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Abstract—AS-level end-to-end paths are of great value for
ISPs and a variety of network applications. Although tools like
traceroute may reveal AS paths, they require the permission
to access source hosts and introduce additional probing traffic,
which is not feasible in many applications. In contrast, AS path
inference based on BGP control plane data and AS relationship
information is a more practical and cost-effective approach.
However, this approach suffers from a limited accuracy and high
traffic, especially when AS paths are long.

In this paper, we bring a new angle to the AS path inference
problem by exploiting the metrical tree-likeness or low hyper-
bolicity of the Internet, part of the complex network properties
of the Internet. We show that such property can generate a new
constraint that narrows down the searching space of possible
AS paths to a much smaller size. Based on this observation,
we propose two new AS path inference algorithms, namely
HyperPath and Valley-free HyperPath. With intensive evaluations
on AS paths from real-world BGP Routing Information Bases,
we show that the proposed new algorithms can achieve superior
performance, in particular, when AS paths are long paths. We
demonstrate that our algorithms can significantly reduce inter-AS
traffic for P2P applications with an improved AS path prediction
accuracy.

I. INTRODUCTION

As a network of networks, the Internet infrastructure con-
sists of tens of thousands of networks or Autonomous Systems
(ASes). Each AS, as a part of the Internet, is owned and
administered by the same organization and adheres to a single
and clearly defined routing policy. AS Number (ASN) is a
globally unique identifier for every AS [1]. AS path is a series
of ASNs, representing the route taken by data packets sent
from one AS to a certain network and originally exchanged
by neighboring ASes to avoid loops in inter-domain routing.

The knowledge of the actual AS path between arbitrary pairs
of end hosts directly reflects the topological property of the
connection. Therefore it is essential for network operators and
researchers to detect and diagnose problems, study routing
protocol behavior, characterize end-to-end paths through the
Internet and optimize network performance [2]. Moreover,
many network applications can benefit from being aware of
AS paths. For example, it has been shown that most bottleneck
links are more likely to appear in the access network or on
the links between ISPs, rather than in the backbones of the
ISPs [3]. Therefore, preferring the peers or servers with a
shorter AS path can reduce chances of having bottlenecks in
the path and, in turn, improve performance of applications

(e.g., P2P), reduce the inter-domain traffic and lower cost for
ISPs. With this motivation, J. Li and K. Sollins have proposed
a structured P2P network, in which AS hop counts are used
to filter out unlikely candidates [4]. This proposed system
significantly reduces network traffic while maintaining fast
lookups. As another example, AS path information has been
leveraged for improving QoS of the VoIP service (e.g., Skype)
[5]. In addition, AS path information has also been used for
network delay estimation [6], cache deployment in Content
Delivery Networks (CDNs) [7] and assessment of Internet
routing resilience to failures and attacks [8], [9].

Although AS paths are of great value for many network
applications, how to obtain such information is still a chal-
lenging issue. Collecting the BGP routing tables directly is
impractical, since the number of ASes that support public
direct access is very limited. To the best of our knowledge,
only hundreds (out of totally around 47,000) ASes on the
Internet can support remote access and routing information
viewing [10]–[13]. Another way to obtain AS paths is active
probing (e.g.,traceroute, iPlane [14] and iPlane Nano [15]).
However, besides the direct access requirement, these active
probing approaches have to deal with other issues, such as
mapping between IP address to ASN, blocking from ISPs and
additional overload to the infrastructure. A more practically-
relevant and cost-effective approach is to estimate the AS
paths by inference techniques based on BGP control plane data
and AS relationship information [2], [16]. However, traditional
inference-based approaches suffer from limited accuracy, es-
pecially when AS paths are long.

In this paper, we study the AS path inference problem from
a complex network’s point of view. In particular, we focus
on exploring a key and intrinsic geometrical characteristic
of complex networks, namely hyperbolicity or metrical tree-
likeness. Roughly speaking, hyperbolicity measures the extent
to which a graph resembles a tree from the metric’s point
of view. The key rationale for considering hyperbolicity for
the AS path inference problem is that an AS system can be
regarded as a complex network (i.e., a network of networks)
and many complex networks (e.g., web graphs, collaboration
networks, social networks and biological networks) have been
empirically shown to have a low hyperbolicity or be metrically
tree-like.

In this paper, we leverage the property of hyperbolicity to
design an efficient AS path inference scheme. To this end, weISBN 978-3-901882-68-5 c© 2015 IFIP



address the following main challenges:
• AS path inference problem is complicated by the fact that

information collected from the current routing system is
highly incomplete [17].

• Hyperbolicity is only studied under the shortest path dis-
tance metric of graph models of communication networks
[18]–[21]. However, due to the policy-based inter-domain
routing, actual AS path is not necessarily the shortest
path and usually longer than the shortest path [22]. With
the actual AS path hop count as the distance function,
whether the AS-level Internet still exhibits metrical tree-
likeness and to which extent it follows remain open
questions.

