
Traffic duplication through
segmentable disjoint paths

François Aubry, David Lebrun, Yves Deville, Olivier Bonaventure
ICTEAM, Université catholique de Louvain

Louvain-La-Neuve – Belgium

Email: firstname.name@uclouvain.be

Ultra-low latency is a key component of safety-critical
operations such as robot-assisted remote surgery or financial
applications where every single millisecond counts. In this
paper, we show how network operators can build upon the
recently proposed Segment Routing architecture to provide a
traffic duplication service to better serve the users of such
demanding applications. We propose the first implementation
of Segment Routing in the Linux kernel and leverage it to
provide a traffic duplication service that sends packets over
disjoint paths. Our experiments show that with such a service
existing TCP stacks can preserve latency in the presence
of packet losses. We also propose and evaluate an efficient
algorithm that computes disjoint paths that can be realised by
using segments. Our evaluation with real and synthetic network
topologies shows that our proposed algorithms perform well
in large networks.

I. INTRODUCTION

Various entreprise applications require reliable low latency
services. Since the advent of electronic trading, the financial
world has been actively researching, developing and applying
techniques to reduce the latency of their systems, hence
allowing for a larger number of transactions per unit of time,
yielding a higher profit. A typical use case is high frequency
trading [1]. The desperate need for information to arrive as fast
as possible has motivated some institutions to provide special
low latency services for a fee. For example, Thomson Reuters
supplies to its premium customers numbers such as Consumer
Confidence two seconds before it is released to the general
public for a $2,000/month fee [2]. For high-frequency trading,
every millisecond counts. For example, a 1-millisecond advan-
tage for a major brokerage firm can yield a loss or a profit of
$100 million a year [3]. These financial applications are only
one example among a long list of applications [4], [5] that
require both low latency and reliable delivery. Other examples
include telesurgery, distributed simulations, . . .

In circuit-switched networks, a classical solution to pre-
serve mission-critical traffic in case of failures or losses is
to send redundant information over disjoint paths. Optical
networks often support two types of protection schemes : 1:1
and 1+1. In both cases, two disjoint paths are used between the
communicating nodes. With 1:1 protection, data is sent over
the primary path and the secondary path is reserved so that
data traffic can be quickly switched to the secondary path in
case of failure on the primary path. Some deployments allow

to send low-priority traffic over the secondary path. With 1+1
protection, data is sent over both paths and the destination can
easily switch to the secondary path if the primary fails [6].

In TCP/IP networks, such techniques are rarely used.
Most applications, including the latency sensitive applications
mentioned above rely on acknowledgements and retransmis-
sions to deal with losses. The Transmission Control Proto-
col (TCP) plays a central role in the performance of many
latency-sensitive applications [4], [5]. The TCP protocol and
its implementations have been heavily tuned over the years
[7]. Despite all these optimisations, short TCP flows can be
severely affected by packet losses that are not a rare event [8].

In this paper, we show how an IPv6 network can provide
1+1 protection on end-to-end paths. Our solution is composed
of two key elements : (i) efficient algorithms that compute
disjoint paths, (ii) the recently proposed IPv6 Segment Routing
[9] architecture that we leverage to realise these disjoint paths.
Furthermore, we demonstrate the applicability of this solution
by evaluating how latency-sensitive TCP applications could
benefit from such a service.

This paper is organised as follows. We first describe in
section II how the recently proposed Segment Routing archi-
tecture can enable an ISP to deploy such a duplication service.
In section II-A, we implement a traffic duplicator in the Linux
kernel and demonstrate that it can be used by latency-sensitive
TCP applications. We explain in section III how disjoint paths
can be computed in a network supporting Segment Routing.
We then propose in section III-C an efficient algorithm that
computes such disjoint paths. We evaluate its performance on
several network topologies in section IV. We discuss related
work in section V.

II. ROUTER-LEVEL TRAFFIC DUPLICATION

In this section, we show how an ingress router can duplicate
the traffic towards a given destination in a pure IPv6 network.
Our traffic duplicator builds upon Segment Routing [10].
Segment Routing (SR) is a new forwarding architecture that is
being developed within the Internet Engineering Task Force.
Segment Routing changes the way packets are forwarded
inside a network to enable network operators to have better
control on the path followed by the packets. In traditional
IP networks, packets follow the shortest path towards their
destination. The selection of the shortest paths depends on the
weights associated to each link. In the data plane, each IP
packet contains the source and destination addresses.ISBN 978-3-901882-68-5 © 2015 IFIP

With SR, the path followed by a packet does not need
to be the shortest path towards its destination. The proposed
SR architecture [10] modifies the control and the data planes
to support non-shortest paths. Two variants of the data plane
exist : MPLS-based and IPv6-based [9]. In this paper, we
focus on the IPv6-based data plane and its modifications to
support segment routing [11]. With Segment Routing, the path
between a source and a destination is composed of one or more
segments. Segment Routing supports two types of segments:
node segments and adjacency segments. In short, a node
segment forces a node traversal and an adjacency segment
forces a link traversal. To understand in more details these
two types of segments, let us consider the network shown in
figure 1 where all links have the same weight. Consider a
packet sent by a to h. With shortest path routing, the path
a-b-c-d-h is used. With Segment Routing, we can force
the utilization of other paths.

