
Developing a Traffic Classification Platform for

Enterprise Networks with SDN: Experiences &

Lessons Learned.

Bryan Ng Member, IEEE Matthew Hayes Winston K.G. Seah Senior Member, IEEE

School of Engineering & Computer Science

Victoria University of Wellington

Wellington, New Zealand

Abstract—Software Defined Networking (SDN) is an innovative
approach to networking architecture that opens up avenues to
create a whole new class of networking functionality. While data
centre networks are steadily adopting the SDN approach with
considerable success, other areas of networking such as network
access control, load balancing and traffic classification remain
nascent. Traffic classification in SDN is relatively experimental
and attempts for SDN traffic classification to become a viable
solution for enterprise networks require additional investigation.
This paper reports on the practical experiences and lessons
learned while developing an SDN based traffic classification
platform for an enterprise network. We use the platform to
demonstrate the feasibility of SDN based traffic classifiers by
evaluating against a set of desired outcomes. We make note of
the design choices using the currently available technologies that
may be helpful to networks operators considering deploying their
own solution. We conclude the paper with suggested changes to
better address limitations for software traffic classification that
will remove the need for workarounds with future versions of
OpenFlow.

Index Terms—SDN, Traffic classification, QoS.

I. INTRODUCTION

Traffic classification is the identification and linking of

packet flows to traffic types. It serves as a foundation for a

wide range of activities in networking, from network man-

agement to network security, from quality of service (QoS)

to traffic engineering, from network analytics to big-data. In

this context, the objects to classify are network traffic flows,

which consist of sequences of packets exchanged between sets

of endpoints, communicating over networks.

In this paper we are are concerned with traffic classification

in enterprise networks. An enterprise network is a private net-

work dedicated to carrying data communications for a single

organisation traversing a public infrastructure. An enterprise

network may have thousands, if not millions of packets in

transit at any given moment, so it is a non-trivial exercise to

identify the type of individual packets. The classification is

based on different information of the traffic flows, such as

port numbers, application payloads, and statistical features of

the flows.

Traditional network traffic classification schemes, including

port-based and payload-based classifications, rely on direct

inspections of the network packets. For example port-based

classification scheme inspects the packet headers, it examines

the source and destination port number fields in the transport-

layer (i.e., TCP and UDP) headers. The classifier identifies the

application protocols according to the registered port number

list maintained by the Internet Assigned Numbers Authority

(IANA). Well known examples include port 80 is used for Web

traffic (HTTP) and port 21 is used for file transfers (FTP). This

approach is computationally efficient as it involves only simple

access to the to the header level of packets and fixed-offset

searches through a sorted integer list. However, it quickly

becomes untenable for network administrators to write con-

figurations matching per-port, per-device classification rules

with the increasing diversity in enterprise networks supporting

different devices, applications and capacity constraints.

While a broad range of academic papers cover traffic

classification, there is a paucity of papers addressing the

unique challenges of traffic classification in an enterprise

environment, with the notable exception of [1], [2]. The lack

of focus on enterprise networks from the academic community

may be due to the closed nature of networking systems used

by many enterprises, and commercial privacy concerns that

prevent researchers from being able to get sharable traces

[3]. Additionally, the mechanics of enterprise networks, where

many parallel paths can exist, present challenges to obtaining

representative packet captures, as noted in [4].

A. Challenges in enterprise networks

The advent of the Internet of Things (IoT) poses a grow-

ing challenge to effective traffic classification in enterprise

networks. IoT is a fundamental change whereby a massive

and diverse range of objects are becoming network address-

able. This may be the networking of previously unconnected

electronic devices in addition to proliferation of embedded

networking functionality into previously non-networked items

(e.g. signage, building structures, and clothing). It is estimated

that the number of Internet-connected devices will grow from

approximately 2.5 billion in 2010 to between 50 and 100

billion by 2020 [5].

Scalable and accurate traffic classification is a difficult

problem because many enterprise network operators who areISBN 978-3-901882-68-5 c© 2015 IFIP



interested in QoS do not know all the applications running on

their network [6]. Port-based classifiers are increasingly out-

of-favour with the advent of IoT because newer applications

may not have a registered port number, while other applica-

tions deliberately hide traffic within well known port numbers.

Moreover, with the trend of bring-you-own-device (BYOD)

picking up, the number of networked devices in an enterprise

will surely grow significantly as new uses are found for the

services that they provide. A solution is required that at least

partially automates traffic classification configuration so that

organisations can efficiently and quickly apply and monitor

traffic classification at a policy level, without having to make

configurations on a per-flow, per-device or per-port basis.