• If the actual AS paths respect the underlying geometry
of the Internet, how can we leverage this fact to improve
AS path inference technique?

To tackle the above-mentioned challenges, we first conduct
intensive empirical study with AS paths extracted from BGP
control plane data to understand the extent to which actual
AS paths exhibit metrical tree-likeness. Then we propose
HyperPath and Valley-free HyperPath, two novel AS path
inference algorithms which consider the impact of underlying
geometric structure on the actual AS paths. To show the perfor-
mance of the new methods, we implement two state-of-the-art
benchmark methods, namely AS relationships based inference
method [2] and KnownPath method [16], and compare them
with the new algorithms. Experiments with ground truth AS
paths show that our methods can be highly competitive when
AS path is short and achieve significant performance gain
when AS path is long with much less computation time and
information. Moreover, while the benchmark techniques based
on valley-free property frequently fail to work when actual AS
paths are with 6 hops or more, the new inference algorithms
can still achieve impressive prediction accuracy. We also show
that the improvement of AS path prediction accuracy by our
methods can reduce inter-AS traffic on BitTorrent network
[23].

The remainder of the paper is organized as follows. In sec-
tion II, we introduce related work. In section III, we introduce
the concept of δ-hyperbolicity of graphs and illustrate with
synthetic network models. In section IV, we conduct empirical
study to understand the impact of underlying geometry of the
Internet on AS path and propose new algorithms. In section
V we evaluate the new methods and conclude the paper in
section VI.

II. RELATED WORK

Active probing from an end host in a source AS can
reveal the AS path. By running traceroute, a series of IP
addresses of router interfaces would be obtained. Mapping
these IP addresses into ASNs can give us a raw AS path.
After removing the repeatedly occurring ASNs, the AS path
can be finally generated. Although active probing can deliver
accurate AS path, it can be problematic in practice. Firstly,
traceroute can be blocked by ISPs for security consideration.
Secondly, the mapping from IP address to AS number is not

always accurate. Thirdly, it introduces additional measurement
overhead into the infrastructure. Finally, the biggest problem
is that it requires direct access to the end host in the source
AS, which is usually hard to achieve.

To deal with the lack to direct access of active probing
method, a plethora of different techniques have been proposed
for inferring AS path. The most straightforward way is to run
the shortest path algorithm, such as Dijkstra’s algorithm, on
the AS topology generated from BGP routing information as
an approximation [4]. However, due to the inflation of AS
paths, this method cannot provide high accuracy [22].

Later, AS relationships were introduced to design better
AS path inference methods [2], [16], [24]. Specifically, AS
relationships between two connected ASes can be classified
into the following three types: customer to provider (c2p), peer
to peer (p2p) or sibling to sibling (s2s). In a c2p relationship,
the customer pays the provider to obtain transit service through
the provider’s network, while, in a p2p relationship, it is
assumed that two peering ASes share the deployment and
maintenance cost for the connecting link. Siblings are peering
ASes that generally have a mutual transit agreement, i.e.,
merging ISPs.

Gao et al. [25] pointed out that patterns of AS path should
follow, the so called, valley-free property. The valley-free
property stems from the fact that ASes don’t want to be used
as a transit. Gao et al. characterize a path as downhill (uphill)
if it only contains p2c or s2s links (c2p or s2s links) and
any valid (valley-free) path must match one of the following
patterns [25]:

• An uphill path;
• A downhill path;
• An uphill segment followed by a downhill segment;
• An uphill segment followed by a p2p link;
• A p2p link followed by a downhill segment;
• An uphill segment followed by a p2p link, followed by

a downhill segment.
Mao et al. proposed one of the first methods to infer arbi-

trary AS path from the BGP routing tables [2]. Their method
filter out the AS paths violating the valley-free property and
choose the shortest AS path from the remaining AS paths.
Later, Qiu and Gao [16] proposed the KnownPath algorithm
for AS path inference. The key idea of the KnownPath method
is to exploit AS paths that have appeared in BGP routing
tables. This method has been cited by many recent research
papers as one of the state-of-the-art method for AS path
inference based on BGP control plane data [6], [26], [27]. One
weak point of inference based on AS relationships information
is that AS relationships can contain errors. In fact, inference
about AS relationships itself is an active research problem
[25], [28], [29].

In this paper, we enrich the AS path inference techniques by
introducing a new kind of constraint or filtering mechanism,
which is similar to the role the valley-free property plays. The
new constraint mainly narrows down the candidate AS path set
to a much smaller size. Without this filtering of possible AS
path sets, originally, we have to go through every possible path



connecting source AS and destination prefix, which can be
O(|V |2) in AS relationships based inference method, where V
is the number of ASes in an AS topology. Therefore, the new
constraint can enable speed-up in inference time. In addition,
even though the new methods infer with much less information
input, they can be highly competitive and even outperform the
benchmark methods. Finally new inference methods can be
implemented in a distributed manner, which is not easy for
the state-of-the-art methods.