A first possible path is to insert in each packet a node
segment towards f. The packets sent by a will first follow
the shortest path towards f and from there the shortest path
towards the final destination, i.e. h. Another possibility is
to use an adjacency segment. In this case, the source node
includes in the packet a specific outgoing interface that needs
to be traversed. For example, if link c-f is chosen, then the
packets sent by a will reach f via the single path a-b-c-f.
f will then forward the packets towards h over the shortest
path. By combining node and/or adjacency segments, network
operators have proposed various new innovative services [12].

a b c d

e f g h

Fig. 1: Simple network

In a traditional IPv6 networks, the intradomain routing
protocol (i.e. OSPF or IS-IS) is configured to advertise the
IPv6 loopback address of each router and the IPv6 addresses
associated to each of its physical interfaces. BGP is used
to advertise the external destinations. The Segment Routing
architecture reuses this control plane. To enable the utilization
of any path, SR defines a new IPv6 hop-by-hop header [9].
This header is a revision of the Type 0 IPv6 Routing Header
that has been deprecated a few years ago due to security
problems [13]. The SR header contains a list of IPv6 addresses
that specifies a path through the network. To encode a node
segment, the IPv6 loopback address of the corresponding
router will be inserted in the SR header. For an adjacency
segment, the IPv6 address of the outgoing interface will be
used. The SR header also includes a HMAC [14], which did
not exist in the Type 0 Routing Header that solves the security
problems that caused the deprecation of RH0 [9], [11].

As with the Type 0 Routing Header, routers forward the
packets based on their destination address. A router only
checks the SR header when it receives a packet destined to
itself. In this case, it looksup the next address in the SR header,
updates the Next Segment field and uses this address as the
destination address of the forwarded packet.

A. Evaluation

We have implemented Segment Routing in the Linux kernel
(3.14.x branch) through an IPv6 header extension (SR-IPv6).
Our extension [11] implements the current drafts [9], [14]
as much as possible. Our implementation is able to forward
packets containing an SR header and to inject the SR header
in a forwarded packet that matches a given destination prefix.
Our implementation contains about 2,500 lines of code and
is publicly available from http://www.segment-routing.org. We
focus on the key features of our implementation in this section.
Additional technical details may be found in [11]. An IPv6
packet containing an SR header is processed as described in
algorithm 1.

Algorithm 1 SR header processing

1: if DA = myself (segment endpoint) then
2: if Segments Left ¿ 0 then
3: Decrement Segments Left
4: Update DA with Segment List[Segments Left]
5: if Segments Left == 0 AND Clean-Up bit set then
6: Strip SRH
7: end if
8: else
9: Give packet to next PID (application)

10: End of processing
11: end if
12: end if
13: Forward the packet out

The SR header is processed when the packet is considered
for local delivery, after the PREROUTING and right after the
INPUT hook (as the destination address of the packet belongs
to the router when it is a segment endpoint), during the normal
processing of IPv6 header extensions. If the packet passes the
normal checks (HMAC, correct header format, etc.) and the
router is not the last segment then the destination address of
the packet is changed to the next segment and the packet is
sent through the forwarding mechanism of the kernel. If the
processing node is the last segment, then the packet is delivered
to the local application or to the corresponding kernel routine.
See figure 2 for an illustration of the Linux routing mechanism
[15].

Fig. 2: Linux routing mechanism

Our implementation can also add an SR header when
forwarding a regular IPv6 packet whose destination matches
a given prefix. This injection is performed just before the

PREROUTING hook because we need to modify the original
destination address of the packet to the address of the first
segment. We provide a userland/kernel API that allows the
construction of a segment table. This table contains a list of
destination prefixes where an indexed set of segments list is
associated to each destination prefix. If there is only one seg-
ment list, then the kernel uses this list to build the SR header. If
several segment lists are associated to a destination prefix, then
we support two types of actions. With the SPLIT_RR action,
the kernel load-balances the packets in a round-robin fashion
among the associated segment lists. With the MIRROR action,
the kernel forwards n times the original packet, where n is
the number of segment lists available. We use this MIRROR
action in our experiments.

B. Impact of duplication on TCP performance

Given its cost in terms of network utilization, traffic
duplication should only be used for low-volume and delay
sensitive applications. This includes several of the applications
discussed in [4]. A detailed analysis of all these applications
is outside the scope of this paper and is left for further work.
Traffic duplication would clearly be beneficial for applications
that use 1+1 protection in optical networks, but it could also be
used by traditional data-oriented applications. As an illustration
of the capabilities of our SR implementation in the Linux
kernel, we experimentally evaluate whether traffic duplication
can be used with TCP applications.

Due to space limitations, we focus our evaluation on
the impact of two main parameters that usually affect the
performance of request-response applications : link delay d
and packet loss l. Our evaluation1 was performed on the
topology depicted in figure 3 that we created within the
Mininet framework [16]. Our request-response application is
a simple web client that interacts with a standard web server,
the lighttpd daemon. We requested 100 KBytes files from
the HTTP server to simulate low-latency requests. To measure
the impact of d and l, we used the following methodology.
Given a set of base RTTs brtt = {1, 5, 10} milliseconds, a set
of delta RTTs drtt = {2, 4, 6, 8, 10}, for each b in brtt and for
each d in drtt, we set the delay of the link L1 to b ms and the
delay of the link L2 to b+ d ms. Then, we measure the total
HTTP request time with an increasing packet loss percentage
on link L1. We used tc with the netem module to set the
delay of the emulated links and the htb module to shape the
bandwidth of links L1 and L2 at 100 Mbps. The bandwidth
of all other links is not limited.