B. Software defined networking

In this paper, the solution to traffic classification chal-

lenges in enterprise networks is premised on software defined

networking (SDN). It separates the forwarding and control

functions of network forwarding elements, making it possi-

ble to logically centralise control and apply a programmatic

approach to the operation of a network. The programmatic

approach facilitates the move from port and device based

traffic classification to a less error prone approach such as

the use of policy or higher level abstractions to deal with

challenges in enterprise networks.

Since its release, the SDN scene has experienced substantial

growth in the number of projects and is being extensively

investigated for various network functionalities such as secu-

rity, quality of service (QoS) etc. The logical centralisation of

network control in SDN gives rise to innovation opportunities

not afforded by discrete monolithic network architecture. For

instance, it becomes possible to have a network–wide view

of the network flow state. Network–wide awareness of flows

in monolithic networks requires bespoke solutions and/or use

of identifiers carried within or around packets. Examples of

the latter include use of the differentiated services field in IP

packet headers [7].

In the SDN architecture, the controller has a logically

centralised view of the flow, removing the requirement to

carry such administrative information in packets. This gives

administrators the ability to write applications (or define

policies) that leverage network–wide flow information and

simultaneously creating a new space for innovation. SDN

may also be able to assist with the prevailing problem in

traffic classification for enterprise networks where privacy

considerations prevent enterprise network traffic from being

studied. A possible solution is to supply the analysis system to

enterprises to run themselves, with only the resulting analytical

data shipped back to the researchers [3]. This ensures that the

research workers have no direct access to potentially private

network data. SDN, where deployed on production networks,

could allow researchers to construct systems that carry out

traffic analysis without any requirement to install physical

hardware. The system can be implemented as additional soft-

ware on the SDN controller layer.

C. Contributions

This paper will discuss the development and deployment

of a traffic classification platform using SDN at Victoria

University of Wellington (VUW). The platform development

was built with openly available SDN controllers and com-

mercially available commodity hardware. To that end, this

paper is a guide to network operators wanting to deploy

traffic classification in SDN today and not a treatise on traffic

classification algorithms or performance.

It should be clear that SDN is no panacea for the problems

and challenges of today’s networks. As a still developing

technology, SDN has limited support for certain features,

which may be desirable, for traffic classification in enterprise

networks. Our first contribution is identifying the strengths of

SDN for traffic classification and reflect upon the inertia of

enterprise networks adopting SDN. For example, connecting

remote switches with two separate links (control path and

data path) per switch may not make economical sense for

enterprises with thousands of remote switches.

Secondly, we show how to support traditional traffic classi-

fication based on SDN principles highlighting the advantages,

challenges faced and lessons learned during the development

of the traffic classification platform. We have found that

SDN principles have varying degrees of benefits for different

traffic classification methods. Identity classification was found

to benefit immensely from centralised identity management

conferred by SDN while static classification benefits least. A

discussion on the extensions supporting traffic classification

and how they may appear in future developments of SDN is

given.

The remainder of this paper is organized as follows; Section

II describes the key concepts underlying the traffic classifica-

tion platform built on SDN and the considerations that went

into the design. Section III presents results on the functional

performance while Section IV details the lessons learned

including security issues and the steps that can be taken to

address them. Lastly section V provides a conclusion.

II. SOFTWARE DEFINED NETWORKING FOR TRAFFIC

CLASSIFICATION

Classifying traffic in a large corporate or enterprise network

is a complex and time-consuming task. As the network consists

of numerous discrete devices, each with multiple flows, it is

clear that a more efficient and responsive framework should be

made available to network operators. However, existing traffic

classification (TC) mechanisms are closed and tightly bound

to vendors implementations. Extensibility is next to zero as

these devices are closed, propriety units that limit innovation.

Where many areas of computer services have evolved, the

network has not – until now. The closed design of networking

elements such as switches and routers is being challenged by

OpenFlow [8], which is being increasingly accepted by both

industry and academia. As an open specification, OpenFlow

can be customised to analyse flow features in addition to

specifying forwarding rules to switches. Therefore it is the



TABLE I
DESIGN CONSIDERATIONS FOR ENTERPRISE NETWORKS

Requirement Description Rationale

Selective

determinism
Ability to set deterministic classifiers

Operators require consistent traffic classification behaviour for specified traffic types, so that
actions (i.e. QoS treatment) can be performed on matching flows with a high degree of
predictability.