The hyperbolic space has been used for distance embedding
and greedy routing for communication networks [18]–[21].
These methods are based on a given topology and a shortest
path length distance function. The main difference between
our methods and the existing studies is that we investigate
and leverage the hyperbolicity of a metric space where the
distance function is the actual AS hop count, rather than the
shortest path distance.

III. δ-HYPERBOLICITY: TREE-LIKENESS FROM METRIC
POINT OF VIEW

To facilitate discussions, in this part, we first give a brief
introduction to the definition of hyperbolicity.

A. Definition

The notion of δ-hyperbolicity comes from the field of
geometric group theory and the geometry of negatively curved
metric spaces [30], [31]. Intuitively speaking, hyperbolicity of
a graph/network can be viewed as a measure of how close a
graph is to a tree from a metric point of view.

There are two definitions of hyperbolicity, which are equiva-
lent to each other up to a multiplicative constant. In this paper,
we use the 4-point δ-hyperbolicity definition by Gromov [30].

Definition 1. [30] Let δ ≥ 0. A metric space (X, d), where
X is the set of points and d is the distance measure, is called
δ-hyperbolic if and only if given quadruplet x,y,u,v ∈ X
satisfying that d(x, y)+d(u, v) ≥ d(x, u)+d(y, v) ≥ d(x, v)+
d(y, u), the following condition holds:

(d(x, y) + d(u, v))− (d(x, u) + d(y, v)) ≤ 2 ∗ δ (1)

For a graph G = (V,E), we can regard it as a metric space
where X = V and d is the graph distance (e.g., shortest path
distance) between two vertices u and v in the graph G. Then,
the hyperbolicity δ of the graph G is typically defined as the
minimum value of δ and the metric space (V, d) based on
graph G is δ-hyperbolic.

A key property of hyperbolicity is that it can characterize
the metrical tree-likeness of a graph. Generally, the lower the
hyperbolicity of a graph is, the more likely it is metrically to
a tree. For example, trees are exactly 0-hyperbolic. A cycle of
length 2k is k

2 -hyperbolic, which is the largest hyperbolicity
a finite graph with 2k vertexes can have. It has been em-
pirically shown that many real-world graphs/networks, such
as collaborative graphs, email networks, biological networks,
web graphs, p2p networks and social networks, have low
hyperbolicity [32], [33].

B. Low hyperbolicity of scale-free networks

In this section, we will demonstrate the metrical tree-
likeness of scale-free networks by using the measure of
hyperbolicity through numerical evaluation. Note that this is
useful for our study later since the AS topology is also scale-
free as shown in section IV. The scale-free networks are
generated according to the H2 model [34], which is one of
the latest scale-free network generation models. The generated
networks by the H2 model exhibit many similar properties of
real-world complex networks. The H2 model requires input
parameters, such as the node number (N ), the average node
degree (d), the exponent of the power law distribution of the
node degrees (γ) and the temperature (T ).

We generate three synthetic scale-free networks (i.e., S1, S2,
S3) according to the parameters in Table I. Note that we choose
γ as 2.1, which is the exponent of the power distribution of
node degrees in the AS topology observed in our numerical
study.

To gain more useful insight of the network structures, we
compute the δ-hyperbolicity value distribution of the Largest
Connected Component (LCC) of each network. O(N4) num-
ber of quadruplets has to be exhaustively iterated to obtain
a complete δ-hyperbolicity value distribution. It is compu-
tationally prohibitive to obtain such a complete distribution
when networks are of tens of thousands of nodes. Therefore,
we randomly sample 100 million quadruplets to approximate
the distribution when a network has more than one thousand
nodes.

TABLE I: Synthetic scale-free networks.

ID |V | E(d) γ T |V | in LCC |E| in LCC
S1 100 60 2.1 0 100 293
S2 1,000 25 2.1 0 875 3,435
S3 10,000 30 2.1 0.8 8,952 31,058

TABLE II: Distribution of the δ-hyperbolicity value of quadru-
plets in different graphs

����δ
ID

(S1, d) (S2, d) (S3, d) (T, d2)

0 0.838 0.932 0.724 0.460
0.5 0.162 0.068 0.275 0.430
1 1.64E-06 1.88E-06 0.002 0.093

1.5 - - 2.20E-07 0.015
2 - - - 0.002

2.5 - - - 1.41E-04
3 - - - 1.75E-05

3.5 - - - 6.73E-07
4 - - - 5.34E-09

% ≤ 1 1.000 1.000 0.999 0.983

Table II shows that scale-free networks (i.e., (S1, d), (S2, d),
(S3, d) in Table II) are metrical tree-like and almost every
quadruplet has a δ-hyperbolicity smaller than or equal to one.