Fig. 3: Test network

We performed 1,000 requests of 100KB between hostA

and hostB for each combination in the sets. Figure 4 reports

1The virtual image used for the experiment is available from http://www.
segment-routing.org.

the request-response times measured over 1,000 requests gen-
erated across link L1 with a loss of 10% and a delay of 10
ms; across link L2 with a loss of 0% and a delay of 20 ms;
and finally across both links using our traffic duplicator. We
can clearly see that using both links at the same time yields a
shorter response time than when using either link individually.

Tables I and II show the latency measured over 1,000
requests using traffic duplication by setting link L1 to resp.
5 ms and 10 ms and link L2 to resp. 5 + ∆d ms and
10 + ∆d ms. We can clearly see that on average, the fastest
link wins. We can also see that the latency is more stable when
the ratio of the latency of the slowest link over the fastest link
is smaller.

Min Avg Stddev

∆d 2ms 70ms 70ms 0ms

∆d 4ms 70ms 70ms 0ms

∆d 6ms 70ms 70.37ms 5.79ms

∆d 8ms 70ms 70.11ms 1.86ms

∆d 10ms 70ms 70.01ms 0.31ms

TABLE I: Latency measured over 1,000 requests with link L1
having a delay of 5 ms and link L2 a delay of 5 + ∆d ms

Min Avg Stddev

∆d 2ms 140ms 140.08ms 2.52ms

∆d 4ms 140ms 140ms 0ms

∆d 6ms 140ms 140ms 0ms

∆d 8ms 140ms 140ms 0ms

∆d 10ms 140ms 140.3ms 6.35ms

TABLE II: Latency measured over 1,000 requests with link L1
having a delay of 10 ms and link L2 a delay of 10 + ∆d ms

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
s
ts

Latency (milliseconds)

L=10%,D=10ms,R=100K
L=0%,D=20ms,R=100K

Duplication

Fig. 4: Percentage of requests having a given latency over
disparate links for duplicated and non-duplicated requests

In Figure 5 we show the evolution of the end-to-end request
delay over two lossy links L1 and L2 and different packet loss
ratios (same loss value for both links at the same time) and for
variable ∆d between the two links. We sent 1,000 duplicated
100KB requests over the two links for ∆d = 0, 10, 40, 90
and for loss percentages on both link of 1, 2, 3, 4, 5, 10. When
∆d = 0, our measurements show a very low spread for packet

� � � � � ��

����	
��
������

�

���

���

���

���

����

����
�
�
��
�
��
�
��
��
	
�

�
�

	
�

�������	������

� � � � � ��

����	
��
������

�

���

���

���

���

����

����

����

����

�
�
��
�
��
�
��
��
	
�

�
�

	
�

��������	�������

� � � � � ��

����	
��
������

�

���

���

���

���

����

����

����

�
�
��
�
��
�
��
��
	
�

�
�

	
�

��������	�������

� � � � � ��

����	
��
������

�

���

���

���

���

����

����

����

����

�
�
��
�
��
�
��
��
	
�

�
�

	
�

��������	��������

Fig. 5: Upper left plot shows request delay distribution for variable identical loss over two links with L1 set at 5ms delay and
L2 set at 5ms. Upper right plot shows the same for L1 at 10ms and L2 at 20ms. Bottom left plot shows for L1 at 10ms and L2
at 50ms. Bottom right plot shows for L1 at 10ms and L2 at 100ms.

loss ratios loss between 1 and 5 percent. The spread starts
to grow when the packet loss ratio becomes larger than 10
percent on both links. In practice, it is unlikely that links will
be operated at such packet loss ratios. When the two links have
different delays (∆d = 10), our measurements show slightly
more spread in the response times, with noticeably more
outliers. When the links have different latencies (∆d = 40 and
∆d = 90), the spread in the measured response times clearly
grows and the difference between a loss of 5 percent and a loss
of 10 percent is substantial. We also performed additional tests
for higher loss percentages (20, 30, 40) but the performances
rapidly plummet. The experiment with a packet loss ratio of
40% took nearly one hour to complete. These measurements
indicate that traffic duplication can help to reduce the latency
of request-response flows over lossy links provided that the
two links have similar latencies.

III. SEGMENTABLE DISJOINT PATHS

The previous section has shown how a router can send
packets from a given flow over disjoint paths by inserting
different SR headers. To implement our service, the router
needs to know which SR header to be used for each desti-
nation. For this, we propose algorithms that compute link and
node disjoint paths. These algorithms could be implemented
in a centralized controller or directly on the router. Given that
our service builds upon the Segment Routing architecture, we

need to ensure that the disjoint paths that are computed by
our algorithm can be implemented as a sequence of segments.
In general, any path could be implemented as a sequence
of segments. However, this could require as many segments
as there are links on a given path. This would lead to very
long SR headers that would not be acceptable from a packet
overhead viewpoint. Furthermore, some deployed routers have
difficulties in forwarding packets that contain long extension
headers. For this reason, we limit the number of segments that
the SR header can contain. Due to space limitations, we focus
on node segments, but a similar approach can be developed
for adjacency segments. The proofs of the theorems may be
found in [17].

A. Notations and definitions

We model the intradomain network as a directed weighted
graph G = (V,E,w) where V is a set of nodes, E is a subset
of V × V that corresponds to the links and w is a function
from E to R

+. This function corresponds to the IGP costs
configured on the links.

