Active Sense Queue Management (ASQM)

Daniel M. Havey
Department of Computer Science
University of California Santa Barbara
dhavey@yahoo.com

Abstract—Active Queue Management (AQM) algo-
rithms have seen a lot of attention in recent academic
literature as well as in the popular press. The problem
with traditional AQM is that it is designed to operate
on queues at the IP layer. However, the problem pop-
ularly called bufferbloat can move about among many
queues some of which are resistant to traditional AQM
such as Layer 2 MAC protocols used in cable/DSL links.
We call this problem bufferbloat displacement. Our
contribution is a new class of AQM algorithm called
Active Sense Queue Management (ASQM). ASQM is
an IP layer AQM protocol that has the added benefit
of managing Layer 2 link delay, i.e. bufferbloat dis-
placement. We provide testbed experiments comparing
ASQM’s bandwidth delay characteristics with tradi-
tional AQM algorithms demonstrating ASQM’s ability
to manage bufferbloat displacement where traditional
AQM algorithms cannot.

I. INTRODUCTION

The queue management problem commonly called
bufferbloat has been with us for a long time. However, re-
cent increases in the range of bandwidth capabilities found
in network devices have made the problem more exigent.
A typical cable modem in use today provides bandwidth
from 2-50 Mbps. Statically engineering queue size for a
device such as this is essentially impossible because the
bandwidth and delay characteristics vary too much. A
queue engineered for a delay of 100 ms at 50 Mbps would
be 25 times too large at 2 Mbps producing 2.5 seconds
worth of delay. Faster speeds are leading to larger queue
sizes making the problem worse for lesser speeds.

There are two dynamic AQM algorithms deployed today
to manage queue size and control bufferbloat: CoDel and
PIE, [25], [27]. The weakness of these algorithms is that
they do not control the bufferbloat problem in queues
below the IP layer. We call this problem bufferbloat
displacement. Queuing theory tells us that bufferbloat is
displaced into slowest queue(s) in the path. When the ISP
access link cannot meet the IP layer ISP committed rate
then the bufferbloat is displaced into the access link filling
the MAC layer queues and causing bufferbloat that CoDel
and PIE cannot detect.

The Federal Communications Commission (FCC) pro-
duces a report every year called Measuring Broadband

ISBN 978-3-901882-68-5 (© 2015 IFIP

Kevin C. Almeroth
Department of Computer Science
University of California Santa Barbara
almeroth@cs.ucsb.edu

America.! In this report from the years 2010 through 2014
the 80/80 study designed by the North Carolina State
University Institute for Advanced Analytics determines
how often the access link does not meet the ISP committed
rate at the IP layer in the modem during peak traffic
hours (from 7:00 pm to 11:00 pm). In 2014 50% of the
16 ISPs measured provided 90% of the committed rate to
80% of the panelists 80% of the time. The other 50% of
ISPs provided less than 90% of the committed rate.

A significant amount of bufferbloat occurs during peak
traffic hours that CoDel and PIE cannot detect because
the access link is providing less than the ISP committed
rate. So we develop ASQM to solve this problem. ASQM
uses an active sensing mechanism to detect bufferbloat
across the access link. Our ASQM algorithm runs at
the IP layer, but, senses queuing delay across the entire
access link. This novel approach allows ASQM to remove
bufferbloat from the access link 100% of the time even
during peak traffic hours when bufferbloat displacement
occurs that CoDel and PIE cannot detect.

ASQM uses an active sensing approach. Active sensing
creates a trade-off between overhead (from the sensory
packets), measurement accuracy and feasibility. Our con-
tribution in this work is to investigate these trade-offs
and provide the most feasibility and accuracy with the
least amount of overhead. Our ASQM algorithm controls
bufferbloat on par with CoDel and PIE during non-peak
traffic hours and continues to provide excellent bufferbloat
protection during peak traffic hours when CoDel and PIE
cannot. Our ASQM algorithm can be deployed on any ISP
modem or router and requires less than 0.5% overhead.

The remainder of this paper is organized as follows: In
Section II we describe related solutions and supporting
work. In Section III we describe the primary bottleneck be-
tween the modem and the CMTS/DSLAM. In Section IV
we describe our ASQM algorithm and its interaction with
queues in the primary bottleneck. In Section V we describe
our evaluation methodology and testbed. In Section VI,
we present our results and in Section VII we summarize,
conclude and discuss future work.

Yhttp://data.fcc.gov/download /measuring-broadband-
america/2014/2014-Fixed-Measuring-Broadband-America-Report.pdf

II. RELATED WORK

The use of advanced DiffServ (Differentiated Services)
scheduling mechanisms such as fair, classful or priority
queuing can be effective in helping the network serve
the needs of application classes [4], [30], [12], [22], [3],
[31]. DiffServ packet scheduling does not replace AQM.
DiffServ decides which packet to send next. AQM de-
cides queue length. They are complimentary algorithms.
DiffServ should be used in conjunction with an AQM
algorithm.

Explicit Congestion Notification (ECN) enhances the
performance of AQM by marking packets rather than
dropping them. The TCP server (sender) reacts to marked
packets as if they were dropped packets [14], [28]. The state
of deployment and activation of ECN in the Internet is
poor but improving, about 40 percent at the core as of this
writing [2], [21]. Some middleboxes (proxies) still do not
duplicate these options properly, [18]. Because of this an
AQM algorithm must be able to drop packets. However, if
ECN is deployed then the AQM should use ECN marking
instead of dropping.

