
Decentralized credit mining in
P2P systems

Mihai Capotă
Delft University of Technology

The Netherlands

Johan Pouwelse
Delft University of Technology

The Netherlands

Dick Epema
Delft University of Technology

The Netherlands

Abstract—Accounting mechanisms based on credit
are used in peer-to-peer systems to track the con-
tribution of peers to the community for the purpose
of deterring freeriding and rewarding good behavior.
Most often, peers earn credit for uploading files, but
other activities might be rewarded in the future as
well, such as making useful comments or reporting
spam. Credit earned can be used for accessing new
content, or for receiving preferential treatment in case
of network congestion. We define credit mining as
the activity performed by peers for the purpose of
earning credit. In this paper, we design, implement, and
evaluate a system for decentralized credit mining that
maximizes the contribution of idle peers to the commu-
nity by automatically uploading popular files. Building
on previous theoretical insights into the economics
of communities, we select autonomous algorithms for
bandwidth investment as the basis of our credit mining
system. Additionally, we describe our experience with
important challenges arising from Internet deployment,
that are frequently neglected in emulation, including
duplicate content avoidance, spam prevention, and the
cost of keeping peer information updated. Furthermore,
we implement an archival mode of operation, which
prevents the disappearance of old content from the
community. We show the feasibility and usefulness of
our credit mining system through measurements from
our implementation on top of Tribler, an Internet-
deployed peer-to-peer system.

I. Introduction

Incentives are key to the functioning of peer-to-peer
(P2P) systems. Altruism does lead people to contribute
resources even when they are not rewarded, but only to a
certain extent. Consequently, systems that reward contri-
bution through built-in incentives have historically proven
to be more successful than those with no incentives. For
example, BitTorrent [1] displaced Gnutella [2] as the most
used P2P file-sharing system soon after its introduction
thanks to built-in incentives which effectively discourage
freeriding.

More recently, private P2P communities have extended
the incentive mechanisms embedded in BitTorrent by
employing accounting mechanisms that track user ac-
tivity. These private communities incentivize good user
behavior by employing credit (or sometimes sharing ratio
enforcement) and are also successful at increasing user

contribution, as we previously showed [3]. At the same
time, the accounting mechanisms have made it difficult
for honest, non-freeriding, but inexperienced users to earn
enough credit (or keep a high enough sharing ratio) to
maintain community membership [4].

Tribler [5] is a P2P system that uses a decentralized
form of accounting called BarterCast [6]. Tribler is back-
wards compatible with BitTorrent and uses many of the
concepts introduced by the latter: content to be shared is
divided in pieces that are cryptographically hashed; the
hashes are collected in a torrent file which is used to
uniquely identify the content; the group of peers sharing a
torrent is a called a swarm; servers called trackers can be
used by peers when joining a swarm to find other peers.

In this paper, we design, implement, and evaluate using
Internet experiments a decentralized Credit Mining Sys-
tem (CMS) aimed at helping users contribute to Tribler.
The goal of the CMS is simple: earn credit on behalf of the
user—without requiring user intervention—by contribut-
ing upload bandwidth to the community. The user can
then spend the credit earned, for example, to obtain a
fast download speed while downloading new content in
case of a flash crowd [7]. (Tribler peers can rank download
requests in order of requester credit, and can give priority
to the requests of the peers with the most credit.)

Our CMS is completely decentralized—it is part of the
Tribler P2P client and does not require the collaboration
of any other Tribler peer to function. The operation of
the CMS can be seen as a sequence of three steps. First,
the user selects a source of swarms for the CMS to take
into consideration for credit mining. This is a form of
white-listing and ensures the user has control over the
content shared through their computer. Second, the CMS
periodically selects a subset of swarms for active credit
mining. The user may provide a large number of swarms
and it is not technically feasible for the CMS to actively
participate in all of them. Third, the CMS joins the
selected swarms and attempts to maximize earned credit
by downloading as little as possible and uploading as much
as possible.

Long-term content availability is a problem in P2P
systems, caused by the gradually falling user demand for
old content [8]. This also makes credit mining old swarms
inefficient. However, users may want to improve the avail-ISBN 978-3-901882-68-5 © 2015 IFIP

ability of old content and we provide a special mode of
operation for the CMS to help them. In archival mode,
the CMS selects swarms not based on upload potential,
but on the number of replicas present in the system.

