on the source

node. We find that the source node has four legitimate values.

By correlating them with the operational logs when we capture

the traces, we find that one value corresponds to heartbeat

messages, two values correspond to full-duplex VoIP chats,

and one value correspond to half-duplex walkie-talkie chats.

Our results show that ProGraph remains effective even when

the protocol specification is unavailable.
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Fig. 7. Graphical models for HTTP, DNS, BitTorrent, and WeChat.

Partitioned fields: Some fields, such as the HTTP Method

field, have a variable length. ProGraph partitions a long

field into multiple nodes. For example, ProGraph treats

bytes 0:1:2:3 as a field, but the HTTP Method “CON-

NECT” will be partitioned as “CONN”, “E”, “C”, and “T”

in bytes 0:1:2:3, 4, 5, and 6, respectively. However, based on

the first four bytes “CONN”, ProGraph can still infer that it

belongs to the CONNECT method.

Constant chunks for unused bytes/bits: A protocol may

define a long field, but only set a portion of it. For ex-

ample, DNS defines a field from bits 32 to 47 for the

number of queries in a request, but the length is only stored

in bits 44:45:46:47. ProGraph will identify a chunk for

bits 44:45:46:47, and treat the remaining 12 bits as single-bit

constant chunks.

Ignored dependencies: In some cases, two nodes should be

dependent based on the protocol specifications, but ProGraph

does not connect them with an edge because the proto-

col is implemented differently. For example, DNS employs

bits 76:77:78:79 to count the number of authoritative servers

in the response, so it should depend on bit 16. However, there

is no edge between the chunks bit 16 to bits 76:77:78:79. We

find that the two chunks have low dependency in our traces

because most responses do not list the authoritative servers.

Unidentified fields: One limitation of ProGraph is that in

some cases, it cannot merge the chunks that belong to the

same field of a protocol. One such case is that some fields

may carry randomly generated data. For example, the first 16

bits in DNS carry a random session ID, in which each bit has

no dependency with any other bits. Another case is that the

fields are of variable-length and shifted (see Section IV-A). In

this case, the chunks are not merged. The unidentified fields

do not compromise the effectiveness of ProGraph. As shown

in Section VI-C, we can achieve high accuracy in protocol

classification.

VII. CONCLUSIONS

We present ProGraph, a fine-grained protocol format in-

ference tool that can operate on packet payloads at both

byte-level and bit-level granularities. ProGraph leverages intra-

packet dependency of packet payloads as the key feature,

and characterizes intra-packet dependency via a graphical

model. Extensive trace-driven evaluations show that ProGraph

achieves high accuracy and remains robust in the presence of

noisy training sets. ProGraph can serve as a critical preprocess-

ing tool for many traffic classification applications in quality-

of-service control, network security, and resource profiling.

ACKNOWLEDGMENTS

This work was supported in part by: GRF CUHK413711

from the Research Grant Council of Hong Kong,

2012CB316303 and 2013CB329602 from the National Basic

Research Program of China (973 Program), 61232010 from

National Science Foundation of China, and 2012BAH46B04

from the National Key Technology R&D Program.

REFERENCES

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic sub-
space clustering of high dimensional data for data mining applications.
In Proceedings of SIGMOD, 1998.

[2] BitTorrent Specification. https://wiki.theory.org/BitTorrentSpecification.
[3] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli. Revealing

Skype Traffic: When Randomness Plays with You. In Proc. of SIG-

COMM, 2007.
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