Loss based TCP congestion control algorithms come
in many flavors with varying levels of aggression [7],
[29], [24], [6], [23], [13]. Algorithms commonly deployed
and active on the Internet today include Cubic (Linux),
Compound (Windows XP), and NewReno (mac, Windows
Vista+), [8], [26], [33]. Loss based TCP protocols seek to
fill the slowest queue as much as possible and increase
bufferbloat. The ubiquitously deployed TCP Cubic and
NewReno are loss based. TCP Compound is a hybrid of
loss and delay based TCP.

Delay based TCP protocols are sensitive to RTT and
eliminate bufferbloat except when in the presence of a
loss based TCP such as Cubic or NewReno. This makes
delay based TCP protocols ineffective against bufferbloat
in general because they are likely to face one of the ubig-
uitously deployed loss based NewReno or Cubic TCPs.
However, in a controlled environment delay based TCP
can reduce bufferbloat. Examples of delay based TCP
are Vegas, CAIA CDG, and Fast, [17], [34], [5]. Many
other TCP variants have been created over the years
including equation based TCP [15], Multipath TCP [16],
split TCP [19], and Network Coding TCP (NCTP) [32].
However, no TCP variant exists today that can control
bufferbloat in the presence of the ubiquitously deployed
loss based Cubic and NewReno TCPs.

AQM algorithms are designed to manage bufferbloat.
The IETF currently recommends that an AQM algorithm
should be implemented in network devices in compliment
with a DiffServ scheduler.? Recent and popular AQM
algorithms such as CoDel and PIE use burst size (queue
delay over time) to control the queue, [25], [27]. Older
algorithms such as RED and its variants measure queue
size directly, [11], [10], [20], [9].

Zhttp://tools.ietf.org/html/draft-ietf-aqgm-recommendation-03

The problem with traditional AQM is that it does
not protect Layer 2 MAC protocols from bufferbloat.
These protocols are resistant to traditional end to end
AQM because they are Link Layer protocols and do not
communicate with the TCP sender. In ASQM we take a
different approach using active sensing at the IP Layer to
determine the queuing delay across the Link Layer and
send a mark/drop signal to the end to end TCP sender to
slow down.

III. MANAGING THE RIGHT QUEUE

The next step is to examine the queuing theory that
AQM algorithms are built from. This queuing theory
includes edge router queuing equations, typical network
neighborhood topology and the primary bottleneck at the
access link.

The queue size in backbone routers is governed by the
arrival/departure processes as shown in Appenzeller et
al. [1]. However, in edge routers queue size is governed by
the Q = BD equation as demonstrated in Villamizar et
al. [35]. ASQM is intended for edge routers so we expand
the Villamizar bandwidth delay equation to the following:

Qsize = B+ D — D = optimal; B = optimal (1)
Qsize < Bx D — D = optimal; B < optimal ~ (2)
Qsize > B+ D — D > optimal; B = optimal (3)

Bandwidth B is the emission rate from the queue, and
delay D ~ RTT where RTT is the Round Trip Time for
the path. If the queue size is too small as in Equation 2
then the flow will lose bandwidth. Otherwise if the queue
size is too large as in Equation 3 then the flow will have
excessive delay. Only when the queue size is just right as
in Equation 1 will the flow have the maximum bandwidth
at the minimum RTT.

These equations demonstrate why adding more band-
width is no more than a temporary solution at best. A
flow experiencing bufferbloat is acting according to Equa-
tion 3. Increasing bandwidth will bring the flow towards
Equation 1. Increasing bandwidth further will drive the
flow into Equation 2 causing bandwidth loss. The proper
way to solve the problem is to size the edge router queue
according to Equation 1. However, because the bandwidth
and RTT are unknown in advance and vary over time we
must use dynamic AQM algorithms in order to control
bufferbloat.

In this paper we refer to typical consumer access link
using 802.11 ac wireless, Gigabit Ethernet and 2-50 Mbps
cable technology. We know that faster link technology ex-
ists including Gigabit fiber. This is an example of throwing
more bandwidth at the problem to temporarily fix it.
Assuredly many consumers who purchase Gigabit fiber
will also find the wherewithal to switch to faster access
technologies such as 10 or even 100 Gigabit Ethernet and
60 GHz WiFi will certainly have more throughput than
the 802.11 line.

Possible Secondary
Bottlenecks

Internet

Primary Bottleneck

Unlikely | \ Unlikely to Bloat |

Customers
ISP ISP
tO Bloat | — l Internal

Network
a
Router
| 2-50 Mbps

Wireless ~ Active Sense ; IS P Ne'[WOFk

and
~ Aggregregate Paths Divergent Paths J

Wired Users
Fig. 1. Typical Consumer Network Neighborhood

Gateway
Router

Madem Router

It has been widely reported in the press that business
disputes between providers have been resulting in conges-
tion at interconnection points and network paths. These
secondary bottlenecks shown in Figure 1 can cause per-
formance degradation for users. We know that secondary
bottlenecks can cause variable degradation in performance
from user to user. However this problem is out of scope
for this paper because there is nothing that an AQM
algorithm can do about a secondary bottleneck caused by a
business dispute. ASQM focuses on bufferbloat that occurs
in the primary bottleneck not on performance degradation
caused by business disputes.