In addition to the functionality outlined above, we
include in our CMS design several subsystems aimed at
tackling challenges arising from implementing and deploy-
ing the CMS over the Internet. We identify duplicate
content and select for credit mining only the swarm with
the most peers. We detect spam using collaborative fil-
tering. Finally, we optimize the network traffic necessary
to maintain up to date information on the swarms in the
CMS.

We implement our design in Tribler and deploy it over
the Internet, using swarms from a real-world BitTor-
rent community. In our evaluation, we explore several
parameters that influence the functioning of the CMS
and use the results to select default values that lead to
good performance. Furthermore, we verify the feasibility
of widespread adoption of the CMS through an experiment
where a high proportion of peers use it.

The contributions we make in this chapter are the
following:

1) We design CMS, a credit mining system for Tri-
bler, which automatically selects from a whitelist of
swarms provided by the user the swarm with the
best upload potential, and joins this swarm with
the goal of maximizing its upload/download ratio
(Section III);

2) We solve problems arising from deploying CMS on
the Internet by detecting duplicate content, remov-
ing spam, and minimizing overhead network traffic
(Section IV);

3) We implement CMS in Tribler and test it with real-
world swarms, showing its credit mining effective-
ness, and proving its compatibility with widespread
community deployment (Sections V and VI).

II. Background

In this section, we describe accounting in P2P systems,
focusing on centralized, as well as decentralized solutions.
We also introduce Tribler, the system we use for the
implementation of the CMS.

A. Accounting and credit in P2P systems
Accounting mechanisms are widespread in P2P systems

because they incentivize users to contribute. Arguably the
most successful P2P system, BitTorrent, uses tit for tat [1],
a pairwise accounting mechanism where peers keep track
of their interaction with other peers and reward the peers
with the biggest contribution. However, tit for tat does not
incentivize long-term contribution, beyond the transfer of
a single file.

Several BitTorrent communities use centralized ac-
counting to track the overall contributions of users over

time [3]. BitTorrent clients report the upload and down-
load to the community servers such that each user has
an associated sharing ratio—the ratio between upload and
download. Communities employ sharing ratio enforcement
to provide certain privileges, like access to the newest
content, only to the users with sharing ratios above certain
thresholds. The sharing ratio is a form of credit, and in
certain communities it can be transferred between users.

Decentralized accounting mechanisms spread the bur-
den of tracking peer contributions from a centralized
server to the individual peers in the network [9]. Decen-
tralized accounting mechanisms that require every peer to
store the complete and up-to-date contribution informa-
tion of all peers are also suffering from limited scalability.
Instead, BarterCast [6] uses only the local view of each
peer to compute the relative contribution of other peers by
applying flow network techniques on the peer interaction
graph.

Accounting is used to provide benefits to users that earn
credit. In certain private communities, users are required
to maintain a minimum credit balance, otherwise they are
expelled from the community [3]. In other communities,
new content is first made available to users with sufficient
credit, and only later to the other users.

B. Tribler

Tribler is a P2P system developed at the Delft Univer-
sity of Technology and released as open-source software. It
is based on a custom protocol, called Swift [10], but is also
compatible with BitTorrent. In addition to file transfer,
it provides collaborative wiki-style editing, decentralized
search, and integrates the BarterCast accounting mecha-
nism.

As opposed to BitTorrent, where users have no long-
term identifiers, each Tribler user is assigned a permanent
identity, called PermID, which is used by BarterCast and
other subsystems. The PermID is actually an automati-
cally generated public key that also enables Tribler to en-
crypt the communication between peers. At the same time,
each data transfer between two Tribler peers generates a
BarterCast record which is cryptographically signed by
both peers. BarterCast records provide unforgeable proof
of contribution and are the basis of the Tribler accounting
mechanism.

Tribler gives users the possibility to publish their own
content in a decentralized way. Any Tribler user can create
a personal channel and add content to it. Other users can
subscribe to the channel and receive new content as it
is published. The P2P infrastructure for publishing and
subscribing to channels, as well as collaborative editing
and other Tribler features is provided by Dispersy [11],
a generic message synchronization system. Dispersy uses
Bloom filters to enable peers to exchange messages in a
P2P network under challenging conditions, including high
churn and lack of end-to-end connectivity.

Swarm selection Swarm
credit mining

Tribler
channels Folder

User

Supply of
swarms

Web
feed

Swarm selection
policy & interval

Sharing ratio
target

Fig. 1. An overview of the three steps of the credit mining process.

Applications running on top of Dispersy define the
message semantics—Dispersy is only concerned with syn-
chronization. For example, Tribler uses several type of
messages to implement channels, such as a message for
creating a channel, a message for adding content to a
channel, a message for removing content from a channel,
etc.