IV. HYPERPATH METHOD FOR AS PATH INFERENCE

As mentioned in section III-A, the graph hyperbolicity is
typically defined under the shortest path distance metric. But
due to AS path inflation [22], the actual AS path is usually



not the shortest one. In this case, whether the space (T, d2),
where T is ASes set and d2 is actual AS hop count distance,
is hyperbolic or not is not explored yet.

To understand to which extent (T, d2) exhibits metrical tree-
likeness, in this section, we conduct a data-driven analysis on
AS paths obtained from real-world BGP control plane data.

A. Data collection and analysis

To facilitate the data analysis, we need a large survey
of ground truth AS paths set. To obtain this set, we use
a collection of BGP tables (collected on 08:00 AM UTC
on August 29, 2013) obtained from the RouteViews [11]
and RIPE [12] repositories. Although we only consider one
snapshot data in this study, a brand new snapshot on BGP
tables is available in every two hours and an additional
update is available in every fifteen minutes [11], [12]. From
the BGP routing tables, we can extract AS paths. Each AS
path is a path from a source AS, via a set of intermediate
ASes, to a destination IP prefix. For example, the AS path
from the AS680 (German National Research and Education
Network) to the IP prefix of 65.169.169.0/24 in U.S. is
AS680 → AS6939 → AS6598 → AS25612. Note that the
IP prefixes 65.169.169.0/24 belongs to the AS25612.

The full dataset is collected from 389 unique monitors;
it consists of over 60 million AS paths and contains at
least 646, 567 unique destination prefixes. The AS topology
obtained from the AS paths data includes 48, 133 ASes and
164, 883 links. The degree distribution of the AS topology is
given in figure 1, which is scale-free and follows a power law
distribution.

Since part of the monitor-to-prefix paths is missing, we
hence filter out the monitors with few known AS paths to
IP prefixes, leading to 70 out of 389 monitors selected. All of
these 70 monitors can simultaneously reach 30, 000 distinctive
IP prefixes, which are from more than 7, 000 different ASes.

Moreover, by accounting the paths originated from one of
the vantage ASes and ending with prefixes only appeared in
one individual AS, the final ground truth AS paths set contains
2,446,644 AS paths.

Note that, to get the AS hop count, we don’t treat the
multiple occurrences of the same AS as multiple hops. In
other words, the AS hop count is equal to the number of the
distinctive ASes in the AS path minus one.

Using the dataset above, we compute the δ-hyperbolicity
value distribution based on a sample set of hundreds of
millions of quadruplets in the largest connected component
of AS topology graph (T, d2). The result is given in the last
column of table II. We can see that (T, d2) is indeed metrically
tree-like with most quadruplets having δ value smaller than or
equal to one.

B. Algorithms

Motivated by the observation that AS topology (T, d2) is
metrically tree-like (i.e., low hyperbolicity), we then propose
AS path inference algorithms accordingly. To proceed, we first
introduce the following definitions.
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Fig. 1: Power law distribution of node degrees in the AS
topology.

Definition 2. We denote the shortest distance between two
points x, y ∈ X by |x− y|. If x ∈ X and A ⊆ X then

dist(x,A) = inf{|x− y|: y ∈ A}. (2)

Definition 3. For ε > 0 the open ε-neighborhood Nε(A) of a
set A ⊆ X is

Nε(A) = {x ∈ X : dist(x,A) < ε} (3)

According to the property of the δ-hyperbolicity [31], all
triangles in the space are δ-thin, i.e. for all x, y, z ∈ X and
segments [x, y],[x, z] and [y, z], we have

[x, y] ⊆ Nδ([x, z]) ∪Nδ([y, z]). (4)

For the AS topology space (T, d2), this property implies that,
given two AS paths rooted from the same origin to two
different destinations ASes, the ground truth AS path between
two destinations ASes should be in δ-neighborhood of these
two paths. Based on the property above, we then propose an
AS path inference algorithm. The key idea is to construct an
AS path that is within the δ-neighborhood of the AS path we
want to know.

To construct such an AS path, let’s first look at AS paths
obtained from BGP control plane data. There are hundreds of
vantage ASes and each has AS paths from itself to hundreds of
thousands of IP prefixes. The entire AS paths originated from
every vantage AS can make up a sub-graph of the AS topology.
This sub-graph can include loops, so it is not a spanning tree
of the original graph. But, still, every pair of AS paths from the
same vantage AS nv to two different IP prefixes prefix1 and
prefix2 always split at a certain node which we call a branching
point, denoted by nb. Note that, while the two paths may
have several branching points, we only consider the first one.
Assuming that two paths are p = nv → . . .→ nb . . .→ n1 →
prefix1 and q = nv → . . . → nb . . . → n2 → prefix2, we de-
fine the following function to construct a path to approximate
the ground truth AS path:

φnv (p, q) = n1 → . . .→ nb → . . .→ n2. (5)
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Fig. 2: Two paths example.