Because the access link is the primary bottleneck AQM
algorithms are normally deployed at IP layer in the CPE
modem. This configuration is fine when the ISP access link
provides 100% or more of the committed rate given in the
Service Level Agreement (SLA). However, the ISP access
link commonly delivers less than 100% of the committed
rate during peak traffic hours. This is because providing
100% of the committed rate during peak traffic hours
would cause a terrible waste of ISP capacity during non-
peak traffic hours. When the access link rate is less than
the committed rate bufferbloat will occur in layers below
the IP where CoDel and PIE cannot detect it.

We believe that a different approach is required. It is
unreasonable to expect all ISPs to maintain 100 percent
of the advertised bandwidth 100 percent of the time. ISPs
are faced with a wide variety of conditions under which
they must operate. Distance, competing traffic, and RF
conditions on the wire (especially for twisted pair) affect
their networks and 90 percent of advertised rates during
peak periods is quite reasonable performance. We propose
ASQM as an answer to the problem. ASQM uses active
sensing between the IP layers to detect bufferbloat and
manage all of the queues between them regardless of where
in the link the bufferbloat is occuring.

ASQM’s active sense mechanism is shown in Figure 1 in
two equivalent configurations. One is operating from the
IP layer on the modem to the ISP gateway router and

the other is operating from the IP layer on the Customer
Provided Equipment (CPE) router. These configurations
are equivalent because the link between the CPE router
and the modem is 10/100/1000 Mbps Ethernet. Both
configurations protect the primary bottleneck including
the Cable MAC layers of the modem and the CMTS. The
rest of the ISP network from the gateway router to the
exit router(s) is also unlikely to bloat because these links
are traffic engineered and maintained.

IV. AcCTIVE SENSE QUEUE MANAGEMENT

Our ASQM algorithm uses active sense packets to de-
termine the queuing delay in the access link. Successfully
employing an active sensory system requires a detailed
understanding of the queuing arrangements in the layers
below the IP as well as the DiffServ packet scheduling
applied by ISPs. In addition active systems create over-
head so careful attention must be taken in order to reduce
overhead.

Figure 2 shows a detail of the CMTS and modem
stacks. DSL technology uses a similarly arranged stack.
Packets flowing through the system in either direction
(upload/download) encounter a hierarchical token bucket
rate limiter used by the ISP located at IP in Layer 3. This
is the ISP rate limiter where AQM will be deployed.

As demonstrated in Nichols and Jacobson any queue
in the lower layers that is slower than the advertised
(token bucket) rate will defeat the DiffServ/AQM system
at the IP layer [25]. The FCC study Measuring Broadband
America indicates that this happens frequently especially
during peak traffic periods from 7:00 pm to 11:00 pm.
This portion of the link is called out in Figure 2 by a
dashed rectangle. We did not include the 802.2 LLC since
these layers are extremely fast and unlikely to suffer from
bufferbloat. In any case some form of traditional AQM is
still possible at the 802.2 LLC layer.

At the cable MAC, AQM activities become impossible
without a significant redesign of the protocol and a re-
assignment of layering responsibilities. AQM protocols
must be able to drop packets. Dropping frames is in
direct conflict with the MAC’s retransmission scheme.
ECN marking is preferable to dropping, however, in cases
where ECN is not implemented in every device in the
path dropping is required. Even in cases where ECN is
implemented in every device, it is impossible to guarantee
that the proper bits exist in a MAC frame to signal
an ECN mark because fragmentation could have already
occurred.

At layers below the cable MAC, dropping or otherwise
signaling the sending end to slow down is even more
improbably difficult. The Discrete Space Time Coder
(DSTC) converts MAC frames into QAM signals for trans-
mission by the Physical Media Dependent layer across the
wire. At this point concepts such as packets and end to end
signaling no longer exist and traditional AQM activities
are impossible. ASQM is our answer to these problems.

CMTS Stack Cable Modem Stack
SNMP DHCP [snmp [TeTP [oHeP [NTP [Syslog | HTTP |
uDP UDP (TCP)
Token Bucket
IP/ICMPv4/6 H IP/ICMPv4,
) DiffServ/AQM /ICMPv4/6
Active
Data Forwarding 802.2LLC Sense 802.2 LLC Transparent 802.2 LLC
Link Link Security Link Security Bridging
Cable MAC 802.3 MAC
Layer _ GapleMAC | _ _|_ CableMAC |
I Tostc DSTC '
| Layer | Upstream Layer | Upstream [
PHY Cable Cable CMCI Interface
|| cable Cable | 802.3 PHY
CMTS NSI Layer PMD PMD to/from
Interface X | PMD PMD I 'y Customer
to/from | Cable Network Coax | | Premesis
Network QAM Symbols Transmitted
«— I Over OFDMA -- AQM Resistant I >

Fig. 2. Primary Bottleneck — Cable Modem Termination System to Cable Modem Link (DOCSIS 3.1)

ASQM is an IP layer protocol that uses active sensing to
determine delay occurring in all of the queues in the lower
layers as shown in Figure 2. The active sensing mechanism
consists of packets sent from IP Layer to IP Layer.

