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Abstract—Recent studies observe that competing adaptive
video streaming applications generate flows that lead to instabil-
ity, under-utilization, and unfairness in bottleneck link sharing
within the network. Additional measurements suggest there may
also be a negative impact on users’ perceived quality of service as
a consequence. While it may be intuitive to resolve application-
generated issues at the application layer, in this paper we explore
the merits of a network layer solution. We are motivated by
the observation that traditional network-layer metrics associated
with throughput, loss, and delay are inadequate to the task. To
bridge this gap we present a network-layer QoS framework for
adaptive streaming video fairness that reflect the video user’s
quality of experience (QoE). We begin first by deriving a new
measure to describe user-level fairness among competing flows,
one that reflects the dynamics between the video encoding and
its mapping to a screen with a given size and resolution. We
then design and implement our framework in VHS (VideoHome-
Shaper) to evaluate performance in the home’s last access hop
where this problem is known to exist. Experiments using a variety
of devices, O/S platforms, and viewing screens demonstrate the
merits of using video QoE as a basis for fair bandwidth sharing.

I. INTRODUCTION

Stability, utilization, and fairness (equal or proportional),
have long been cornerstones of the Internet’s design. Yet the
dominant application on the Internet today, adaptive video
streaming (a.k.a. DASH - Dynamic Adaptive Video Streaming
over HTTP), has been shown to defy these long-held tenets.
Adaptive streaming over HTTP [25] works with segments
of video encoded at multiple bitrates. Segments are non-
overlapping and of equal length. Clients intermittently request
segments from the video server over HTTP. While download-
ing segments, clients estimate the available bandwidth to the
server and switch between video bitrates.

At the server-side, DASH protocols resolve issues of scale,
cost, and delivery. Recent studies suggest that server-side gains
may be at the expense of the network and, in particular, the
end users who are meant to benefit most. The negative effects
of video streaming protocols on flow stability, efficiency, and
fairness, are increasingly observable in the network and in
the home. As the proportion of video traffic grows to 69%
in 2017 [5], these behaviours may impact on the quality of
delivery service from the content provider to the end user.

The network-level behavior of DASH systems has received
significant attention (e.g. [6], [17], [21]). These studies show
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that network-level analysis of adaptive video streaming be-
haviors is challenging because segments length, their encoded
bitrates, and the algorithms that switch between them, are left
to the discretion of the implementation. As a consequence,
when multiple video streaming clients (or flows) compete for
bandwidth across a bottleneck link, the intermittent down-
loading and estimation causes (i) instability when switching
between encodings, (ii) bottleneck link under-utilization, and
(iii) disproportional shares of available bandwidth.

Fair sharing between multiple competing DASH streams,
which is the focus of this paper, is particularly problematic:
The on/off nature of flows leads to inaccurate client estima-
tions of available bottleneck capacity, and results in potentially
unfair demand by any accepted definition. Rather than equal
or weighted share of capacity, obtained bitrates appear to be
determined by factors such as the time of arrival relative
to other streams, the viewing platform and implementation,
operating system support, and the content provider [6], [21].

We posit the following explanation for the difficulty in
controlling resource sharing for adaptive video streaming:
There exists no metric at the network level that reflects the user
experience of streaming video at the application layer. The
traditional metrics of throughput, delay, and loss, appropriately
describe the quality of short or long continuous flows. For
example, the speed with which webpages may be retrieved or
the quality of a real-time voice conversation may be predicted
(or characterized) by the width, delay, or reliability of a con-
nection. Many application protocols, decidedly separate from
network layer protocols, can use these metrics to accurately
estimate path resources and quality. By contrast streaming
video flows are intermittent, periodic, and exhibit an on/off
transfer pattern that is neither short nor long and continuous.
The result is a disconnect between network and application in
which estimates of available path resources over one interval
are no indication of available resources in the next interval.

How, then, can competing streams be expected to behave
fairly when there exists no reliable indication of network
conditions? One approach is to standardize application-level
behavior across the different implementations and commercial
services. Standardization of application-layer characteristics
violates the spirit of flexibility in the Internet’s architecture
and, more importantly, is not feasible given the strong compe-
tition among the DASH services. A second approach, explored
in this paper, is to deploy network-level mechanisms to enforce
application-aware fair resource sharing. We will argue that the



natural response at the network layer, which is to assign equal
resources to each competing video, is actually unfair from an
application viewpoint.