Figure 2 shows a simple example, where the vantage
AS is AS10026 and the paths to two different IP pre-
fixes are p = AS10026 → AS174 → AS39792 →
37.140.192.0/22 and q = AS10026→ AS174→ AS2914→
AS8151 → 189.245.128.0/19. AS174 is the branching point
and φAS10026(p, q) = AS39792 → AS174 → AS2914 →
AS8151.

In practice, we can have k pairs of AS paths(pi, qi) that
are originated from multiple vantage ASes nvi , i = 1, . . . , k
to IP prefix1 and IP prefix2. In this case, suppose that each
φnvi

(pi, qi), i = 1, . . . , k hits ground truth AS path with a
probability Pk independently, the probability that all φnvi

, i =
1, . . . , k fail to hit the AS path would be as the following:

P∅ =
k∏

i=1

(1− Pk) (6)

P∅ decreases exponentially as the number of vantage ASes
increase. One straightforward way to incorporate estima-
tion from multiple vantage ASes would be to choose the
argminφnvi

|φnvi
|, i ∈ [1, . . . , k] as the estimation. The match

rate of this method is equal to the probability that at least one
of the φnvi

hits the AS path, which is 1− P∅. Based on this
simple idea, HyperPath algorithm is given in Algorithm 1.

For the HyperPath algorithm, we do not require AS relation-
ship information. When AS relationship information is taken
into account, we develop the Valley-free HyperPath algorithm.
It is an extension of the HyperPath algorithm by integrating
the valley-free property and is given in Algorithm 2. The idea
is to consider two constraints (i.e., valley-free property and
low hyperbolicity of the Internet) together to filter possible
AS paths. When the valley-free property fails to work, we
return the AS path that only considers low hyperbolicity in
the inference process.

C. Discussion

Comparisons between the different AS path inference meth-
ods from complexity and information requirement aspects are
given in Table III. It shows that our proposed algorithms
require less information and demand lower computation com-
plexity. Note that, in Table III, |V | and |E| are the total
numbers of nodes and links in the AS topology respectively.

Because the HyperPath algorithm and the Valley-free Hy-
perPath algorithms only consider dozens of constructed paths
recorded by the vantage ASes, the computational complexity
of both algorithms are O(K). Here K is the number of vantage
ASes (around a few hundreds), which is much smaller than
the number of all ASes in the AS topology. If two end hosts
store the AS paths set from the vantage ASes to the networks

Algorithm 1 HyperPath Algorithm
INPUT: k pairs of AS paths (pi, qi), i = 1, . . . , k. pi can

reach prefix1 and qi can reach prefix2. Both paths are
originated from vantage AS ni.

OUTPUT: Inferred AS path p̂ between prefix1 and prefix2.
1: b̂ = +∞; p̂ = ∅
2: for i = 1 to k do
3: path= φni

(pi, qi)
4: if b̂ ≥ HopCount(path) then
5: b̂ = HopCount(path)
6: p̂ = path
7: end if
8: end for
9: return p̂

Algorithm 2 Valley-free HyperPath Algorithm
INPUT: k pairs of AS paths (pi, qi), i = 1, . . . , k. pi can

reach prefix1 and qi can reach prefix2. Both paths are orig-
inated from vantage AS ni; AS relationships information
on each edge appeared in the AS paths.

OUTPUT: Inferred AS path p̂ between prefix1 and prefix2.
1: b̂1 = +∞ ; b̂2 = +∞; p̂1 = ∅; p̂2 = ∅
2: for i = 1 to k do
3: path = φni

(pi, qi)
4: if isV alidPath(path) and b̂1 ≥ HopCount(path)

then
5: b̂1 = HopCount(path)
6: p̂1 = path
7: end if
8: if b̂2 ≥ HopCount(path) then
9: b̂2 = HopCount(path)

10: p̂2 = path
11: end if
12: end for
13: if b̂1 �= +∞ then
14: p̂ = p̂1
15: else
16: p̂ = p̂2
17: end if
18: return p̂

they are sitting in locally, our methods make it possible for
them to infer the AS path connecting them by exchanging the
AS paths sets. However, the benchmark methods need to build
entire AS topology locally to do inference and, therefore, have
to iterate through a much bigger search space. As a result,
these methods require higher computational complexity and
demand more information. Moreover, our methods are able to
infer certain individual AS path between two end hosts at a
time. In contrary, to infer certain individual AS path, one of
the benchmark methods, KnownPath method, has to infer all
AS paths from one node to all other nodes in the graph, even
when they are not required.



TABLE III: Comparisons between the different AS path inference methods.

Baseline
method

HyperPath
method

AS relationships
based method

KnownPath
method

Valley-free
HyperPath method

Time complexity from
one node to all nodes O(|E|log(|V |)) O(|V |K) O(|V |3) O(|V ||E|) O(|V |K)

Time complexity from
one node to another node O(|E|log(|V |)) O(K) O(|V |2) O(|V ||E|) O(K)

AS topology
information required global local global global local
AS relationships
information required no no yes yes yes

V. EVALUATION

In this section, we evaluate the performance of the two
proposed methods with realistic AS paths data. We will
use two state-of-the-art methods (i.e., AS relationships based
inference algorithm and KnownPath algorithm) as the bench-
mark. In addition, we also implement the no policy method
(shortest path heuristic) as the baseline method. Experiment
set-up details and evaluation result will be discussed after the
introduction of the benchmark methods.