Agility
Ability to classify unexpected traffic
flows

A key tenet of the problem statement is that there are now too many flow types on the network
for the operator to specify them all. Traffic classification must be able to intelligently classify
unexpected flows.

Application

awareness

Can classify dynamic flows based on
knowledge of application behaviour

Can appropriately classify related flows started from an initial known protocol. Some applications
start extra dynamic connections (i.e. NFS, SIP starts RTP, etc.).

Identity

awareness

Support for classification based on
endpoint identity

When devices were static it was relatively simple to write classification rules based on IP
subnet/supernet as a surrogate for identity. With the proliferation of portable devices and wireless
connectivity, IP addresses or subnets are no longer tied to a particular device and thus are not a
good indicator of identity. For these reasons, operators desire a method to include other elements
of identity in traffic classification rules.

Timeliness

Classifications are made within a
short period of time, ideally before a
large flow has had time to ramp up.

Timely classification is required for online consumers of traffic classification data, such as QoS
and traffic engineering. There is no point applying QoS treatment to a flow if the classification
data is not available until after the flow has finished.

most suitable enabler for demonstrating traffic classification

in SDN.

A. Design considerations

Enterprise networks are heterogeneous; it is not possible to

specify a standard example. The two points for consideration

pertaining to traffic classification in enterprise networks are: (i)

traffic classification requirements for enterprise networks and

(ii) alignment of the requirements with the SDN paradigm.

Requirements are thus surmised from common conditions that

may exist in addition to the anecdotal experiences of the

authors. We deduce that operators of enterprise networks are

likely to have functional traffic classification requirements as

per Table I.

Based on the rationale for the requirements, we argue for a

policy-based traffic classification platform as it has advantages

of flexibility and human-readability with no hindrance ex-

pressing the requirements set out in Table I. Other approaches

we have considered for addressing enterprise requirements for

traffic classification are rule-based approaches [9], [10] and

ontology-based approaches [11], [12] which have merits in

other domains of application.

B. Policy based classification for Enterprise networks

The system we are developing codenamed “nmeta”[13]

(network metadata) leverages SDN by classifying new flows

at the SDN controller layer, thus exploiting the distributed

processing power and software flexibility that SDN affords.

With the flexibility and programmability through SDN, we

have decided to perform classification at the controller and

the classifiers may be a combination of both software classi-

fiers and hardware classifiers. Once a flow is classified, flow

entries are installed to the forwarding tables (of individual

switches) for efficient switching without further recourse to

the controller.

This reactive approach that we adopt facilitates network–

wide flow visibility and application of policy to classifier con-

figuration. The nmeta platform supports multiple classification

methods, and can thus be described as a multiclassifier. Clas-

sifiers can be specific (return a Boolean describing whether or

not a match is made) or general (return parameters describing

what they classified). Classifiers may be combined in a logical

structure through use of a policy.

C. Modules for Traffic classifier

Nmeta employs a modular design, which decomposes major

tasks into separate modules, with public interfaces and hidden

implementation. This standard software design principle im-

proves maintainability of code, since changes within a module

are less likely to have unforeseen consequences outside the

module.

Components of nmeta are grouped into regions that share

a common purpose. The nmeta Core region (refer to the

orange shaded area in Figure 1) manages communications

with switches (i.e. processing of packet-in and switch mes-

sages, adding flows etc.) via OpenFlow and handles incoming

Representational State Transfer (REST) API calls via the Ryu

Python Web Server Gateway Interface (WSGI) libraries. There

is only one module in this region, nmeta.py, which reads in the

main configuration file on initialisation and processes Packet-

in messages sequentially through the packet in handler

function.

The Traffic Classification region (refer to the blue shaded

area in Figure 1) classifies packets against a traffic classifica-

tion policy and returns results to nmeta Core. The tc policy.py

module reads in a traffic classification policy on initialisation,

evaluates incoming packets against the policy and sends them

to the appropriate classifier module (if required). A sample

snippet of the policy is shown in Figure 2, and as pointed out

earlier in Section II-B, it is intuitive, readable and hides details

of the classifier implementation. The sample snippet shows



module: nmeta.py

class: NMeta

module: tc_policy.py

class: TrafficClassificationPolicy

 

call tc_policy.check_policy 

check_policy

loop through policy rules:

if (_check_match) then return actions 

_check_match

return any actions

module: flow.py

class: FlowMetadata

Make forwarding decision call flow.metadata

module: tc_payload.py

class: PayloadInspect

Packet-In Packet-Out
Modify Flow 

Entry

module: tc_statistical.py

class: StatisticalInspect

module: tc_identity.py

class: IdentityInspect

module: qos.py

class: qos

pass packet

Packet sent to switch Packet sent by switch

Ryu SDN Controller

update_flowmetadata

OpenFlow

lldp_in

_sys_identity_table

check_identity

_tc_policy

check_policy

_qos_policy

Passed a set of Flow Actions. Check if 

against QoS policy rules return any 

treatment action

flow table

LLDP packet

_check_policy_rule

_fm_table

modify flow, 

send packet

check_statistical

Metadata Consumer - QoS
_nic_identity_table

Traffic Classification

Flow Metadata

module: tc_static.py

class: StaticInspect

check_static

ip4_in

IPv4 packet

_fcip_table _fcip_table

table 

maintenance

class: RESTAPIController list_flow_table

get_fm_table

_packet_in_handler 

REST API Calls:
nmeta/flowtable/

nmeta/identity/nictable/

nmeta/identity/systemtable/

maintain_fm_table

nmeta

Core list_identity_nic_table

list_identity_system_table

get_identity_nic_table

get_identity_system_table

return any modify 

flow entry

pass packet, 

forwarding, actions

Forwarding

<specific classifier>

module: controller_abstraction.py add_flowpacket_out

maintain_identity_tables

maintain_fcip_tablemaintain_fcip_table

Key function

table

wsgi

<specific classifier>

check_payload

module

(class)

Region

basic_switch

Fig. 1. Traffic classification architecture.

the specification of two policies: (i) an identity classification

policy with matching conditions and corresponding actions

and (ii) the statistical classification using linked policies (“Pol-

icyRule 0” followed by “PolicyRule 1”).

Currently, four classifier modules tc static.py, tc identity.py,

tc payload.py and tc statistical.py contain the classification

codes. The Flow Metadata region (refer to the purple shaded

area in Figure 1) is called after forwarding decisions are made

and communicated to the switches via OpenFlow messages.

The Flow Metadata region stores the enriched metadata in

a Python data structure called a dictionary, and controls the

installation of flow match entries to switches. The Metadata

Consumer - QoS region (refer to the red shaded area in

Figure 1) is a simple stub that provides a QoS treatment (queue

assignment) based on matching a QoS flow metadata tag. Note

that QoS treatment is not in scope for this paper so this region

has been described as just the bare minimum required to run

the test use cases in the next section. All communication from

the traffic classification region to the flow metadata region

is via the nmeta core region. This rule is to ensure that the

forwarding module has visibility of traffic classification status

messages.

D. OpenFlow

OpenFlow is a well-known protocol for establishing and

maintaining control of the data plane. OpenFlow was chosen

for the role of SDN protocol in the design due to its current

popularity, large development community and non-proprietary

nature. In the OpenFlow architecture, simple traffic classifiers,

called “flow entries”, are installed onto switches. A flow

entry contains match fields which vary depending on the

OpenFlow version. Where implemented in hardware, flow

entry classifiers have the advantage of being relatively fast,

but may have capacity and capability constraints [14]. As they

occur within the data plane, their capabilities are dependent on

the particular switch implementation, and they cannot directly

leverage network knowledge outside of the switch view.

Hardware switch classifiers are relatively fast, but their

capability is often limited due to constraints of the ASICs

on which they are built. Software switch classifiers may be

slower than their hardware equivalents, but are likely to have

better feature support as their development is not dependant

on support in silicon. Software classifiers are slower again

due to the time taken to send packet(s) to the controller;

however the benefits of software-development freedom, along

with a network–wide view of flows, are judged to outweigh the



Fig. 2. Snippets of policy specification in YAML.

performance downsides for traffic classification in enterprise

networks. As mentioned earlier, all flows are classified initially

by SDN controller classifiers and fine-grained classifiers are

installed to switches once classification determinations are

made.

III. FUNCTIONAL EVALUATION & PERFORMANCE

ANALYSIS

This section details the functionalities of two implemented

classifiers and discusses a number of limitations encountered

during the implementation. The discussion herein covers op-

tions for addressing these limitations and describes the impact

on traffic classification. The functional evaluation is aimed

at validating the classifiers with respect to desired outcomes

as part of a software development life cycle. It is by no

means a comprehensive evaluation of traffic classification

in SDN. Tests were conducted on both OpenVswitch and

commodity hardware, however, there was limited support for

QoS functionality in the commodity hardware we are working

with. Therefore we have decided to discuss the results from

experiments using OpenVswitch. The discussion on comparing

results from OpenvSwitch and hardware switches is deferred

to the next section.