A path p is a sequence (x1, x2, . . . , xh) such that
(xi, xi+1) ∈ E for all i and xi �= xj for i �= j.

Let c : E → R
+. We define the cost of a path p =

(x1, . . . , xh) relative to c, denoted c(p), as the sum of the

weights of its edges:

c(p) =
h−1∑

i=1

c(xi, xi+1)

The edge set of a path p = (x1, . . . , xh), denoted E(p), is
defined as the set of edges that belong to p:

E(p) = {(xi, xi+1) | i ∈ {1, . . . , h− 1}}

Two paths p1, p2 from a node s to a node t are said to be edge
disjoint if E(p1) ∩ E(p2) = ∅.

Let p1 = (x1, x2, . . . , xh1
) and p2 = (y1, y2, . . . , yh2

) be
two paths on a graph G. If (xh1

, y1) ∈ E we denote by p1+p2
path that result from appending p2 to p1

p1 + p2 = (x1, x2, . . . , xh1
, y1, y2, . . . , yh2

)

If xh1
= y1 we denote by p1⊕p2 the concatenation of p1 with

p2, that is,

p1 ⊕ p2 = (x1, x2, . . . , xh1
= y1, y2, . . . , yh2

)

Definition 1: Given a graph G = (V,E,w) and a path p =
(x1, x2, . . . , xh) in G we say that the path p is k-segmentable
if there exist k shortest paths s1, s2, . . . , sk in G such that
p = s1 ⊕ s2 ⊕ . . .⊕ sk. The sequence S = 〈s1, s2, . . . , sk〉 is
called a k-segmentation of p.

A path is said to be unsegmentable if it is not k-
segmentable for any k. A k-segmentation of a path p is
said to be minimal if there exists no k′-segmentation of p
such that k′ < k. Note that there can exist several minimal
segmentations. For instance in the graph on figure 6 the path
(a, b, c, d) has two minimal segmentations: 〈(a, b), (b, c, d)〉
and 〈(a, b, c), (c, d)〉.

a b c d
2 2 2

1

Fig. 6: A graph G with a path (a, b, c, d) that has two minimal
segmentations: 〈(a, b), (b, c, d)〉 and 〈(a, b, c), (c, d)〉.

B. Path segmentation

In this section we explain how we can determine whether
a path is k-segmentable and how to compute a minimal k-
segmentation. Let G = (V,E,w) be a graph. Let us denote by
Dv the shortest path dag (directed acyclic graph) rooted at v.
That is, Dv is the subgraph of G that contains all the edges
that belong to a shortest path from v to some node. These n
graphs can be computed in O(n3) using the Floyd-Warshall
algorithm [18].

Naturally, k-segmentations of paths in G are intimately
related to the shortest path dag’s of G. Consider a k-
segmentable path p = (x1, x2, . . . , xh) whose segmentation
is 〈s1, s2, . . . , sk〉. By definition each si is a shortest path in
G. Hence si is a path in Dvi where vi is the first vertex of si.
This means that a path is k-segmentable if and only if it can
be expressed as the concatenation of k paths each belonging

to some of G’s shortest paths dag’s. The relation between
segmentable paths and shortest paths dag’s is captured by the
following lemma.

Lemma 3.1: A path p in G is unsegmentable if and only
if there exists some edge (x1, x2) in p such that for all x ∈ V ,
(x1, x2) /∈ Dx.

The next lemma is a simple consequence of the fact
that a subpath of a shortest path is also a shortest path. In
conjonction with Lemma 3.1 it helps us decide whether a path
is unsegmentable.

Lemma 3.2: If (x1, x2) /∈ Dx1
then for each x ∈ V ,

(x1, x2) /∈ Dx

In general, to obtain a minimal segmentation, we traverse
the path p by walking on the shortest paths dag’s of G. We start
on Dx1

and follow the path until we reach an edge that does
not belong to the current dag. Denote that edge by (xi, xi+1).
Then if (xi, xi+1) belongs to Dxi

we continue our walk in
Dxi

. Otherwise, by Lemmas 3.1 and 3.2, the path cannot be
segmented so we stop and report it.

C. Minimum latency K-segmentable path

In this section we describe an algorithm to find the minimal
latency K-segmentable path between two vertices in a graph.

Given a graph G = (V,E,w) and a latency function
l : E → R

+ we define a graph G such that a path p in
G corresponds a segmentation of a path p in G such that
l(p) = l(p). More precisely, a node of G is a tuple (v,Dr, k)
that is to be interpreted as a state with the following meaning:
v is the current node in G, Dr is the current shortest path dag
and k is the number of segments used so far. The edges in
G are defined such that there is a path in G from (v,Dv, 1)
to (u,Dr, k), for some u, r, k, if and only if there is a k-
segmentable path from v to u in G.

Formally, we define G = (V ,E) with V = {(v,Dr, k) |
v, r ∈ V and 1 ≤ k ≤ K}. The edges E are defined as
follows: (v1,Dr1 , k1) and (v2,Dr2 , k2) are connected by an
edge of cost l(v1, v2) if one of the following conditions holds:
(i) (v1, v2) ∈ Dr1 , r2 = r1 and k2 = k1 or (ii) (v1, v2) ∈ Dv1 ,
r2 = v1, k2 = k1 + 1 ≤ K.

We will denote the size of V by n and the size of E by
m.