Alternatively, we take the perspective first suggested in [8]
that equal bitrate, or any flow-rate definition of fairness,
is ultimately unfair. In the case of streaming video, flow-
rate fairness ignores user-level fairness. We would expect,
for example, that small screen devices in the presence of
contention get video streams of a lower rate of encoding than
larger screen devices (including televisions). Since quality is
determined by the appearance of the video on the screen,
throughput definitions of fairness are inherently inappropriate
since they fail to reflect user interactions.

In this paper we explore network-layer QoS for streaming
video fairness that allows quality of experience (QoE) metrics.
To our knowledge this is the first work to suggest user-
level metrics for evaluating fairness in the network layer.
We demonstrate the viability of user-level metrics first by
introducing a QoE measure that reflects the dynamic between
the video encoding and its mapping to screen size and density.
Though quality assessment is an active area of research in
the video community, we are unaware of any metrics in the
literature that take screen size into consideration. Our measure
is inspired by the bandwidth utility concept introduced in [24]
and ensuing work in [9], [19], [23]. The use of a single
metric resolves the need for per-video, per-resolution, utility
functions stored in a database [13]. We use it to define
QoE max-min fairness for a set of video streams sharing
a network, that matches the utility of available bandwidth
(and associated video bitrate) to screen size and density. We
emphasize, however, that while this metric is grounded in user-
perception arguments and correlates well with user experience,
our framework can admit other metrics that other researchers
may deem more appropriate for their specific purpose.

We then proceed to define DASH QoE max-min sharing
of bandwidth on a constrained link. We show that a QoE
max-min fair bitrate allocation does not always exist because
video sessions have only a discrete set of bitrates that can be
assigned. In lieu we define QoE maximal fairness, that is (i)
easy to compute and (ii) is equal to max-min fair allocation
when the latter exists. We then develop an algorithm to
compute bitrate allocation that achieves QoE maximal fairness
for the home network scenario.

We instantiate our framework by designing VHS (Video-
HomeShaper). We implement VHS on a home router with
OpenWrt firmware [3] and evaluate its performance in the
home, the last access hop where this problem is known to
exist [21]. VHS monitors outbound HTTP requests capturing
those that identify Netflix and YouTube sessions initiated
by clients connected to the router. Our video-bitrate fair
allocation algorithm is integrated into VHS so that when
streaming requests appear, or when active sessions terminate,
the algorithm establishes new capacity allocations to reflect
user-level fairness. Allocations are enforced via the Linux
traffic control (tc), and assign adequate bandwidth to each
client to obtain the desired video encoding bitrate.
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Fig. 1: Visualizing video bitrate unfairness when competing
devices stream video from different streaming services

In our experiments we measure fairness, utilization, and
introduce a metric to describe stability. We find that VHS al-
most always improves fairness and link utilization, even when
compared against stochastic fair queuing. In all cases VHS
improves stability of each video stream, thereby reducing the
negative impact of fluctuating streams on competing sessions.

The rest of the paper is organized as follows. Additional
background and motivation are presented in Section II. In
Section III we introduce our QoE metric and its use at the
network layer. Our VHS framework is presented in Section IV,
followed by evaluation in Section V. Finally, before conclud-
ing remarks in Section VII, we address wider implementation
challenges in Section VL.

II. BACKGROUND AND MOTIVATION

In this section we give a brief background on adaptive
HTTP streaming, utility max-min fairness, and video quality
assessment metrics, and review some work in each topic.

A. Adaptive HTTP streaming

MPEG-DASH [2] is an ISO standard for adaptive HTTP
streaming that defines media segmentation and representation
at the server-side. In this scheme, video is split into non-
overlapping segments of equal length. Each segment is then
encoded at multiple bitrates. A client streams the video by
intermittently requesting and downloading segments from the
video server over HTTP. While downloading, clients also
estimate the available bandwidth to the server to inform
switches to other video bitrates.

Excluded from the standard are client implementation and
bitrate adaptation techniques. This gives video streaming
providers the flexibility to implement their own clients and
adaptation mechanisms. It also makes difficult the performance
prediction and analysis of multiple streaming clients when they
compete for bandwidth. This challenge is further exacerbated
when vendors implement their own rate limiting techniques at
the video server [14].

Example behaviours are presented in Figure 1. Plots show
the video bitrate obtained by a set of clients over time, when
all clients are behind the same bottleneck home access link.
In Figure 1a four clients, across three platforms, stream video
from two services and are constrained by an 8Mbps access
link. Measurements spanning more than 13 minutes show that
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Fig. 2: Adaptive video utility function

iPhone YouTube clients fail to reduce their bitrate when Netflix
clients later appear. One explanation may be that latecomers
are penalized. This hypothesis is negated by bitrate measure-
ments shown in Figure 1b, in which a Netflix client and a
YouTube client are launched at the same time from behind a
4Mpbs access link. Over time, the YouTube client obtains a far
greater share of capacity than its Netflix rival. Combined, these
plots suggest that YouTube is overly aggressive and should be
scaled back. We argue that explanations and solutions based on
service-, platform-, and implementation-specific characteristics
are misleading. We argue that requested video bitrates are
determined by available network resources, making resource
management a network-layer issue.