ASQM’s sensing packets have been the subject of much
discussion and research in our laboratory. The goal is
to measure the RTT of the access link. We have tried
ICMP packets, SNMP packets and injected packets as
well as periodic sensory packets and sensory packets that
are proportionate to the flow. Each method offers trade-
offs between overhead, sensing accuracy, scalability and
feasibility. For the sake of brevity we only discuss sensory
packet injection in proportion to the flow in detail.

Our ASQM algorithm generates sensory packets by
copying a packet header from the flow, manipulating the
IP address fields, marking, timestamping and injecting
them into the stack. These sensory packets flow from the
IP layer at the modem (where they are created) to the
IP layer at the ISP router and back. Upon receiving a
returning sensory packet our ASQM algorithm generates
link RTT samples by subtracting the timestamp from the
current time. Then our ASQM algorithm generates a link
RTT estimate by smoothing the estimates according to
the calculation detailed in RFC 6928.3

Many (if not all) ISPs employ DiffServ packet scheduling
(not a substitue for AQM) in order to separate voip and
other high priority real time traffic from best effort traffic.
The high priority traffic is forwarded into the Expedited
Forwarding (EF) queue and the best effort traffic goes into
the Assured Forwarding queue (AF). The EF queue serves
low bandwidth flows such as voip and needs no AQM.
ASQM operates only on the AF queue for best effort flows.
This assures that sensory packets transmitted across the
access link always go through the correct queuing.

The next step is to find ways to reduce overhead. There

Shttps://tools.ietf.org/html/rfc6298

are two ways of doing this; reduce the size of the sensory
packet and reducing the ratio of sensory packets relative to
data packets. ASQM uses a 20 byte IP packet header with
an 8 byte timestamp. This is the smallest packet we could
design and transmitted at a ratio of one sensory packet for
every four data packets this translates into an overhead
of less than 0.5% when using 1500 byte packets and even
less when using larger MTUs. These packets are forwarded
using an iptables rule.* Smoothing is accomplished using
the TCP RTT calculation.

In our design of ASQM'’s sensory packets we have taken
a great deal of care to reduce overhead and to ensure that
the packets flow through the correct queue at the ISP. In
any case we expect the ISP to cooperate or at least not
actively seek to confuse the sensory packets. With this
cooperation in mind we can take a very accurate mea-
surement of queuing delay encountered in the access link.
The next step is to design our ASQM algorithm to take
corrective action (marking/dropping) when bufferbloat is
detected in the access link.

When the smoothed link estimate reaches a threshold
value that we call target (default 100 ms) then our ASQM
algorithm takes corrective action. The 100 ms target
queue size is a default tunable parameter. The default
target queue size value was chosen based on our own
experiments and on the default value from Nichols and
Jacobson [25]. This default value has been shown to give
good performance for a wide range of RT'Ts from 10 ms to
500 ms. ASQM’s dropping/marking activities are governed
by a control law that produces an approximately linear
slowdown from the sender. Starting with an interval of
100 ms (default) each drop interval is reduced by 1/y/n
where n is the number of marks/drops since the beginning
of marking/dropping activity. When an active sense mea-
surement less than 100 ms is received marking/dropping

4http://linux.die.net /man/8/iptables

(T @W g

Machines

ISP

Gaty
I B 1O o Fouer
VMs = = =)
=15 — i
| Wireless | | D |_ : CDN
and D . Active Sense .
<>l

Wired Users

P P CDN
Layer Layer

Fig. 3. Hardware emulation testbed

activity ceases and n is reset to zero.

ASQM’s active sensing mechanism measures round trip
queuing delay in the access link and the algorithm takes
corrective action (marking/dropping) when the queuing
delay exceeds the target threshold. ASQM is designed to
be employed in both the upload and download direction
on the best effort (AF) DiffServ queue. Using this novel
mechanism ASQM is able to remove bufferbloat from the
access link even during peak traffic hours when other
algorithms are unable to detect the bufferbloat.

V. EVALUATION METHODOLOGY
AND TESTBED

The evaluation we undertook tried to illuminate ASQMs
queue management capabilities by comparing ASQM to
popular AQM algorithms such as CoDel and PIE [25],
[27]. The goal of this evaluation was to demonstrate the
bandwidth delay tradeoffs of each algorithm both when the
Layer 2 link was providing 100% of the rated speed and
when the link is only providing 90% because of traffic. All
three algorithms performed well when the Layer 2 link was
providing 100% of the advertised speed. However, ASQM
continued to perform well even when the Layer 2 link was
only providing 90% of the advertised speed as is common
during peak usage hours.

The testbed we constructed is shown in Figure 3. The
traffic was generated by virtual user machines and CDNs
constructed from PCs running the Linux 3.2 kernel. The
traffic was generated as specified in the IETF draft AQM
Evaluation Guidelines; five repeating TCP transfers of
5MB each, one continuous TCP transfer and four HTTP
web traffic (repeated downloads of 700kB).> This traf-
fic configuration is specifically designed to investigate
bufferbloat particularly with a mix of short flows in com-
bination with long flows.