To better understand this construction consider the graph in
figure 7 and the path (a, b, d, f, h, i). The first two edges (a, b)
and (b, d) belong to Da. However the third edge (d, f) does not
because the shortest path from a to f is (a, c, e, f) of length 4
whereas the path (a, b, d, f) has length 5. This means that we
need a segment at node d. Now we are not in the dag of a any-
more but in the dag of d. One easily sees that all the remaining
edges belong to Dd so no further segments are required. The
decomposition of this path is 〈(a, b, d), (d, f, h, i)〉. This path
corresponds in G to the path (a,Da, 1), (b,Da, 1), (d,Da, 1),
(f,Dd, 2), (h,Dd, 2), (i,Dd, 2). The first coordinates represent
the corresponding node in G. The second coordinates represent
the current shortest path dag. We see that the first three nodes
have second coordinate equal to a which means that that
portion of the path is executed in Da. Then from (d,Da, 1) to
(f,Dd, 2) the second coordinate changes showing that we had

to change the current shortest path dag in order to proceed.
In this case we changed from Da to Dd. The third coordinate
shows the total number of segments required.

a

b

c

d

e

f h

g

ij

a,Da,1

b,Da,1

c,Da,1

f,Dd,2 h,Dd,2

i,Dd,2

1

2

2

2

1

1

2

2

2

2

3

2

3

Fig. 7: Example for G

We now bound the size of G and propose an algorithm that
computes it.

Lemma 3.3: The number of edges of G is O(nmK).

Algorithm 2 builds the graph G given G, a latency function
l and the shortest path dag’s of G with respect to the IGP
costs. To do so, for each vertex (v,Dr, k) it loops over all
neighbors u of v in G and checks if either condition (1) or
(2) of the definition of the edges of G applies. By Lemma
3.3 the algorithm runs in O(nmK). The algorithm has a pre-
processing cost of O(n3) because we need to compute the
shortest path dag’s Dv for all v ∈ V .

Algorithm 2 Build-Graph

Input:

- A graph G = (V,E)
- l : E → R

+

- Dv for all v ∈ V (G)

Output:

- The graph G as defined above

1: G ← ({(v,Dr, k) | v, r ∈ V (G) ∧ k ∈ {1, . . . ,K}}, ∅)
2: for v, r ∈ V (G), k ∈ {1, . . . ,K} do
3: for u ∈ neighbors(G, v) do
4: if (v, u) ∈ Dr then

5: connect(G, (v,Dr, k), (u,Dr, k), l(v, u))
6: end if
7: if k + 1 ≤ K and (v, u) ∈ Dv then

8: connect(G, (v,Dr, k), (u,Dv, k + 1), l(v, u))
9: end if

10: end for
11: end for
12: return G

Now we establish formally the correspondence between
paths in G and their segmentations and paths in G.

Proposition 3.1: Let G = (V,E,w) be a network, l :
E → R

+ and C ≥ 0. There exists a k-segmetable path
p = (x1, x2, . . . , xh) in G with l(p) = C if and only if there
exists in G a path p of the form (x1,Dx1

, 1), (x2,Dr2 , k2),
(x3,Dr3 , k3), . . ., (xh,Drh , k) with l(p) = C.

Proof: (⇒) Let p = (x1, x2, . . . , xh) be a k-segmentable
path in G with l(p) = C. Let 〈s1, . . . , sk〉 be a k-segmentation

of p and denote number of vertices of si by li and the j-th
vertex of si by si[j]. Let Di be a dag that contains si and let

si = ((si[1],Di, i), (si[2],Di, i), . . . , (si[li],Di, i)) .

By the definition, each si is a path in G (all the edges satisfy
the condition (i) of the definition of edges in G). For each
i we have that si[li] = si+1[1] so that (si[li], si+1[2]) =
(si+1[1], si+1[2]) ∈ Di+1. Therefore by condition (ii) of
the definitions of edges in G, we have that (si[li],Di, i) is
connected to (si+1[1],Di+1, i+ 1) so s1 + s2 + . . .+ sk is a
path in G. By the way costs are defined on G we have that
l(p) = l(p). Since

s1 ⊕ s2 ⊕ . . .⊕ sk = (x1, x2, . . . , xh)

we have what we wanted.

(⇐) Let p be a in G of the form (x1,Dx1
, 1),

(x2,Dr2 , k2), (x3,Dr3 , k3), . . ., (xh,Drh , k). By construction,
(x1, x2, . . . , xh) is a path in G with the same cost. Since the
third coordinate of the last vertex is k is means that the second
coordinate changes exactly k times. From this we can easily
build a k-segmentation of p.

Then, given s and t, by Proposition 3.1, we can find the
shortest s-t path on G that requires at most K segments by
computing a shortest path on G. This can be achieved with
Dijkstra’s algorithm. However the following lemma tells us
that we can do this even faster.

Lemma 3.4: Given a graph G, the corresponding graph G
is acyclic.

Since G is acyclic shortest paths can be computed in
O(m+n) using Dynamic Programming [18]. By Lemma 3.3,
we can express the time complexity as O(nmK +n2K). The
algorithm is specified as algorithm 3. In this algorithm we call
DAG-SP to compute the shortest paths. We suppose that it
outputs two vectors d and π, the first containing the shortest
path distance to each vertex and the second containing the
parent of each node in the shortest path tree. We take the
convection that when no path exists to a given vertex the
distance is infinite. Using π we easily reconstruct the path
by taking the first coordinate of the nodes. The segments are
reconstructed using the third coordinates which represent the
number of segments. Whenever this changes it means that a
new segment was used.