A. LLDP identity classification

The identity classification module records the identity

of endpoints that broadcast Link Layer Discovery Protocol

(LLDP) messages. Identity classification can be set to match

against LLDP attributes values for example chassisid or sys-

temname. The match can be a partial match defined as a

regular expression or matching through Python’s in operator.

Identity information is stored in two dictionaries, one for

Network Interface Controller (NIC) identities and the other

for system identities. The system dictionary references entries

in the NIC dictionary and vice versa.

Two dictionaries are required since an endpoint may have

multiple network interface cards (NICs). LLDP Packet-in

events are used by the identity module to accumulate system

information and likewise, IPv4 Packet-in events are used to

accumulate MAC address to IPv4 address linkages in the NIC

dictionary. Matching against a chassisid or systemname value

requires first checking if the value is present in the system

dictionary. If present, the referenced NIC dictionary entry is

retrieved and the packet is compared to see if it matches

against the MAC or IPv4 values. If it does, a “True” value

is returned otherwise a “False” value is returned and the

classification is complete.

Fig. 3. Virtual lab topology.

1) Response times comparison: The test based on the

scenario in Figure 3 is designed to demonstrate that the

identity classifier can classify traffic to provide differential

treatment of connectivity to/from a particular endpoint. Traffic

classification is configured to treat as high priority any con-

0.1

1

10

100

13:24:14 13:24:58 13:25:41 13:26:24 13:27:07

L
o

a
d

 T
im

e
 (

se
co

n
d

s)
 - 

L
o

g
1

0
 S

ca
le

 

Time 

Test Identity-1 

pc1.dev.example.com

(default)

pc2.audit.example.com

(high priority)

Iperf conges!on in 

default priority queue 

pc1 page load !mes increase 

to a maximum of 11.09 

seconds due to Iperf 

conges!on in same (default) 

queue 

pc2 page load !mes are 

unaffected by the Iperf 

conges!on 

Fig. 4. Successful identity classification leads to lower response time.



nections to or from hosts that have an LLDP system name

of *.audit.example.com. Both Client 1 and Client 2 make

regular HTTP connections to Server / Controller on tcp-

80 and retrieve the same HTML object. Timing results are

recorded for both Client 1 and Client 2.

In order to demonstrate the functional performance with

different traffic classifiers, it is necessary to estimate the

baseline performance. In our tests, this is simply measuring the

load time before ramping up the Iperf traffic generator and no

classification policy is enforced. After establishing a baseline,

Iperf from Server / Controller to Client 1 and Client 2 is used

to congest the link in the default class for a sustained period.

Iperf is then terminated and the test runs for a further period

to recheck baseline. The desired outcome is – the load times

of HTTP connections from Client 2 (pc2.audit.example.com)

to the server are not adversely affected by the Iperf congestion

of the link.

Client 1 with LLDP system name pc1.dev.example.com

is not matched by the identity classification. Client 2 has

an LLDP system name of pc2.audit.example.com and has

its connections classified and treated as high priority based

on the configured wildcard match for *.audit.example.com.

The response time to fetch the HTML object is shown in

Figure 4. The base load time for both Client 1 and Client 2

is approximately 0.18s. As the Iperf congestion builds up, the

load time for Client 2 significantly increases while the load

time for Client 1 remains unaffected. Upon terminating Iperf,

the load times for both Client 1 and Client 2 revert to the

baseline load time observed before congestion was introduced.

The load time differentiation between Client 1 and Client 2

clearly shows the successful classification based on endpoint

identity classification.

2) Discussion: For identity classification it is desirable to

have the corresponding flows for the return traffic classified

identical to the forward flow. However, flows are tradition-

ally defined with directionality and the same occurs when

OpenFlow flows are created unless packets are broadcasts or

multicast. For identity classification, the endpoint identities

do not change with the flow direction. This characteristic of

identity classification presents an opportunity for the SDN

based approach.

In our implementation, the use of wildcard match on identity

helps operators dealing with scale issues for traffic classifica-

tion. Traffic differentiation is applied in both directions on the

matched flows, including on the switch not directly connected

to the identified device. This simplification eliminates errors

due to omissions in reverse path classifications and reduces

the number of matching criteria an operator needs to specify.