A. Benchmark methods

1) AS relationships based inference algorithm: This algo-
rithm is one of the pioneers and the most cited work on AS
path inference algorithm [2]. The key idea of this method is
to filter out the paths that don’t satisfy the valley-free property
and to find the shortest AS path from the remaining valid AS
paths set. The algorithm is given in Algorithm 3.

2) KnownPath algorithm: As an extension of the AS rela-
tionships based inference algorithm, besides using the valley-
free property, this algorithm improves the inference accuracy
by further integrating the AS paths that are already observed
from the vantage ASes. The algorithm is detailed in Algorithm
4, in which rib in(u)[p] is a path set that contains all the
feasible paths from AS u to a specific IP prefix p learned from
u’s neighbors. The baseASset contains the ASes that have the
assured paths from themselves to the prefix p.

3) No policy baseline method: We also implement the no
policy method as the baseline method. In no policy method,
the actual AS path is approximated by the shortest AS path
in the AS topology obtained from BGP control plane data.

B. Experiment set-up

Algorithm Input:
• AS paths: we use the 2.4 million ground truth AS paths

to do the evaluation, which has been introduced in section
IV. Besides that, we have also AS paths from 70 vantage
ASes to feed our proposed algorithms.

• AS topology: To mimic the case where we don’t have
access to the routing table of the ASes, we build the
AS topology out of the BGP control plane data of
the 69 ASes, excluding the one we are interested in.
These AS topologies are the only input required by the
no policy method. In comparison, our methods don’t
need to construct the entire topology locally. For the
AS relationships based inference method and knownPath

method, the AS relationships information on links in the
AS topology is also required.

• AS relationship: We use the AS relationships data from
Caida’s Inferred AS Relationships Dataset [35]. This data
is of as high as 97% accuracy [28]. Although it is possible
to generate the AS relationships data of the same day
when we collected BGP data, we use the AS relationships
data on 1st of September 2013 in our study, simply
because Caida’s AS relationships data is only available
on the first day of each month. The date on which AS
relationships data is generated is two days later than
the date on which BGP control plane data is collected.
But we still use this AS relationships data in our study,
assuming that most of the AS relationships would not
change dramatically and remain almost the same within
several days.

To achieve a fair comparison, we organize the experiments
in two categories by considering the cases with and without
AS relationships information.

• Comparisons without considering AS relationship: In this
part, we compare against HyperPath with no policy base-
line method. Both methods don’t require AS relationship
information to do estimation.

• Comparisons with considering AS relationship: In this
part, we compare against Valley-free HyperPath with the
benchmark methods. In addition to AS path information,
all of them take the AS relationships information into
account.

C. Estimation Accuracy

Similar to many studies in the literature [2], [16], we
evaluate the methods’ performance based on the hop count
number of AS paths and present the prediction accuracy in
the form of confusion matrices.

• Comparisons without considering AS relationships: Table
IV shows the prediction accuracy of both the HyperPath
method and the no policy baseline method. From Table
IV, we observe that the HyperPath method achieves
similar performance as the baseline method when AS
paths are short (e.g., hop counts are smaller than or equal
to 2). HyperPath method achieves significant performance
improvement over the baseline method when AS paths
are long (e.g., hop counts are greater than 2). For ex-
ample, when AS path hop counts are greater than 3, the



Algorithm 3 AS relationships based inference algorithm [2]
INPUT: A pair of source and destination ASes(s, d), AS

topology T and AS relationships information R of each
link in the AS topology.

OUTPUT: An inference path p̂ between source and destina-
tion ASes (s, d)

1: find all shortest uphill paths rooted from source node s as
S = {s→ . . .→ pi|i ∈ {1, . . . ,K}}; and find all shortest
uphill paths rooted from destination node d as D = {d→
. . .→ qi|i ∈ {1, . . . , L}}. We denote the end points of the
uphill paths rooted from s as P = {pi|i ∈ {1, . . . ,K}}
and the end points of the uphill paths rooted from d as
Q = {qi|i ∈ {1, . . . , L}}

//cost without peer to peer link
2: if P ∩Q �= ∅ then
3: cost0 = mink(dist(s, k) + dist(d, k))
4: else
5: cost0 = −1
6: end if

//cost with peer to peer link
7: if true ∈ {rp(p, q)|p ∈ P, q ∈ Q, p �= q} then
8: cost1 = minp,q(dist(s, p) + dist(d, q) + 1)
9: else

10: cost1 = −1
11: end if

Here we assume for two ASes x and y, function

rp(x, y) =

{
true if (x, y) is a p2p link;
false otherwise.