B. Utility max-min fairness

Bandwidth max-min fairness [7] maximizes the minimum
bandwidth allocated to any flow, traditionally by aiming for
equal share of the bandwidth to all connections bottlenecked
links. This goal assumes that all flows in the network carry the
same utility to the application. As shown above, this is a false
assumption among competing adaptive video streams. In our
investigation we adopt the position proposed in [24] that ties
Internet service models to application utility. Utility max-min
fairness was subsequently developed in [9], [19], [22], [23].

Consider a generic example described by Figure 2 that joins
bandwidth and utility for two different devices. The step-
nature of video bandwidth-utility functions are a consequence
of the discrete sets of available encodings at the server (see
sample real-world sets in Table I). Referring back to Figure 2,
the vertical dashed line represents a bandwidth-fair allocation
where by = bs. Clearly, the associated utility differs greatly
as usz << us. By contrast, a non-equal bandwidth allocation
can maximize the minimum utility of any single flow. In
Figure 2, this wtility fairness occurs at points (by,u1) and
(b4, u4). Additional technical details may be found in [20].

C. Video quality assessment

Utility must be described by some measure. And yet digital
video usually suffers from a wide variety of distortions during
encoding, compression, and reproduction that may result in
a degradation of visual quality. To quantify visual quality

subjective assessments are most often used. In this method,
a video is viewed by a set of independent users. Each user
evaluates the perceived video quality with a score from 1 to 5
with 1 being the worst quality. Scores are then averaged to give
a Mean Opinion Score (MOS). While critical for evaluating
video encoding quality, the cost, time, and human factors
render MOS infeasible for use at network layers.

Several objective quality assessment metrics have since
appeared. Peak Signal-to-Noise ratio (PSNR) computes the
average distortion between a compressed video and its lossless
source. However, PSNR is known to have a weak correlation
with perceived video quality [12]. Structural Similarity Index
(SSIM) [26] is an objective metric that exploits the highly
structured nature of images and strong dependence between
spatially close pixels. Experiments have shown strong cor-
relation between SSIM and MOS which represents ground
truth for perceived video quality [26]. Despite their merits, we
note that no existing metrics, pertaining to video nor network
performance, naturally lend themselves to evaluating fairness
between competing views.

Intuitively, one definition of video fairness is to associate the
video encoded bitrate with screen size and viewing distance.
Surprisingly, and to the best of our knowledge, no such metric
exists. In the next section we introduce a new QoE-based
metric to tie video bandwidth to the utility of the video bitrate.
We then build upon this metric to establish utility max-min
fairness for competing video flows.

III. ADAPTIVE VIDEO QOE FAIRNESS

In this section we introduce a new video QoE metric as a
function of the screen size, resolution, and viewing distance.
We then introduce the home network model, define QoE max-
min fairness, and introduce an algorithm to compute the set of
fair bitrates. The overall framework is flexible and welcomes
other metrics that researchers may deem more appropriate for
their specific purpose. Our methodology follows from max-
min utility allocation for multirate multicast networks [23],
and establishes fairness for unicast adaptive video streams.

A. Device-dependent QoE metric

The visual quality of a video on a specific display is
determined by a) video encoding algorithm and bitrate, b) the
difference between video resolution and the physical screen
resolution, and c) viewing distance from the screen. Among
lossy video compression algorithms higher bitrates usually
mean higher video quality. However this association is true
only when the resolution of the display area is equal to the
video resolution, i.e. when each pixel in the video maps to
a single pixel on the screen. A video resolution that is lower
than the physical screen resolution gets scaled up to match.
Depending on the difference between the two resolutions,
scaling to match will degrade the perceptual quality. As a
consequence, the best achievable video quality exists when the
video and the physical resolutions are identical. This suggests
the use of the ratio between the two resolutions to measure
quality degradation.