This ability to make a system wide determination and apply

it to all elements on the traffic path is an advantage conferred

by SDN.

B. Statistical classification

Nmeta defines a bi-directional TCP flow as a 4-tuple of

ip a, ip b, tcp port a, tcp port b. Packets can be matched

as a flow in either direction as long as the TCP port num-

bers pair correctly with the IP addresses. A data structure

called the Flow Classification In Progress (FCIP) table (a

Python dictionary) is used to store flow classification state.

A continue_to_inspect flag is used to indicate to the

flow module that it should not install a flow to the switch as

more packets need to be observed. If a dynamic port number

is observed, it is added to the FCIP table so that packets in

the dynamic port flow will be classified accordingly.

With the groundwork ready, the statistical classification

module uses the FCIP data structure and computes the flow

statistics of an unknown flow and finally compares the statis-

tics with a set of pre-computed base signatures (we used the

L7-filter [15]). Where the programmatic approach of SDN

stands out, is in the ability to program the classifier to return

actions, rather than just a Boolean for a match. The ability

to return actions is required to be able to indicate between

multiple possible results, such as classifying a flow to one of

n traffic types.

1) Response time comparison: Next we demonstrate the

statistical classification in nmeta. Again, referring to the setup

in Figure 3, Client 2 makes regular HTTP connections to

Server / Controller on tcp-80 and retrieves a HTML object. A

second test identically configured minus the statistical classi-

fier is conducted as a control and load times are recorded. This

functional tests shows the capability to run flow inspection on

a sequence of packets, extracting statistical information and

comparing it against the L7-filter signature. Timing results are

recorded. The desired outcome is for the statistical classifier

to classify the Iperf traffic into the low priority queue, based

on its statistical behaviour, and thus the Iperf traffic cannot

impact the HTTP traffic since they are in different queues.

From Figure 5a, the baseline is determined to be approxi-

mately 0.19s. When Iperf traffic from Server / Controller to

Client 2 congests the link for a sustained period, there is a

clear increase in load times up to two orders of magnitude, as

shown in Figure 5b. Subsequently when Iperf is terminated,

the test runs for a further period to recheck baseline and indeed

the load time returns to the initial baseline values.

2) Discussion: When dealing with enterprise network traf-

fic, it is tempting to look to the large corpus of statistical

classification to classify the increasingly varied traffic brought

upon by new devices and applications. In most cases the use

of advanced statistical techniques involves a tradeoff between

accuracy, delay and power. However, recall that installation

of a flow has latency and processing overheads. Any addi-

tional delays by the statistical classifier should be cautiously

regulated to maintain performance and overall usability of the

network.

For example, when a Packet-in event is triggered due to the

lack of a matching flow, the SDN controller needs to process

that request, classify the flow and then forward the new flow

modification request to the switch. These actions delay the

subsequent packets and there is an inclination to set a time-

to-live (TTL) counter to zero, and therefore an infinite lifetime,

with the intention of reducing the amount of interactions.



However, such workarounds may have negative conse-

quences. In situations where a user’s access is required tem-

porarily or a situation whereby previously granted access

permission may have been revoked, there is now the possibility

of a large number of flow entries with infinite lifetimes

that are no longer required. The switch flow tables and the

FCIP tables would be bloated, adversely affecting the network

performance.

Besides concerns on bloated flow tables, a security vulnera-

bility may have been created if the device has been passed on

to a different user, which is often the case with devices within

an enterprise network. These situations highlights some of the

security and flow table capacity consideration that need to be

addressed.

IV. LESSONS LEARNED

The efforts gone into the development of a traffic classifica-

tion platform is continuing to provide valuable opportunities

for researchers to experiment with SDN at VUW. While

trial deployments of SDN are undergoing in isolated network

segments, it would take several more months before any mean-

ingful results can be obtained. We identified some limitations

potential barriers and introduced a new approach to traffic

classification using SDN for enterprise networks. This section

describes two identified barriers for traffic classification and

their implications.

A. Security

Enterprises take security seriously. It is unlikely that SDN

will take hold in enterprises until it can be shown to be

as secure as monolithic networking. It appears that SDN is

lacking maturity in the area of security as exemplified by the

discussion earlier in Section III. In nmeta, OpenFlow traffic

is passed in plain text, which is great for troubleshooting,

but not for security. This points to a critical need to look

into the design of a safe control-plane interaction mechanism

that allows traffic classifiers to maximise the flexibility of

SDN while preserving classification correctness properties

throughout the network.