Experiments were performed in the upload (data flowing
from the users to the CDNs) as well as in the download
direction. Each experiment was run for 120 seconds with
5 experimental runs then compiled into bandwidth and
delay CDFs. Bandwidth and delay CDFs were provided
for all three algorithms in each link speed configuration
(100% and 90% of the committed speed). The experiments

Shttp://tools.ietf.org/html/draft-kuhn-agm-eval-guidelines-
00#section-3.2.4

cover a range of RTTs from 50 ms to 200 ms because this
range represents in large part the conditions that will be
found in end user access links. In any case all three of the
algorithms (CoDel, PIE and our ASQM) begin to break
down above 250 ms and become unusable by 500 ms.

The CPE routers, the modems, the CMTS and the ISP
gateway were constructed from PCs running the Linux
3.15 kernel. The modems and CMTS were equipped with
ASQM, CoDel and PIE, [25], [27]. This was done using a
Hierarchical Token Bucket (HTB) as is common in routers
from Cisco and other manufacturers.® We note that the
HTB is a packet scheduler and does not manage queue
size.

VI. EVALUATION

The goal of this evaluation was first to demonstrate that
ASQM performs on par with CoDel and PIE during non-
peak usage hours. All AQM algorithms are expected to
perform well when the link is providing 100% or more of
the rated bandwidth. Secondly we wanted the evaluation
to show that ASQM is the only algorithm that continues
to perform well when the link is providing less than 100%
of the rated bandwidth as is common during peak usage
hours.

We have performed thousands of experiments with a
large range of network factors and parameters; RTT 10-
1000 ms, bandwidth 1-50 Mbps, target queue size 10-
500 ms in the upload and download directions. In order
to demonstrate that ASQM achieves both goals we have
chosen to present two sets of graphs for each algorithm.
We have chosen to present two sets of CDFs for each
algorithm demonstrating AQM behavior during non-peak
hours (100% committed rate or more) and during peak
hours (less than 100% committed rate)

The modems in both sets of experiments were configured
to provide 8 Mbps committed rate and 16 Mbps peak
rate (using HTB borrowing). For the non-peak traffic
hours experiments we set the link up to provide the peak
rate for each modem simultaneously (48 Mbps). With
this configuration we expected to see about 15.5 Mbps
from each modem. For the peak traffic experiments we
set the link up to provide about 90% of the committed
rate for each of the three modems (21 Mbps). With this
configuration we expected to see about 6.5 Mbps from each
modem.

The CDF’s presented examine the bandwidth and delay
characteristics of each algorithm in each traffic condition.
We found that all algorithms perform well in terms of
bandwidth in both peak and non- peak traffic scenarios.
In terms of RTT all algorithms perform well in non-
peak traffic scenarios, but, only ASQM performs well
when buffering displacement occurs because of peak traffic
conditions.

Shttp://linux.die.net/man/8/tc-htb

1 1
X
; 1
0.8 i 0.8
> 06 f ! 0.6
g f :
o l {]
o 04 1 ! 0.4
I .
] "
0.2 ! : 0.2
* v 50msRTT —@—
| * 100 ms RTT = =«
1 ! 200msRTT = =4 =
0 ; ; 0
100 150 200 250 300 350

0 50
Actual RTT (milliseconds)

Fig. 4. CoDel RTT CDF (Non-Peak Hours)

A. AQM During Non-Peak Hours (100% Committed Rate
or More)

We present this series of CDFs in order to demonstrate
that our ASQM algorithm performs on par with CoDel and
PIE during non-peak traffic hours. In Figure 4, we present
the end to end delay curves for a CoDel (with default
parameters) managed link. We examined three different
RTTs from 50 ms to 200 ms. CoDel had excellent RTT
response across the range of RTTs. At 50 ms RTT CoDel’s
management kept the end to end delay within a range from
50-75 ms. At 100 ms RTT the end to end delay range was
100-125 ms and at 200 ms RTT the range was 200-225 ms.
In Figure 5, we present corresponding bandwidth curves
for these experiments.

Each link had a committed rate of 8 Mbps with a
peak rate of 16 Mbps. Since the the non-peak hours link
had enough bandwidth to supply all three modems with
their full peak rate each modem was able to develop

1 ! ! ! L1
50 ms RTT ===l o
100 ms RTT =)=« ,'
200 ms RTT = =4 = 1;
0.8 0.8
.
= 0.6 ,' . 0.6
5 ci
Q [
<)]
o 0.4 : i 0.4
b
|
o
0.2 "_'] 0.2
.]
¢ !
. Y N a4
0 0
2 4 6 8 10 12 14 16 18 20

Bandwidth (Mbps)

Fig. 5. CoDel Bandwidth CDF (Non-Peak Hours)

1 h 1
0.8 ¥ 1 0.8
: {
z 0 : 0.6
¥ .
Q {
9 {
o . 0.4
)
+
. 0.2
v 50msRTT —@—
' 100 ms RTT == ¥t
! 200msRTT = e =
i ; 0
0 50 100 150 200 250 300 350

Actual RTT (milliseconds)

Fig. 6. PIE RTT CDF (Non-Peak Hours)

about 15.5 Mbps measured bandwidth. They did not
reach 16 Mbps because of overhead from Ethernet, IP and
Transport headers. When the RTT was 50 ms the CoDel
managed link developed full bandwidth. However as the
RTT increased the bandwidth decreased slightly. This is
because CoDel was keeping the queue size at about 100 ms
(the default) which is slightly too small for the 200 ms flow.
In Figure 6, we present the end to end delay curves for

a PIE managed link across a range of RTTs (50-200 ms).
PIE also had an excellent RT'T response. It kept the actual
RTT range experienced by the link to about 50-75 ms for
a 50 ms RTT link, 100-125 ms for a 100 ms RTT link and
200-225 ms for a 200 ms link for 90% of the measurements.
In Figure 7, we present the bandwidth curves for PIE.
The CDF curves show that PIE delivered similar band-
width performance as CoDel at 50 and 100 ms RTT. How-
ever, PIE delivered slightly less bandwidth than CoDel
at 200 ms RTT. This shows that PIE was slightly more