TABLE I: Different video profiles (resolutions and bitrates in Kbps) provided by Netflix and YouTube

Netflix Resolution 320 x 240 384 x 288 512 x 384 512 x 384 640 x 480 720 x 480 1280 x 720 | 1280 x 720
Bitrate 235 375 560 750 1050 1750 2350 3000
Resolution 256 x 144 426 x 240 426 x 240 640 x 360 854 x 480 1280 x 720 1920 x
YouTube 1080
Bitrate 190 260 380 750 1350 2750 5000
=R — o — - ’©_:/e B. QoE max-min fairness
—A- Vi . . .
" Nexs? V. We now develop QoE max-min fairness for a set of video
=° s ;g:‘:’,:"gw ; /,/ /! streams sharing the home link. The more general case is
ES I h f developed in [20]. Consider N video streams sharing a home
T o / . . . . . .
& K 4 link of capacity C' bits-per-second. Each video is available
K e . . . .
S| /A at the server in multiple bitrates for selection by the player
£ - _AL V/ . . . .
5 T based on player estimation of the available bandwidth. We
3 g:_’:x’/:_#__v,.—v-—-—'v label R;j,j € {1,...,M;} as the j*" video bitrate of the
. Y ith stream, and assume that R;; < R;o < ... < R;y, for
S =00 o 2500 =50 all streams without loss of generality. For each stream R; ;,

Video bitrate (Kbps)

Fig. 3: Normalized PPD for different devices and video profiles

The Pixels-per-degree (PPD) metric captures both screen
resolution and viewing distance [18]. PPD is defined as the
number of pixels on the base of a triangle with a height of
viewing distance and a one degree angle facing the base. PPD
is computed as PPD = d x PPI x tan(w/180), where d is
the viewing distance and PP is the number of pixels-per-
inch. It is defined as the number of pixels on the diagonal of
the screen, and computed as PPI = 7W where w, h are
the width and height of the screen in pixels respectively and
diag is the length of the screen diagonal (in inches).

We use PPD to build a degradation metric, normalized-
PPD (N-PPD). N-PPD expresses the relative quality of a
video to the best achievable quality on the device. We define
N-PPD as the ratio between video PPD and physical PPD.
The video PPD is computed using width and height from the
video resolution, while the physical PPD is computed using
device parameters. Since there is no additional quality gain
from playing a video of a higher resolution than the physical
one, the maximum value of N-PPD is 1. Formally, N-PPD is

PPI,
PPlony’

N-PPD values appear in Figure 3 for a sample set of
devices, each with different screen sizes and resolutions. For
each device, the set of N-PPD values are computed using
video resolutions provided by Netflix ! that appear in Table 1.
Figure 3 demonstrates the merit of N-PPD as bitrate increases:
Smaller screen devices reach peak values faster with lower
bitrates than do larger screen devices.

Finally, to account for the effect of encoding bitrate, we
augment our degradation metric with a traditional objective
QoE metric, namely SSIM. Studies show SSIM correlates
better to MOS than does PSNR [26]. Our QoE metric in its
final form is defined as @ = SSIM * N-PPD. We note that
SSIM can be replaced by any other objective QoE metric.

computed as, N-PPD = min (

IThe Tamper Firefox plug-in can read encrypted Netflix manifest files.

we define (); ; as a value representing the quality of video as
described in Section II-C, and Q; = {Q; ;} as the set of all
bitrates of video session %.

A QOoE allocation g¢; is the QoE value allocated to session
i such that ¢; € {Q1,...,Qin,}. Define v;(q;) as the
video bitrate of session ¢ with QoE value ¢;, for example if
¢i = Qi 2 then ¢;(¢;) = R; 2. The N dimensional vector § =
(g1,-..,qn) is a feasible QoE allocation if each video session
is allocated a feasible QoE value, i.e. ¢; € {Qi1,...,Qim; }
and the total data rate does not exceed home link capacity,
ie., : Zf;l Yi(q) < C.

A feasible QoE allocation is max-min fair if it is not possible
to increase the QoE of one session (i) while maintaining
feasibility, and (ii) without reducing QoE of another session
that has equal or lower QoE. Since each stream has only a
set of discrete QoE values (corresponding to the available
bitrates), QoE max-min fair allocations may not exist. Similar
to [23], we use an alternative definition, maximal fairness
(formally defined in [20], that is equal to max-min fairness
if max-min fairness exists.

Maximally fair bitrate allocations may be computed in a
greedy fashion. Initially, allocate each stream its lowest bitrate.
Next, select and upgrade the stream with the lowest QoE value
to the next higher bitrate if the new total of allocated bitrates
do not exceed the link capacity. Repeat the previous step until
no streams can be upgraded to higher bitrates. Additional
details and the algorithm used to compute maximally fair
bitrates may be found in [20].