Notice that for a fixed source s we do not need to build
the whole graph G. Building the subgraph of nodes reachable
from (s,Ds, 1) is sufficient and more efficient.

D. Computing disjoint K-segmentable paths with low laten-
cies

In the literature, there are two common ways of computing
disjoing paths: (i) iteratively calling a path finding algorithm,
such as Dijkstra, to find a path and remove its edges or (ii)
using a network flow algorithm [19]. The first approach is
subject to finding sub-optimal number of paths since removing
a path can take away paths of the optimal solution. In contrast,
the network flow approach is guaranteed to be optimal in the
sense that it will find the maximum number of disjoint path
possible. In our setting we want our path set to minimize
the difference of latency between the best path found and the

Algorithm 3 SPS

Input:

- The graph G
- Two nodes s, t ∈ V (G)
- The maximum number of segments K

Output:

- Shortest K-segmentable s-t path

1: (d,π) ← DAG-SP(G, (s, s, 1))
2: (t,Dr∗ , k

∗) ← argminr,k{(t,Dr, k) | d(t,Dr, k) < ∞}
3: if (t,Dr∗ , k

∗) = nil then
4: return nil
5: end if
6: path ← ∅
7: seg ← ∅
8: cur ← (t, r∗, k∗)
9: while cur �= nil do

10: path ← path ∪ {cur.vertex}
11: if π[cur] �= nil and π[cur].k �= cur.k then
12: seg ← seg ∪ {π[cur].vertex}
13: end if
14: cur ← π[cur]
15: end while
16: return (path, seg)

worst path found. With this additional constraint the problem
becomes NP-hard [20]. Computing an exact solution is thus
unrealistic. Therefore we propose a heuristic solution based
on the successive shortest paths approach. We show in the
evaluation that the results we obtain are close to optimal with
respect to the number of paths found.

We use algorithm 3 iteratively to find a set of edge disjoint
K-segmentable paths. Each time the algorithm finds a path
we remove all of its edges from the graph. We continue until
no more path exists. If we want to provide traffic duplication
over P paths and the algorithm finds more than P ′ > P paths
we can keep the worst P ′ − P as secondary path that we use
in case there is a failure in one of the paths we are using.
This allows to maintain a set of P paths even in the case of a
failure.

Algorithm 3 requires a latency function l as input. One
possibility is to use the propagation delay wich can be inferred
from traceroute data. Since our algorithm forbids path with
more than K-segments we give a priority to the segmentation
constraint. Then among all K-segmentable path we try to
optimize the path latencies.

One thing that we have to be careful with is that an
edge in G corresponds to many edges in G. Formally an
edge (v, u) in G corresponds to all the edges in G of
the form ((x,Dr1 , k1), (y,Dr2 , k2)) for r1, r2 ∈ V (G) and
k ∈ {1, . . . ,K}. We can avoid to explicitly remove all these
n2K2 edges by using a n by n boolean matrix A such that
A[v][u] is true if the edges of the form

{((v, r1, k1), (u, r2, k2)) | r1, r2 ∈ V ∧ k1, k2 ∈ {1, . . . ,K}}

are active and false otherwise. Then, instead of removing the
edges we set A[v][u] to false and take the values of A into
consideration when finding paths.

The time complexity of finding P paths is O(P (nmK +
n2K)) since the SPS algorithm runs in O(nmK + n2K).

IV. EVALUATION

In the previous sections, we have proposed algorithms that
enable routers to compute segmentable disjoint paths. In order
to assess their possible application, we performed various ex-
periments by considering several topologies of Internet Service
Providers (ISP). Each topology is a graph with two attributes
per link : the IGP metric and the latency. We use five topologies
for our experiments. The first four ones were collected by the
Rocketfuel project and are described in [21]. Both the IGP
weights and the latencies were inferred from traceroute data
in these topologies. The last topology includes the backbone
routers of a large Tier-1 ISP with the real IGP weights. The
link latencies were computed from the geographical distance
between the cities. Table III provides some data about these
topologies.

Name # nodes # edges

Rocketfuel : AS1239 153 1010

Rocketfuel : AS1755 67 248

Rocketfuel : AS3257 103 484

Rocketfuel : AS3967 57 208

Real backbone approx 150 approx. 700

TABLE III: ISP Topologies

We implemented the algorithms described in the previous
sections in Java. Our code contains 3 classes and 600 lines of
code. For our evaluation, we used an intel Core i7 on a laptop
with 4 GBytes of RAM using Linux Ubuntu 14.04 LTS.

In all our experiments we set K = 3 meaning that we use
at most 3 segments for each path. We performed experiments
with other values and they show that we do not gain much by
allowing more segments. Our first evaluation is to measure
the number of link and node disjoint paths that exist in
these networks. Figure 8 provides the proportion of the router
pairs for which there are at least P link disjoint paths. This
proportion was obtained by iteratively running algorithm 3
on each topology for all pairs of nodes until no more paths
where found. The proportion of the number of link disjoint
paths depends on several factors, notably the number of links
attached to each router. We observe that for more than 90%
of the pairs at least 2 disjoint paths exist in each topology,
for 40% of the pairs we are able to find 3 paths and that for
approximatively 20% of the pairs we are able to find 4 paths.