1 + -1
50 ms RTT efi
100 ms RTT = <=« N
200 ms RTT = =4 = .
0.8 . 0.8
4
> 06 3 0.6
2 :
©
Q .
9 .
o 04 hd 0.4
+
02 * 02
* /
. /
P
0 T 0
2 4 6 8 10 12 14 16 18 20

Bandwidth (Mbps)

Fig. 7. PIE Bandwidth CDF (Non-Peak Hours)

1 1
0.8 1 ! 0.8
+
> 06 ! . 0.6
= X
= # ; ¢
©] .
8 '
& 04 f t 0.4
P
0.2 4 0.2
! 50ms RTT il
f 100 ms RTT = =«
200 ms RTT = =4 =
0 ; ; 0
0 50 100 150 200 250 300 350

Actual RTT (milliseconds)

Fig. 8. ASQM RTT CDF (Non-Peak Hours)

aggressive with its dropping policy. In any case, both
of these algorithms deliver excellent queue management
characteristics across a wide range of RTTs.

In Figures 8 and 9, we present the bandwidth and
delay curves for ASQM. ASQM also delivered excellent
RTT response as shown in Figure 8 (although not quite
as good as CoDel and PIE). ASQM allowed the actual
measured RTT to exceed the link RTT by only as much
as 50 ms. In Figure 9, we present the bandwidth curves
for ASQM. ASQM achieved slightly more bandwidth than
either CoDel or PIE across the range of link RTTs (50-
200 ms). This is because ASQM is slightly less aggressive
than CoDel or PIE in its dropping policy.

These bandwidth and delay CDFs show that all three
algorithms are fully capable of delivering excellent queue
management during non-peak traffic hours when the link is
capable of providing 100% or more of the rated bandwidth.
Each algorithm performs slightly better or worse than

1 1 1 1 |
50 ms RTT
100 ms RTT == ¥«
200 s RTT = =4 =
0.8 0.8
> 06 0.6
= L
Q
kS ’
o [
o 04 ! 0.4
-
+
.
0.2 : 0.2
.
’
R P ad
T T+ AR ES | 0

2 4 6 8 10 12 14 16 18 20
Bandwidth (Mbps)

Fig. 9. ASQM Bandwidth CDF (Non-Peak Hours)

1 1
L4
7’
0.8 /i 0.8
. !
z 06 oS 06
3 / ‘
g K ’I
<} ,://
o 04 5 0.4
- e
7
Ao
4
0.2 ot 0.2
> 50 ms RTT
100 ms RTT == = =«
200ms RTT © « = «
0 +=—3 : : —L 0

400 600 800 1000 1200 1400

Actual RTT (milliseconds)

0 200

Fig. 10. CoDel RTT CDF (Peak Hours)

the others in given scenarios. These slight differences are
insignificant to the end user. As expected each of these
three algorithms performed well in the non-peak traffic
scenario and ASQM is on par with the others.

B. AQM During Peak Hours (Less than 100% Committed
Rate)

We present this series of CDFs in order to demonstrate
that our ASQM algorithm continues to perform excellently
during peak traffic hours when CoDel and PIE cannot. In
order to demonstrate this performance we designed a series
of experiments designed to emulate peak traffic periods in
ISP networks. All three modems had a committed rate
of 8 Mbps and a peak rate of 16 Mbps. The access link
however was only capable of delivering 21 Mbps (about
90% of the committed rates for all three modems) as
is common during peak traffic hours from 7:00pm to
11:00pm. This caused bufferbloat displacement defeating

1 1
0.9 0.9
0.8 0.8
0.7 0.7
> 06 0.6
g 0.5 0.5
<}
o 04 0.4
0.3 0.3
0.2 0.2
)k 50 ms RTT e==fi
0.1 %3 100 ms RTT = ¢=- T 0.1
200 ms RTT = =de =
0 T T T T T 0

2 4 6 8 10 12 14 16 18 20
Bandwidth (Mbps)

Fig. 11. CoDel Bandwidth CDF (Peak Hours)

2y .
Vs 0.8

0.8 /{-
.l
j 0.6

0.6 A .
” 1]
e
'4 -'
O 0.4

0.4

Probability
)

0.2 / ,-" 0.2

. 50 ms RTT
v, 100 ms RTT o= = =«
y 200ms RTT = = = =

400 600 800 1000
Actual RTT (milliseconds)

0 200 1200 1400

Fig. 12. PIE RTT CDF (Peak Hours)

PIE and CoDel’s ability to manage the queue size. ASQM
was able to manage the queue size regardless of the
bufferbloat displacement.

In Figures 10 and 11, we present the bandwidth delay
curves for CoDel. Figure 10 shows that CoDel was unable
to manage the queuing delay in this scenario. The actual
RTTs varied widely from 100 ms to about 1500 ms. This is
because bufferbloat displacement caused the queuing delay
to move into the link where CoDel cannot detect it. Even
though the real RTT had skyrocketed to 1500 ms CoDel
still did not take corrective action.