IV. VHS: QOE FAIRNESS IN A HOME ROUTER

In this section we present our network-layer QoE-fair sys-
tem, Video Home Shaper (VHS). VHS is designed to be mod-
ular so that components may be distributed to accommodate
scale. Our implementation focusses on the home environment
for several reasons. First, the home is a closed environment
where experimental variables may be controlled. Second, the
home access link is one of few in the network that sees all
competing video flows. Finally, potential gains may have the
most immediate effect in the home where access links are often
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the bottleneck. As the number of viewing screens increases
with the proliferation of viewing devices, contention can only
worsen at the access link. Source code is available at [4].
VHS is composed of four main modules, as shown in
Figure 4. Each of the traffic filter, feature collector, session
manager, and bandwidth manager modules is described below.
A discussion of wider challenges for the community that
emerged during implementation appears in Section VI.

Traffic Filter. This module identifies and captures HTTP re-
quests of video streaming sessions. It filters out all non-HTTP
traffic using the pair (TCP, port 80). HTTP request
headers are then matched to pre-defined patterns that represent
video streaming services. In this context video requests are
either the manifest file or a video/audio media segment. VHS
currently matches patterns for Netflix and YouTube on PC,
iOS, and Android clients>. Patterns for additional streaming
services are easily added. When an HTTP video request is
identified, it is forwarded next to the feature collector module.

Feature Collector. Upon receipt of a new HTTP video request,
the feature collector module queries the session manager to
determine the request as belonging to a new or existing ses-
sion. The feature collector parses requests for new streaming
session to identify the device type, video stream identifier,
and video profile identifier. This module also parses manifest
files (if available) and extracts all video profiles (bitrates and
resolutions) within. Parsed information is then forwarded to
the session manager where QoE-fair allocations are computed.

Session Manager. This module records all active streaming
sessions and computes the QoE-fair bandwidth. New session
requests are added to the session table. The session table is
a hash table that stores all information about active video
sessions. The key in the hash is the (client IP, video identifier)

2For each streaming service, HTTP requests differ on different platforms

tc qdisc del dev $IFACE root

tc qdisc add dev $IFACE root handle 1:  htb default 30
tc class add dev $IFACE parent 1: classid 1:1 htb rate 6000kbit ceil 6000kbit burst 30k

tc class add dev $IFACE parent 1:1 classid 1:2 htb rate 1000kbit ceil 6000kbit burst 30k
tc qdisc add dev $IFACE parent 1:2 pfifo limit 64

tc class add dev $IFACE parent 1:1 classid 1:3 htb rate 2500kbit ceil 3500kbit burst 30k
tc qdisc add dev $IFACE parent 1:3 pfifo limit 64

iptables -t mangle -A POSTROUTING -o $IFACE -j CLASSIFY --set-class 1:2
iptables -t mangle -A POSTROUTING -o $IFACE -s $SERVER_IP -d $CLIENT_IP -j\
CLASSIFY --set-class 1:3

\ J

Fig. 5: Example Linux tc configuration generated by VHS

pair, where client IP is the local IP address of the client
initiating the video request. The video identifier identifies all
segments of a single streaming session downloaded from mul-
tiple sources.Timestamps of the last video request within each
session are also recorded. Sessions with idle times that exceed
a threshold are deleted (we used 50 seconds). The addition or
deletion of a session triggers this modules main function: To
compute a new set of QoE fair bitrates and forward them to
the bandwidth manager module for enforcement.

Bandwidth Manager. This module enforces QoE fair allo-
cations computed by the session manager. The VHS band-
width manager is implemented using Linux traffic control and
iptables to allocate bandwidth to each video stream. Each
stream is allocated a lower and an upper bandwidth value. The
lower value is the guaranteed minimum bandwidth allocated
for that session (further discussion in Section VI). The upper
value represents its maximum allowable bandwidth, which is
less than required to switch to the next higher video bitrate.

The bandwidth manager launches and maintains a parent
queue that is directly connected to the LAN interfaces, and a
child queue that is connected to the parent queue. This starting
child queue is the default path for all non-video streaming
traffic. For each new streaming session, the bandwidth man-
ager creates a new child queue with assigned upper and lower
limits. It then adds a new rule in iptables to forward
that session’s streaming traffic to its associated queue. The
appropriate child queue and iptables rule are deleted upon
notification from the session manager that a streaming session
has terminated. An example of the rules generated appears in
Figure 5 for reference. This example launches a parent queue
classid 1:1 and two children queues classid 1:2 and
classid 1:3.Two new iptables rules are then defined:
The first marks all packets to be forwarded to the default
queue 1:2, while the second marks all packets destined to
CLIENT_IP to be forwarded to queue 1: 3.