12: if cost0 == −1 and cost1 == −1 then
13: return null.
14: else if cost0 == −1 then
15: return uphill(s,p), (p,q), reverse(uphill(d,q)).
16: else if cost1 == −1 then
17: return uphill(s,k), reverse(uphill(d,k)).
18: else if cost0 <= cost1 then
19: return uphill(s,k), reverse(uphill(d,k)).
20: else
21: return uphill(s,p), (p,q), reverse(uphill(d,q)).
22: end if

HyperPath method possesses more than 50% prediction
accuracy, while the baseline method only has an accuracy
of 27%.

• Comparisons with considering AS relationships: Table V
shows the prediction accuracy of AS relationships based
method, KnownPath method and Valley-free HyperPath
method. Similar to the case where AS relationship infor-
mation is not considered, from table V, we also observe
similar performance among the different methods when
AS paths are short (e.g., hop counts are smaller than or
equal to 3). The valley-free HyperPath method, however,
achieves significant performance improvement over the

Algorithm 4 KnownPath algorithm [16]
INPUT: A destination IP prefix p, baseASset, AS topology

T and AS relationships information R of each link in the
AS topology.

OUTPUT: Inferred paths from all ASes to the IP prefix p.
1: queue ← ∅
2: for v ∈ baseASset do
3: append v to queue
4: path(v)[p] ←sure path of v
5: SORT(rib in(v)[p])
6: end for
7: while queue.length > 0 do
8: u← POP(queue, 0)
9: for w ∈ peers(u) do

10: Pu ← rib in(u)[p][0]
11: if w /∈ baseASset and (w) + Pu is a valid path

then
12: tmppath ← rib in(w)[p][0]
13: rib in(w)[p] ← rib in(w)[p] ∪ {(w) + Pu}
14: SORT(rib in(w)[p])
15: if tmppath == path(w)[p][0] and w /∈ queue

then
16: append w to queue
17: end if
18: end if
19: end for
20: end while
21: return {rib in(v)|∀v ∈ V }

benchmark methods when AS paths are long (e.g., hop
counts are greater than 3). For example, when AS path
hop counts are greater than 6, the Valley-free HyperPath
method achieves more than 70% prediction accuracy,
while the accuracy of the benchmark methods drops sig-
nificantly, with the accuracy of less than 17%. Moreover,
as reported in [2], [16], we also observe (see the columns
of ”N/A” in Table V) that benchmark methods could fail
to return estimation values, in particular, when AS paths
are long. By contrast, the Valley-free HyperPath method
is more robust and doesn’t suffer from this issue.

D. Application: inter-domain traffic reduction for BitTorrent
P2P system

To demonstrate the usefulness of our AS path inference
methods for the inter-domain traffic reduction, we simulate
the BitTorrent, which is one of the most popular unstructured
peer to peer overlay network applications.

We use the same dataset in the previous section for the
underlying network condition. Specifically, we assume that a
certain BitTorrent client is located in one of the 93 different IP
prefixes. Then the client has to select k number of peers out
of a pool of 100 peers. The 100 peers are randomly located
in 26, 308 different IP prefixes. We change the selected peers
number k from 10, 20 to 90. To evaluate how much inter-
domain traffic is reduced by each peer selection method, we



TABLE IV: Confusion matrices of the prediction performance
of the baseline method and the HyperPath method.

(a) No policy method.

% Predicted hop count
1 2 3 4 5 6 7 8

A
ct

ua
l

ho
p

co
un

t 1 50.7 49.1 0 0 0 0 0 0
2 2.2 83.4 14.4 0 0 0 0 0
3 0.9 30.2 67.1 1.9 0 0 0 0
4 0.5 13.2 58.3 26.9 1.2 0 0 0
5 1.1 7.9 27.0 38.9 24.8 0.3 0 0
6 0 2.7 16.3 17.9 31.9 26.1 5.2 0
7 0 1.2 1.2 3.5 1.5 67.3 25.4 0
8 0 0 30.7 11.4 17.6 1.1 39.2 0

(b) HyperPath method.

% Predicted hop count
1 2 3 4 5 6 7 8

A
ct

ua
l

ho
p

co
un

t 1 48.1 51.6 0.3 0 0 0 0 0
2 0.1 78.0 21.8 0 0 0 0 0
3 0 10.3 84.0 5.7 0 0 0 0
4 0 4.0 32.7 60.1 3.2 0 0 0
5 0 0.7 10.2 30.0 57.5 1.6 0 0
6 0 0.1 3.1 7.4 25.2 58.6 5.6 0
7 0 0 1.3 1.5 1.1 2.3 92.3 1.4
8 0 0 1.1 1.1 12.0 6.9 0.6 78.3
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Fig. 3: inter-domain traffic reduction on unstructured overlay
networks.

measure the performance on traffic reduction with the stretch
metric, which is defined as the following:

stretch =

∑k
i=1 dx′

i∑k
i=1 dxi

(7)

where x′
i, i = 1, . . . , k is the IDs of the selected peers based

on the inferred information and xi, i = 1, . . . , k is the IDs of
the true best-performing peers in the pool. d denotes the actual
AS hop count from the node to the peer. The stretch metric
can reflects the ratio of the inter-ASes traffic introduced by
the peer selection strategy based on estimation to the inter-
ASes traffic introduced by idealized peer selection strategy.
We simulate 50 times. For each time, we conduct more than
10,000 rounds of peer selection.