Figure 11 shows the bandwidth curves for CoDel. The
bandwidth is a lot more variable than in the non-peak
traffic hours experiments where CoDel was able to control
the queue. This is symptomatic of an uncontrolled queue.
Each modem builds up the queue until full and then
a massive number of packets are dropped causing the
bandwidth of that particular modem to crash. When this

1 1
0.9 0.9
0.8 0.8
0.7 0.7
o
> 06 . 06
- ¥/
% 05 d 05
£ o4 . 0.4
B +I/ B
ol
0.3 * 0.3
0.2 A 0.2
50 ms RTT e
0.1 100 ms RTT = ¢=- T 0.1
¥ 200 ms RTT = =4 =
0 f f f 0

8 10 12 14 16 18 20
Bandwidth (Mbps)

2 4 6

Fig. 13. PIE Bandwidth CDF (Peak Hours)

1 1
0.8 } [0.8
; +
> 06 ! ' 0.6
= X *
8 ! .
g : '
o 04 l* * 0.4
SF
0.2 + 0.2
! 50mMs RTT el
i 100 ms RTT == <=«
200 ms RTT = ode =
0 ; ; 0
0 50 100 150 200 250 300 350

Actual RTT (milliseconds)

Fig. 14. ASQM RTT CDF (Peak Hours)

happens the other two modems grab the free bandwidth
allowing their bandwidth to temporarily surge.

Figures 12 and 13 show a similar story for PIE. The
actual measured RTTs varied widely from about 200 ms
to about 1200 ms. Like CoDel, PIE was unable to manage
the delay effectively when buffering displacement occurred.
Actual RTT reached 1200 ms without PIE taking correc-
tive action. We present the bandwidth curves for PIE in
Figure 13. Like the bandwidth curves for CoDel during
peak traffic hours PIE’s bandwidth curves had a lot of
variability. The cause of this variability is that PIE’s con-
trol mechanism is not taking corrective action to control
the queue.

Figures 14 and 15 show the bandwidth delay CDFs for
ASQM during peak traffic hours. ASQM’s active sensing
mechanism detected queuing delay across the link regard-
less of the buffering displacement. Because of this ASQM
took corrective action when the queuing delay exceeded its

1 T—Q—.—.—.—Q—“—.—‘—‘—fo 1
0.8 0.8
> 06 ; 0.6
5 i
o L}
9 .
& 04 : 0.4
$
0.2 " 0.2
) 50 Ms RTT el
’ 100 ms RTT o= <=
o ggusla* 200 ms RTT = =4 = 0

2 4 6 8 10 12 14 16 18 20
Bandwidth (Mbps)

Fig. 15. ASQM Bandwidth CDF (Peak Hours

target value. Figure 14 we see that ASQM’s delay curves
were virtually unaffected by the buffering displacement.
Figure 15 shows the bandwidth curves for ASQM during
peak traffic hours. The bandwidth is stable at the full
available rate because ASQM was controlling the queuing
delay.

This evaluation fulfilled both of its goals. We have shown
that all three algorithms perform well in terms of band-
width and RTT during non-peak traffic hours when the
access link provides 100% or more of the rated bandwidth.
Additionally we have shown that during peak traffic hours
when bufferbloat displacement commonly occurs that the
other algorithms are unable to control RTT. Of the three
only ASQM is able to provide a stable bandwidth at the
full available rate with a managed RTT when bufferbloat
displacement caused by peak traffic hours occurs.

VII. SuMMARY, CONCLUSIONS AND FUTURE WORK

In this work we have presented ASQM. ASQM is a
new class of AQM algorithm using an active sensing
mechanism to detect queuing delay across the entire access
link. Traditional AQM algorithms can only detect queuing
delay in the IP layer. We have presented experiments
demonstrating how ASQM is able to manage queuing
delay even when bufferbloat displacement occurs during
peak traffic hours.

We have conducted thousands of experiments (besides
the few presented in this paper). We have found that it is
irrelevant how much less than 100% of the committed rate
is provided. Even the slightest bit less than 100% causes
bufferbloat displacement and defeats PIE and CoDel’s
ability to sense bufferbloat. We chose to present a range of
RTTs from 50 ms to 200 ms. We chose these values because
they provide a good range around the 100 ms target delay.
Also we wanted to avoid the loss of bandwidth that occurs
in all algorithms at larger delays. This is a well known
problem in the AQM field called the Long Delay Flow
problem.

PIE and CoDel both purport an operating range of
10 ms to 500 ms, ASQM’s operating range is about the
same. However, all three algorithms begin losing band-
width due to the Long Delay Flow problem at around
250 ms. After 500 ms the algorithms become unusable
due to severe bandwidth loss. We reserve this problem for
future work.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router Buffers.
SIGCOMM, 34(4):281-292, Aug. 2004.

[2] S. Bauer, R. Beverly, and A. Berger. Measuring the State of ECN
Readiness in Servers, Clients, and Routers. In Internet Measurement
Conference, pages 171-180, 2011.

[3] J. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algo-
rithms. Networking, 5(5):675—689, Oct. 1997.