Implementation Platform. Our VHS is implemented on a
NETGEAR home router, model WNDR3700, running Oper-
Wrt firmware [3]. VHS is written in C++ and is 1500 lines of
code, the bulk of which is devoted to monitoring and logging.
Traffic monitoring between inbound and outbound traffic on
the bridge interface between the WAN port and the internal
ports on the router rely on the popular libpcap [1]. This enables
VHS to detect traffic from clients connected to the router
through both wired and wireless interfaces.



VHS instantiates our QoE-fair network layer architecture
for the home environment. In the next section we evaluate its
efficacy using measures of fairness, utilization, and stability.

V. EVALUATION

In this section we evaluate VHS and the efficacy of QoE
fairness in a real home setting. Space constraints restrict our
presentation to four representative experiments. Results are
assessed according to well known fairness and utilization
metrics. We propose a new metric to assess levels of instability.

A. Metrics

Recall from Section I that multiple video clients, when
competing for bandwidth, can suffer from unfairness, inef-
ficiency (i.e. link under-utilization), and instability [6], [17],
[21]. Though our main objective is to achieve QoE fairness
we must ensure that VHS respects link utilization and bitrate
stability. We formally define the three metrics as follows:

o Fairness. Based on Jain fairness [16], we define the QoE
fairness index F,g as

M=z

%)2

(

N

I
-

Foor = — (1)
q?

-

i=1

where ¢; is the QoE value of the bitrate allocated to video
session ¢. The fairness index has a value between 0 and
1, with 1 being the best fairness and 0 being the worst.

« Utilization. Link utilization U (¢) at any time ¢ is assessed
by the standard definition as the percentage of the access
link capacity C' used to stream video regﬁrdless of any
background traffic. Formally U(t) = M
r;(t) is the bitrate of video stream ¢ at time ¢.

where

« Instability. We define instability as the rate of video
bitrate change among all streams over time. We use the
average number of bitrate changes every 100 seconds as a
good representative of the user experience. To the best of
our knowledge there exist no standard metrics to describe
the instability of a session. We propose the following
indicator function: I;(¢) = 1 if the video bitrate of stream
i changes between times ¢,t+ 1 or r;(t+1) # r;(¢), and
zero otherwise. Then for a streaming session of length
T seconds, we compute instability as

AT

instability = =L=0

x 100 2)
Frequent switching of video bitrate is known to hurt user
video experience [11]; smaller instability values reflect
more stable bitrates and hence improved experience.
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B. Experimental Setup

We conducted experiments using a range of devices, running
streaming clients from Netflix and YouTube, over a home
bottleneck DSL link. For each of the experiments described,
the fairness, utilization, and instability metric are computed
every second. Full experimental details are available in [20].

The following four representative experiments have been
selected for presentation. It is worthwhile emphasizing that
in all of our experiments, VHS and its underlying QoE-fair
mechanisms ensure that smaller screen bitrates never exceed
the bitrates of their larger screen counterparts.

Competing Netflix clients on an iPhone, Nexus 7, Nexus 10,
and Laptop 1. Figure 6 shows bitrate allocations over time with
VHS versus allocations without VHS. We can clearly see in
Figure 6b that VHS improves the bitrate stability of the two
Nexus tablets; this is an observation that persists through all
of our experiments. VHS also enables the iPhone session to
achieve a higher bitrate sooner in time.

Netflix clients with background traffic. Background traffic,
labeled *Bulk’ in Figure 7, is generated via large file transfer



— Bulk —_-
+ = - iPhone

—— Bulk _
— Laptop Il - =~

Laptop |
— Laptop Il

Laptop |
iPhone

6000
6000

4000
4000

Video bitrate (Kbps)

2000
Video bitrate (Kbps)

2000

0
0

0 200 400 600 800 1000 0 200 400 600 800 1000 1200
Time (sec) Time (sec)

(a) Original (b) VHS
Fig. 9: YouTube clients vs bulk web transfer.

from a web server using Laptop III. We can see in Figure 7a
that the file download consumes about 20 — 30% of the
bottleneck link, and appears to impact video bitrates when
compared to Figure 6a. On the other hand, Figure 7b shows
how VHS limits the file download rate to about 1Mbps, and
still manages to allocate fair bitrates to all video streams.

Competing YouTube clients. In YouTube experiments we
substitute laptops for Android devices. This is because An-
droid has no direct support for adaptive streaming [21]. Bitrate
allocations for the four devices are shown in Figure 8. Again,
the erratic bitrates acquired in Figure 8a are made more stable
by VHS in Figure 8b.