Using a brute force integer programming model we com-
puted the exact maximum number of disjoint paths for the
AS1755 and AS3967 topologies. This shows that our algorithm
achieves the maximum number of paths for 96% of the pairs
for the AS1755 topology and 98% for the AS3967 topology.
This shows that, at least in these topologies, it would not be
possible to find much more paths. This information could not
be computed for the other topologies due to the exponential
complexity of the brute force algorithm.

As we shown in Section II-A, when the difference of
latency between the best path and the worst path in a path
set increases we get a decrease of performance of TCP. Figure
9 shows for each ∆d what is the percentage of pairs such that
the difference between their worst path and their best path is

Fig. 8: For P = 1, . . . , 6 the figure shows the percentage of
pairs in each graph for which we can find at least P disjoint
paths.

at most ∆d. We observe that for 2 paths more that 90% of
the pairs have ∆d < 10ms. For 3 paths we have 75% of the
pairs.

Fig. 9: For P = 2, 3 and ∆d we show the percentage of pairs
that have a difference of latency between the IGP path and the
worst path in the path set found by our algorithm at most ∆d.

In a real network, the running time of such algorithms can
be an important factor. Link and node failures are relatively
frequent events in large ISP networks. After a remote failure,
a router may need to recompute the disjoint paths that it uses
to reach distant routers. As we said previously, we run our
algortihm until no more paths are found. This means that we
may find a lot more disjoint paths than the ones we use for
traffic duplication. If this is the case we can instantly switch to
another path upon a link failure. In the meantime we recompute
a new path set from scratch to try to find a better set of paths.

In the real ISP, our unoptimized Java code takes on average
less than 315 milliseconds to find all the paths from a source
to a destination. This remains a reasonable computation time
compared with the various computations that the IGP already
requires on routers [22].

V. RELATED WORK

The Low latency via Replication proposal [4] is close to our
work. Vulimiri et al. propose replicate packets across diverse
resources and evaluate how replication affects response under
load. However, their approach differs in the sense that they use
replication to query different systems such as DNS, while our
solution uses multiple disjoint paths.

Different source routing techniques have been proposed in
the literature, e.g. [23], [24], [25], [26]. Savage et al. propose
Detours in [23]. This overlay technique allows to exploit paths
that are not used normally. This technique is mainly targeted
at interdomain scenarios while ours is targeted at networks
managed by a single company. Kaur et al. propose in [24]
the BANANAS framework that expresses paths as a short
hash (PathID) of a sequence of globally known identifiers that
have global significance. They show that BANANAS allows
to introduce explicit routing and multipath capabilities within
existing routing protocols. Their framework moves control-
plane complexity and state overheads to network edges. Our
Segment Routing implementation is similar in the sense that
the segment endpoints do not need to maintain states and can
forward packets solely thanks to the SR header. Dixit et al.
show in [26] the benefits of random packet spraying across
multiple paths in datacenter networks. Their solution modifies
the ECMP forwarding on the routers to spread the load. Our
approach is more costly from a bandwidth utilisation viewpoint
since packets are replicated.

Another type of approach is to rely on Forward Error
Correction to protect reliable services from the impact of
losses. Such techniques have been used in a variety of net-
works including ATM [27], wireless [28], multicast [29] and
inter-datacenter networks [30]. The closest to our work is
Balakrishnan et al. who propose in [30] a Forward Error
Correction (FEC) mechanism to recover from bursty losses.
They propose to install this FEC mechanism on wide-area links
that interconnect datacenters. Compared to replication, a FEC
approach has the benefit of a lower bandwidth consumption
at the expense of a higher CPU load and possibly a higher
latency.

In the literature there are essentially two approaches to
compute disjoint paths between a source and a destination[19].
The most straightforward approach works in the same spirit as
ours in the sense that it consists on successively computing
shortest paths with the Dijkstra algorithm [31]. Then the
paths are deleted until no more path can be found [31]. To
our knowledge, these approaches have not been extended to
support Segment Routing. A frequent cited drawback of using
successive shortest paths is that there are pathological cases
where the algorithm is trapped in a path and cannot find the
disjoint ones. This happens when a shortest path has edges
in common with other potential paths. Although this problem
exists, Dunn and his colleagues have shown that it is very
rare in real networks [19]. The results obtained by our exact

algorithm confirm this for the AS1755 and AS3967 topologies
since we where able to find the maximum number of paths
possible for more than 96% of the pairs. A more sophisticated
approach consists of computing the maximum flow between
the source and the destination [32].

VI. CONCLUSION

In this paper, we have shown that it is possible to provide
an 1+1 protection service by using segmentable disjoint paths
between endhosts in an IPv6 network that supports the recently
proposed Segment Routing architecture.

Our first contribution is an efficient algorithm that com-
putes such disjoint paths that can be realised by using Seg-
ments in large networks. The evaluation of this algorithm in
both real and inferred networks shows that it finds disjoint
paths that have similar latencies and can be realised by using
a small number of segments.

Our second contribution is an open-source implementation
of the IPv6 version of Segment Routing inside the Linux
kernel. This is the first complete implementation of this
new protocol in an operating system kernel. We use it to
implement a prototype of the traffic duplication service. Our
measurements show that with this service, latency-sensitive
TCP applications can better cope with random packet losses.
This improved performance comes at the cost of a higher
bandwidth utilisation which might not be acceptable in all
environments and for all applications. Our further work will
be to analyse in more details for which types of applications
the proposed traffic duplication is really beneficial.