[4] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer,
R. Braden, B. Davie, J. Wroclawski, and E. Felstaine. A Framework
for Integrated Services Operation over Diffserv Networks. RFC 2998,
Nov. 2000.

[5] L. Brakmo and L. Peterson. TCP Vegas: end to end congestion
avoidance on a global Internet. Communications, 13(8):1465-1480,
Oct. 1995.

(7]
8]
9]

(10]

(11]

(12]

(13]

[14]

(15]
[16]
(17]
(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

C. Caini and R. Firrincieli.
heterogeneous networks.
ing, 22(5):547-566, 2004.
N. Dukkipati, M. Mathis, Y. Cheng, and M. Ghobadi. Proportional
rate reduction for TCP. In IMC, pages 155-170, 2011.

K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno
and SACK TCP. SIGCOMM, 26(3):5-21, July 1996.

W. Feng, K. G. Shin, D. D. Kandlur, and D. Saha. The BLUE
active queue management algorithms. Networking, 10(4):513-528,
Aug. 2002.

S. Floyd, R. Gummadi, S. Shenker, and Others. Adaptive RED: An
algorithm for increasing the robustness of RED’s active queue man-
agement. Preprint, available at http://www. icir. org/floyd/papers.
html, 2001.

S. Floyd and V. Jacobson. Random early detection gateways for
congestion avoidance. Networking, 1(4):397-413, Aug. 1993.

S. Floyd and V. Jacobson. Link-sharing and resource management
models for packet networks. Networking, 3(4):365-386, Aug. 1995.
C. Fu and S. Liew. TCP Veno: TCP enhancement for transmission
over wireless access networks. Communications, 21(2):216-228, Feb.
2003.

T. Hamann and J. Walrand. A new fair window algorithm for ECN
capable TCP (new-ECN). In INFOCOM, volume 3, pages 1528—
1536, Mar. 2000.

M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate
Control (TFRC): Protocol Specification. RFC 5348, Sept. 2008.

S. Hassayoun, J. Iyengar, and D. Ros. Dynamic Window Coupling for
multipath congestion control. In ICNP, pages 341-352, Oct. 2011.
D. Hayes and G. Armitage. Revisiting TCP Congestion Control
Using Delay Gradients. In Networking, volume 6641 of Lecture Notes
in Computer Science, pages 328-341. Springer Berlin Heidelberg,
2011.

M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda. Is it still possible to extend TCP? In IMC, pages 181
194, 2011.

R. Jain. Design and implementation of split tcp in the linux kernel.
PhD thesis, 2007.

W. Kim and B. G. Lee. FRED fair random early detection algorithm
for TCP over ATM networks. Electronics Letters, 34(2):152-154,
Jan. 1998.

M. Kiihlewind, S. Neuner, and B. Trammell. On the State of
ECN and TCP Options on the Internet. In Passive and Active
Measurement, pages 135-144, 2013.

S. Kunniyur and R. Srikant. Analysis and design of an adaptive
virtual queue (AVQ) algorithm for active queue management. In
SIGCOMM, pages 123-134, 2001.

S. Liu, T. Ba\csar, and R. Srikant. TCP Illinois: a loss and delay-
based congestion control algorithm for high-speed networks. In
Performance Evaluation Methodolgies and Tools, 2006.

S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang. TCP
westwood: Bandwidth estimation for enhanced transport over wire-
less links. In Mobile Computing and Networking, pages 287—297,
2001.

K. Nichols and V. Jacobson. Controlling queue delay.
Communications, 55(7):42-50, July 2012.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
Reno Performance: A Simple Model and Its Empirical Validation.
Networking, 8(2):133-145, Apr. 2000.

R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg. PIE: A lightweight control scheme to
address the bufferbloat problem. In High Performance Switching
and Routing, pages 148-155, July 2013.

K. Ramakrishnan, S. Floyd, and D. Black. The addition of explicit
congestion notification (ecn) to ip. RFC 3168, Sept. 2001.

R. Stewart and C. Metz. SCTP: new transport protocol for TCP/IP.
IEEE Internet Computing, 5(6):64—69, 2001.

D. Stiliadis and A. Varma. Efficient fair queueing algorithms for
packet-switched networks. Networking, 6(2):175-185, Apr. 1998.

I. Stoica, H. Zhang, and T. Ng. A hierarchical fair service curve algo-
rithm for link-sharing, real-time, and priority services. Networking,
8(2):185-199, Apr. 2000.

J. Sundararajan, D. Shah, M. MelAdard, S. Jakubczak, M. Mitzen-
macher, and J. Barros. Network Coding Meets TCP: Theory and
Implementation. Proceedings of the IEEE, 99(3):490-512, Mar.
2011.

K. Tan, J. Song, Q. Zhang, and M. Sridharan. @A Compound
TCP Approach for High-Speed and Long Distance Networks. In
INFOCOM, pages 1-12, Apr. 2006.

A. Tang, J. Wang, S. Hegde, and S. Low. Equilibrium and Fairness
of Networks Shared by TCP Reno and Vegas/FAST. Telecommuni-
cation Systems, 30(4):417-439, 2005.

C. Villamizar and C. Song. High Performance TCP in ANSNET.
SIGCOMM, 24(5):45-60, Oct. 1994.

TCP Hybla: a TCP enhancement for
Satellite Communications and Network-

ACM