YouTube clients with background traffic. A bulk file down-
load is injected as in Experiment 2. In a fashion that is
even more pronounced than with Netflix clients, the bulk file
download shown in Figure 9a consumes between 50% and
65% of the bottleneck bandwidth. By contrast VHS limits the
bulk transfer bandwidth consumption through its default child
queue; this can be seen in Figure 9b.

C. Fairness

We evaluate the overall fairness of bitrate allocations ac-
cording to Equation 1. The cumulative distribution function of
those values is plotted in Figure 10 for values with VHS and
without (labeled ’Original’). Fairness provided by stochastic
fair queueing (SFQ) is included in Figure 10a. SFQ appears
to be marginally more fair than the original system; this is
a trend that continues throughout and so is omitted from
remaining plots. VHS maintains a fairness index greater than
0.94, exceeding original fairness indices in three experiments.

Interestingly, in our experiments consisting solely of com-
peting YouTube flows (shown in Figure 10c), fairness indices
are indistinguishable. This is an artifact of the way in which
the fairness index is calculated, i.e. a system can be fair when
flows are equally unstable. Referring back to Figure 8a we can
see that two devices fortunate to receive their desired bitrates
(Laptop III and iPhone), while the two remaining devices
repeatedly switch between bitrates. Despite being fair, the
instability leads to poor QoE for the user [11]. Our subsequent
instability evaluations reveal that VHS resolves this gap.

D. Utilization

Utilization measurements for the four experiments appear in
Figure 11. We remind our reader that we define utilization as

the occupied portion of the bottleneck link capacity allocated
to stream video, i.e. the capacity that is isolated from back-
ground traffic. By this definition VHS performance is more
predictable, and better understood.

For example, Figures 11a and 11c suggest that VHS pro-
vides no real improvement in utilisation, and is sometimes
slightly worse. This is expected because there is only a discrete
set of bitrates for each video stream, and VHS is designed to
provide QoE-fair bitrates. The corresponding Figures 6 and 8
show that without VHS, the competitive and intermittent be-
haviour of clients can cause erratic switching between bitrates.
This tradeoff between bitrate instability and link utilization
was also observed in previous work [6], [10].

In the presence of background traffic VHS improves utiliza-
tion. In Figure 11d, for example, VHS streams consume 80%
of the available bandwidth for over 50% of the time, compared
to less than 40% consumption of the capacity for 70% of
the time under the original system. This is because VHS
isolates the capacity allocated to video streams from other
background traffic (as described under ‘Bandwidth Manager’
in Section IV). Specifically, the intermittent TCP video streams
are protected from being forced to back-off by the bulk
transfer. Residual capacity, in our experiments 1Mbps, remains
for the bulk transfer. The increase in utilization is a direct
consequence of increases in stability that we present next.

E. Stability

Frequent switching of video bitrates is known to hurt users’
video experience [11]. In Figure 12 we plot values derived
using our own instability metric in Equation 2; smaller values
reflect greater stability, thereby contributing to user experience.
In Figure 12a SFQ provides stability levels between the Orig-
inal and VHS environments, albeit providing only marginal
increases in fairness (as shown in corresponding Figure 10a).

In all our experiments VHS improves stability, in the best
cases by factors of 6. In addition, we find that the values
represented by our metric in Figure 12 are reflective of the
bitrate measurements over time in corresponding Figures 6-9.

Interestingly the relationship between instability, fairness,
and utilization, is less clear. Consider, for example, the
corresponding plots in Figures 10, 11, and 12: Overall,
VHS appears to provide improved and consistent levels of
performance. However, knowing any one or two values of
fairness index, utilization, and instability, seems in no way
to indicate remaining values. We suggest this is an artefact of
the metrics themselves, and their inability to represent quality
of experience when viewed in isolation.

VI. WIDER DEPLOYMENT CHALLENGES

In the home VHS overcomes a wider set of deployment
challenges that emerged during implementation. Any similar
real system, irrespective of location, needs to obtain details
about the video source and the viewing device. In lieu of
absent standards and alternatives, our architecture relies on
information contained in HTTP requests. This, in addition
to other potential challenges, are discussed in further detail
below.
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A. HTTP Traffic Monitoring

A network layer QoE fair system must keep track of all
active video streaming sessions: (i) the device, screen, or PPI
in use, and (ii) the video manifest file that lists the content
provider’s set of available bitrates and resolutions. This infor-
mation is embedded in HTTP packets that can be inspected
for adaptive video stream requests. Our VHS implementation
demonstrates feasibility by identifying video flows for most
popular streaming services (e.g. Netflix and YouTube) from
their HTTP request format. HTTP traffic monitoring presents
several challenges both for users and network operators. We
proceed by addressing the technical concerns, and leave non-
technical challenges related to privacy, etc., to better hands.