Figure 3 shows the stretch metric with confidence interval
with different k for all methods. We can see that Valley-free

TABLE V: Confusion matrices of the prediction performance
of the AS relationships based method, the KnownPath method,
and the Valley-free HyperPath method.

(a) AS relationships based method.

% Predicted hop count
1 2 3 4 5 6 7 8 N/A

A
ct

ua
l

ho
p

co
un

t

1 50.7 43.7 5.4 0.1 0 0 0 0 0
2 1.8 81.6 15.8 0.7 0 0 0 0 0.1
3 0.9 18.8 77.1 3.0 0.1 0 0 0 0.2
4 0.5 8.9 41.3 47.6 1.5 0 0 0 0.2
5 1.1 6.1 19.5 38.8 31.6 0.3 0 0 2.7
6 0 2.5 14.2 17.5 16.5 2.9 0 0 46.5
7 0 1.2 0.7 3.6 1.1 0.1 0 0 93.4
8 0 0 2.3 0.6 17.6 1.1 0 0 78.4

(b) KnownPath method.

% Predicted hop count
1 2 3 4 5 6 7 8 N/A

A
ct

ua
l

ho
p

co
un

t

1 50.4 41.3 7.9 0.1 0 0 0 0 0.3
2 0.3 78.5 19.0 1.9 0.1 0 0 0 0.3
3 0.3 3.7 88.6 5.8 0.3 0 0 0 1.3
4 0.1 2.4 14.6 74.9 3.4 0.5 0 0 4.2
5 0.4 0.2 6.0 16.6 67.2 3.2 0.2 0 5.8
6 0 0.4 3.2 2.8 10.4 55.2 0.6 0 27.4
7 0 0.2 1.1 2.3 0 0.9 16.4 0 79.1
8 0 0 1.1 1.1 12.5 0 4.6 8.0 72.7

(c) Valley-free HyperPath method.

% Predicted hop count
1 2 3 4 5 6 7 8 N/A

A
ct

ua
l

ho
p

co
un

t

1 48.1 42.5 9.2 0.2 0 0 0 0 0
2 0.1 75.1 22.6 2.2 0 0 0 0 0
3 0 3.2 88.8 7.7 0.3 0 0 0 0
4 0 2.4 14.9 77.7 4.4 0.5 0 0 0
5 0 0.3 6.4 18.4 70.2 4.3 0.3 0 0
6 0 0.1 2.3 2.9 17.0 70.9 6.7 0 0
7 0 0 1.3 1.5 0.3 2.3 93.2 1.5 0
8 0 0 1.1 1.1 11.9 0 5.7 79.6 0

HyperPath method outperforms all the other methods. For
instance, when k = 10, the random peer selection method
introduces 89% additional inter-domain traffic, compared with
the ideal case. If we do peer selection with the help of
inference methods without considering AS relationships in-
formation, no policy method introduces 39% additional traffic
and HyperPath introduces 27% additional traffic. If we take
AS relationships information into account, AS relationships
based method, KnownPath method and Valley-free HyperPath
method introduce 36%, 25% and 21% additional traffic re-
spectively.

This experiment shows that, even though without con-
sidering AS relationships information, traffic reduction by
HyperPath method is competitive with that by KnownPath
method. When we further take into account AS relationships
information in our algorithm design, the proposed Valley-free
HyperPath method can achieve better performance than the
KnownPath method. Please note that, as shown in Table III,
KnownPath method also requires additional information on AS
topology and higher computational complexity.

VI. CONCLUSION

In this paper, we revisit the AS path inference problem from
the complex network perspective. A brand new constraint is
proposed based on the fact the AS paths respect the underlying



geometric structure of the Internet. Resulting two new AS path
inference algorithms, HyperPath and Valley-free HyperPath,
have O(K) complexity to infer certain end-to-end AS path and
can run locally. Intensive evaluation on the ground truth AS
paths shows that HyperPath method can not only outperform
no policy method, it can be superior to AS relationships based
method by being blind to the AS relationships information.
The Valley-free HyperPath method outperforms both AS re-
lationships based method and KnownPath method. Moreover,
two new algorithms are immune to the fail-to-detect problem,
by which the benchmark methods are always haunted. We also
simulate BitTorrent P2P applications to show the potential of
our methods on inter-domain Internet traffic reduction.
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