ACKNOWLEDGEMENTS

This work was partially supported by the ARC grant 13/18-
054 (ARC-SDN) from Communauté française de Belgique. We
want to thank Bui Quoc Trung for his help with the integer
programming model. We also would like to thank the reviewers
for their insightful comments.

REFERENCES

[1] J. Adler, “Raging bulls: How wall street got addicted to light-speed
trading,” Wired, Aug. 2012.

[2] B. Insider, “Elite traders are getting access to data before everyone
else,” http://www.businessinsider.com/latency-in-trading-2013-6.

[3] R. Martin, “Wall street’s quest to process data at the speed of light,”
Information Week, 2007.

[4] A. Vulimiri, P. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in CoNEXT ’13, 2013.

[5] B. Briscoe et al., “Reducing internet latency: A survey of techniques
and their merits,” Communications Surveys Tutorials, IEEE, 2014.

[6] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network recovery: Protec-

tion and Restoration of Optical, SONET-SDH, IP, and MPLS. Elsevier,
2004.

[7] J. Chu, “Tuning tcp parameters for the 21st century,” 2009, presented
at IETF75.

[8] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing web
latency: the virtue of gentle aggression,” in ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4. ACM, 2013, pp. 159–170.

[9] S. Previdi et al., “IPv6 Segment Routing Header (SRH),” Internet draft,
draft-previdi-6man-segment-routing-header-03, work in progress, Mar.
2014.

[10] C. Filsfils et al., “Segment Routing Architecture,” Internet draft, draft-
filsfils-spring-segment-routing-00, work in progress, Apr. 2014.

[11] D. Lebrun, “Supporting IPv6 Segment Routing in the Linux kernel,”
Nov. 2014, http://www.segment-routing.org/.

[12] C. Filsfils et al., “Segment Routing Use Cases,” Internet draft, draft-
filsfils-spring-segment-routing-use-cases-00, work in progress, Mar.
2014.

[13] J. Abley, P. Savola, and G. Neville-Neil, “Deprecation of Type
0 Routing Headers in IPv6,” RFC 5095 (Proposed Standard),
Internet Engineering Task Force, Dec. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc5095.txt

[14] E. Vyncke, S. Previdi, and D. Lebrun, “IPv6 Segment Routing Secu-
rity Considerations,” February 2015, internet draft, draft-vyncke-6man-
segment-routing-security-02, work in progress.

[15] R. Russell and H. Welte, “Netfilter architecture,” http://www.netfilter.
org/documentation/HOWTO/netfilter-hacking-HOWTO-3.html.

[16] N. Handigol et al., “Reproducible network experiments using container-
based emulation,” in CoNEXT ’12, 2012, pp. 253–264.

[17] F. Aubry, D. Lebrun, Y. Deville, and O. Bonaventure, “Technical report:
Traffic duplication using segmentable disjoint paths,” 2014, http://hdl.
handle.net/2078.1/152888.

[18] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms, 2nd ed. McGraw-Hill, 2001.

[19] D. A. Dunn, W. D. Grover, and M. H. MacGregor, “Comparison
of k-shortest paths and maximum flow routing for network facility
restoration.” IEEE Journal on Selected Areas in Communications,
vol. 12, no. 1, pp. 88–99, 1994.

[20] C.-L. Li, S. McCormick, and D. Simchi-Levi, “The complexity of
finding two disjoint paths with min-max objective function,” Discrete

Applied Mathematics, vol. 26, no. 1, pp. 105 – 115, 1990.

[21] N. Spring et al., “Measuring isp topologies with rocketfuel,” IEEE/ACM

Trans. Netw., vol. 12, no. 1, Feb. 2004.

[22] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second igp convergence in large ip networks,” SIGCOMM Comput.

Commun. Rev., vol. 35, no. 3, pp. 35–44, Jul. 2005.

[23] S. Savage, T. Anderson, A. Aggarwal, and D. Becker, “Detour: informed
Internet routing and transport,” Micro, IEEE, vol. 19, no. 1, January
1999.

[24] H. Kaur et al., “BANANAS: an evolutionary framework for explicit
and multipath routing in the internet,” in ACM SIGCOMM, 2003.

[25] X. Yang, D. Clark, and A. Berger, “NIRA: A New Inter-Domain
Routing Architecture,” in IEEE/ACM Trans. Networking, 2007.

[26] A. Dixit, P. Prakash, Y. Hu, and R. Kompella, “On the impact of packet
spraying in data center networks,” in IEEE INFOCOM, 2013, pp. 2130–
2138.

[27] E. W. Biersack, “Performance evaluation of forward error correction in
an atm environment,” Selected Areas in Communications, IEEE Journal

on, vol. 11, no. 4, pp. 631–640, 1993.

[28] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network coding meets tcp: Theory and im-
plementation,” Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512,
2011.

[29] C. Perkins, O. Hodson, and V. Hardman, “A survey of packet loss
recovery techniques for streaming audio,” Network, IEEE, vol. 12, no. 5,
pp. 40–48, 1998.

[30] M. Balakirshnan et al., “Maelstrom: Transparent error correction for
communication between data centers,” in IEEE/ACM Trans. on Net-

working, 2011.

[31] W. Grover, Mesh-based Survivable Networks. Prentice Hall, 2004.

[32] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall, 1993.