Deep packet inspection (DPI) is required on all HTTP traffic.
Use of DPI may raise two concerns. First, DPI is known to
be expensive and requires special hardware to handle large
volumes of data at line speed. In the home, our implementation
demonstrates DPI is technically feasible for a home router.
Since only HTTP requests need to be inspected, candidate
packets are easily identified by the (TCP, dstport 80)
pair. HTTP request packets can be further distinguished from
ACKs by filtering based on a packet length condition. The

second concern may pertain to user privacy. A home router
solution keeps all data within the home. Though no less
relevant, third party monitoring in the wider network presents
challenges that are necessarily beyond the scope of this work.

Access to manifest files is a crucial component of the system.
As a session begins, a video client downloads a manifest file
that includes a list of sources, target IP addresses and URLSs for
video segments, their resolutions, and bitrates. Some commer-
cial services encrypt their manifests, while other services do
not. We argue that MPEG-DASH [2] use of unencrypted XML
manifest files should be standard in the future. For services that
choose to encrypt manifest files we propose an unencrypted
portion containing video bitrates and resolutions in plain view.

Screen Granularity Data establishes the viewing screen PPI,
required to compute our QoE metric, N-PPI. The sets of
video encodings and resolutions are available via the manifest.
However, information about the screen, at the granularity
required, are currently limited to inference. Specifically, an
HTTP request contains the viewing platform, but omits screen
size and resolution. For example, it is easy to identify an
iPhone or an iPad but not the version or size of the device.
Also, it is possible to identify a set-top-box but not the size



and resolution of the TV connected to it. Thus, we propose
that video players include PPI or other appropriate information
about the streaming device in the HTTP request headers.

B. Enforcing Video bitrates via Bandwidth

Adequate bandwidth must be allocated to each session that
could consist of multiple flows, to constrain clients to stream
at their designated bitrate. In practice, an over-allocation
is necessary to compensate for clients that under-estimate
available bandwidth.

Under-estimation is a wide-spread practice. Consider that
a video player requests a bitrate based on its estimate of
the available bandwidth. Available bandwidth is computed
as a function of the download rate of one or more of the
recently downloaded video segments®. Unfortunately there is
no standard specification,i.e. each player implements its own
estimation method. Clients are known to request or switch to
bitrate r only if an estimate of the available bandwidth is no
less than (1 4+ «)r with unknown and proprietary « > 0.

To complicate matters, recent work in [21] observes dif-
ferent « values for the same streaming service on different
platforms. We envision three potential solutions.

1) Inference of o via experimentation and measurement
for all streaming services on all popular devices. This
is currently a tractable exercise given the fixed set of
bitrates (and resolutions) for most of streaming services.
In the longer-term inference will become a challenge as
« values change, or new services and devices emerge.

2) A control channel at the video player that can be used
by the network controller to communicate the desired
bitrate. The client will be expected to honor the network
decision and commit to streaming that bitrate unless
there is notification of a new bitrate.

3) Agreement among content providers and standardization
of an « value, or set of values.

VHS demonstrates that these challenges are surmountable in
the home. Solutions on wider scales remain as open problems.

VII. CONCLUSION

In this paper we explored network layer quality of service to
enable fair sharing among competing dynamic adaptive video
streams that reflects users’ quality of experience.

We subscribe to the notion that, for the dominant adap-
tive video streaming applications, any flow-rate definition of
fairness ignores application-layer fairness. Among streaming
video, service based on measures of throughput, error, and
latency are inherently unfair since they fail to reflect the quality
of the user experience on the viewing interface. We bridged
this gap by proposing a QoE measure that can be used to guide
bandwidth allocation among competing video streams. Our
measure takes an industry standard metric that encapsulates
viewing screen attributes. It then normalizes this metric to
reflect the relative quality of a video encoding on that screen.

3Bitrate adaptation based of the growth rate of the player buffer was
suggested in [15], however, bandwidth estimation remains dominant

We used this metric to define and establish network-layer
QoE fairness. We then designed and built VHS on a home
router to evaluate QoE fairness. Experiments using a variety
of devices, O/S platforms, and viewing screens demonstrate
the merits of tying QoS to QoE. In all cases, utilization and
fairness indices of the bottleneck link under QoE allocations
most often improved, and were unchanged in the worst case.
As an added bonus measurements revealed reduced instability
across all flows as a result of our QoE-fair bandwidth sharing.
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