Authentication through shared cryptographic keys such as

the Group Secure Association Key Management Protocol

(GSAKMP) [16] and the likes of it [17] are considered suitable

protocols for providing secured communication for traffic clas-

sification modules. The salient point for GSAKMP is that it is

capable of establishing secure associations between federated

set of controllers and switches. GSAKMP enables secure and

seamless key distribution with trusted authenticating network

elements identified by groups. Each traffic classifier may

require different interaction with the controller, and classifiers

with common characteristics may be collectively addressed as

a group. Thus, traffic classification modules may be viewed as

groups communicating with another group or set of groups (a

single controller or a set of controllers).

In our work with LLDP, it was found that LLDP packets

passed to the Ryu controller with the default packet-in size

of 128 bytes are truncated and causes Ryu to halt. This is

a problem for both availability and security where it could

be used to execute a Denial of Service (DoS) attack. While

this problem is easily fixed using several lines of code,

a better approach would be to enforce a policy regulating

how traffic classifiers forward packets to the controller. We

would caution would-be adopters to carefully examine this

dimension of security because it is difficult to predict what sort

interactions are expected of the plethora of SDN controllers.

On a more specific note, our choice of using LLDP is purely

for demonstrative purposes because LLDP is widely supported

though we are well aware that it is not secure. Interested

(a) Page Load Time (Statistical Classifier) (b) Page Load Time (Control)

Fig. 5. Response time with statistical classifier vs. control.



(a) Page Load Time (Physical Switch) (b) Page Load Time (OpenvSwitch)

Fig. 6. Static classification response time in physical lab vs. Response time in virtual lab.

readers are referred to [18], [19] for recent issues concerning

security in SDN.

B. Flow classification performance

Nmeta is a single threaded Ryu application and hence, it

is susceptible to blocking. The REST API shares the same

thread, potentially causing performance degradation if called

on a large dictionary while the system is under load. There is

an opportunity to improve performance for situations where

classifiers need to see more than the first packet in a flow (i.e.

payload and statistical) on flows that cross multiple switches.

The current nmeta behaviour is to require a packet-in from

each switch in each direction until the classification has been

made. Multiple switches result in duplicate packet-in events

being sent to the controller that add no value. Nmeta is con-

figured to ignore these duplicate packet-in events; however it is

worth noting that they impact performance as they add load to

the backhaul and controller. They also delay the forwarding of

the packet until the controller has sent a packet-out message.

If there are k switches and x packets must be observed then

there will be x(k − 1) duplicate packet-in events. To improve

this situation, the controller could install flow table entries to

all but one of the in-path switches, and update these entries

if required based on the traffic classification determination.

Taking a cue from X.882 [20], we believe that equipping the

northbound interface with support for remote operations is a

step forward to enable efficient traffic classification among

distributed SDN domains.

C. Hardware quirks

A physical lab was setup by substituting the OpenvSwitch

with a commodity switch in the scenario shown in Figure 3.

In test Static-1, the network is configured to classify and treat

tcp-1234 as high priority and all other traffic as default. As in

the virtual lab scenario, the desired outcomes are – load times

for HTTP objects over tcp-1234 are not materially affected

by the link congestion while the load times for HTTP objects

over tcp-80 are noticeably affected by the congestion.

The load times in Figure 6 show that the initial load

times (in each series) were higher due to overhead of TCP

session establishment and flow classification via the SDN

controller. The first tests took approximately 0.25 seconds in

the virtual lab setting, whereas in the physical lab they took

approximately 0.16 seconds. The overheads of virtualisation

are likely to have contributed to the higher first test load time

in the virtual lab when compared to the physical lab.

Response times for HTTP connections on tcp-1234 in test

Static-1 in the virtual lab were not materially affected by the

link congestion, meeting the expectations of desired outcome.

Physical lab results indicate that the tcp-1234 traffic was

correctly sent to the high priority queue, however the hardware

queueing implementation on the commodity switches does not

provide adequate isolation. Therefore the traffic in the high

priority queue was impacted by the Iperf congestion to within

68% of the increase observed in the default priority queue.

The physical lab results (as shown in Figure 6a) highlights

the importance of choosing SDN switch hardware carefully,

and testing it to ensure that it meets requirements. It is not

uncommon for the first generation of a hardware implemen-

tation to have limited features. As the OpenFlow standard

matures, future hardware releases will be less restrictive and

more consistent.

V. CONCLUSION

The traffic classification platform that we are developing is

shown to meet the desired outcomes of traffic classification

and shown to work with commodity hardware. Our efforts are

helping to identify practical issues with the roll out of traffic

classification in SDN. However, the work is far from complete

as far as getting enterprise networks to adopt it. In the process,



we detected potential incompatibilities with legacy networking

devices and protocols, and uncovered indications of possible

implementation barriers for enterprise network adoption.

Shortcomings with the OpenFlow standard for traffic classi-

fication, such as, port range matching and TTL sizes are simply

resolved with updates to the standard. However, other dimen-

sions of the traffic classification problem in enterprise net-

works such as scalable classification, joint software-hardware

classifier optimisation and secure controller-switch commu-

nication requires deeper thought. SDN is indeed radically

changing the way network services are offered across different

environments. It is however, in the process of maturing and

hence still has significant room for advancement.

REFERENCES

[1] T. En-Najjary and G. Urvoy-Keller, “A first look at traffic classification
in enterprise networks,” in Proceedings of the 6th International Wireless

Communications and Mobile Computing Conference. ACM, 2010, pp.
764–768.

[2] B. Ujcich, K.-C. Wang, B. Parker, and D. Schmiedt, “Thoughts on
the Internet architecture from a modern enterprise network outage,”
in Network Operations and Management Symposium (NOMS). IEEE,
2012, pp. 494–497.

[3] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions
in traffic classification,” Network, IEEE, vol. 26, no. 1, pp. 35–40, 2012.

[4] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, “A
first look at modern enterprise traffic,” in Proceedings of the 5th ACM

SIGCOMM conference on Internet Measurement, 2005, pp. 2–2.

[5] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, Vision and

challenges for realising the Internet of Things. EUR-OP, 2010.

[6] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service
mapping for QoS: a statistical signature-based approach to IP traffic
classification,” in Proceedings of the 4th ACM SIGCOMM conference

on Internet measurement. ACM, 2004, pp. 135–148.

[7] K. Nichols, D. L. Black, S. Blake, and F. Baker, “Definition of the
differentiated services field (DS field) in the IPv4 and IPv6 headers,”
RFC2474, 1998.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[9] K. Appleby, S. Calo, J. Giles, and K.-W. Lee, “Policy-based automated
provisioning,” IBM Systems Journal, vol. 43, no. 1, pp. 121–135, 2004.

[10] C. Rensing, M. Karsten, and B. Stiller, “AAA: a survey and a policy-
based architecture and framework,” IEEE Network, vol. 16, no. 6, pp.
22–27, 2002.

[11] A. Bernstein, F. Provost, and S. Hill, “Toward intelligent assistance for
a data mining process: An ontology-based approach for cost-sensitive
classification,” IEEE Transactions on Knowledge and Data Engineering,,
vol. 17, no. 4, pp. 503–518, 2005.

[12] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and
J. Miller, “Meteor-s wsdi: A scalable p2p infrastructure of registries
for semantic publication and discovery of web services,” Information
Technology and Management, vol. 6, no. 1, pp. 17–39, 2005.

[13] “nmeta,” https://github.com/mcprojectvuw/MC, accessed: 2014-12-07.

[14] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future
of programmable networks,” IEEE Communications Surveys Tutorials,
vol. 16, no. 3, pp. 1617–1634, 2014.

[15] J. Levandoski, E. Sommer, M. Strait et al., “Application layer
packet classifier for Linux,” 2008. [Online]. Available: http://l7-filter.
sourceforge.net/

[16] H. Harney, U. Meth, A. Colegrove, and G. Gross, “GSAKMP: Group
secure association key management protocol,” RFC4535, 2006.

[17] J. A. Cooley, R. I. Khazan, B. W. Fuller, and G. E. Pickard, “GROK:
A practical system for securing group communications,” in Proceedings
of the 9th IEEE International Symposium on Network Computing and

Applications, Cambridge, MA, USA, 15-17 July 2010, pp. 100–107.

[18] K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability assess-
ment,” in Proceedings of the 2nd ACM SIGCOMM workshop on Hot

topics in Software Defined Networking, Hong Kong, 16 August 2013,
pp. 151–152.

[19] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A
survey,” in Proceedings of 2013 Workshop on SDN for Future Networks

and Services (SDN4FNS), Trento, Italy, 11-13 November 2013, pp. 1–7.
[20] ITU-T, “Remote operations service element (ROSE) protocol specifica-

tion,” Interfaces, vol. 10, no. 882-X, p. 49, July 1994.