Each peer adds all messages to a Bloom filter and
periodically exchanges the Bloom filter with other peers
to determine what new messages must be exchanged. For
example, if peer A is subscribed to a channel, when A and
another peer, B, exchange Bloom filters, if A observes in
the Bloom filter of B a message adding new content to
the channel, A will request the message from B, thereby
discovering the new content.

III. Credit Mining System design
In this section, we describe the design of the CMS.

Considering the three steps involved in the credit mining
process, depicted in Figure 1, we discuss first the supply
of swarms to the CMS, second, the algorithm for selecting
swarms for investment, and third, the behavior of the CMS
within a swarm. Finally, we describe the design of the
archival mode of operation of the CMS.

A. Supply of swarms
We allow the user to select the swarms that are to

be credit mined by the CMS, thereby creating a form
of white-list. In other words, we make the credit mining
process opt-in: while the CMS is autonomous and does not
require user input, it does require a source of swarms to
start. The user can supply swarms to the CMS using three
sources, which we describe in turn.

The first source is a list of Tribler channels selected by
the users for boosting. Whenever the user wants to support
a channel, without necessarily downloading the content
shared through the channel, they can add the channel to
the CMS so that its swarms are taken into consideration.

The second source is a web feed coming from a web
server, which allows the CMS to access swarms as soon
as they are created. Web feeds are a popular means for
communities to distribute swarms and we have used them
before successfully for this purpose [3].

The third source is a folder containing torrent files. This
can be a folder with torrents downloaded by the user from
the web, or it can be the folder with torrents collected by

Tribler through gossiping during normal operation. When
two Tribler peers meet, they exchange lists of swarms to
determine the similarity between them, a feature useful
for search. At the same time, the torrents corresponding
to the swarms are saved in a local cache, which is accessible
to the user.

B. Swarm selection
The number of swarms available through a source is not

bounded, so the CMS has to explicitly select a subset of
active swarms to which to dedicate the bandwidth and
storage resources available. Furthermore, swarm selection
is a periodic process, because the characteristics of swarms
change constantly and the CMS must be able to improve
the credit mining by changing the set of active swarms.

The design of the CMS includes a pluggable policy
for swarm selection. We have previously studied methods
to predict the upload potential of swarms using simula-
tion [12]. We have shown that a multivariate adaptive
regression splines (MARS) model can select swarms with
good upload potential for the majority of peers in our
simulation. At the same time, we obtained positive results
for the same simulation setup using a simpler swarm
selection policy, namely selecting the swarm with the
lowest proportion of seeders. Because the regression model
we used for simulation is difficult to integrate into Tribler,
in this paper we use simpler policies, which still give good
results, as we will show in Section VI.

The first policy is the seeder ratio (SeederRatio) pol-
icy, which selects for credit mining the swarms with
the lowest ratio of seeders to all peers (seeders and
leechers). Intuitively, this policy selects the most under-
supplied swarms, i.e., the swarms with the least band-
width supply—seeders—compared to the total bandwidth
demand—leechers.

The second policy is the swarm age (SwarmAge) policy,
which selects swarms based on their age. Previous work
has shown that the age of a swarm plays a significant role
in the potential for upload [8]. Specifically, the newest
swarms offer the best potential. Most users will down-
load any content only once or a few times, and there
is a bounded number of users. It follows that there is a
bounded number of times any content will be downloaded
in total. So it is expected that an early download will
have more potential for upload—because of subsequent
downloads from other peers—than late downloads.

The third policy, Random, is used mainly to as a
baseline for evaluating the first two policies, but also to
stress test the other components of the CMS. Using the
Random policy, the CMS selects swarms for credit mining
uniformly at random from the swarms available.

C. Behavior within a swarm
The behavior of the CMS within a swarm is crucial to

the success of credit mining. The goal of the CMS when
joining a swarm is the same as its global goal: to upload

as much as possible while downloading as little as possible
in order to maximize the credit gained.

In previous work, we studied the theoretical properties
of in-swarm behavior algorithms through a mathematical
model [13]. We also identified a heuristic that provides
the desired in-swarm behavior. The heuristic, introduced
by the Libtorrent open-source software library [14], down-
loads the content in a swarm one piece at a time and
only downloads additional pieces when it estimates there
is enough potential for upload in the swarm.

The algorithm is governed by one parameter, the shar-
ing ratio target, which represents the desired ratio between
upload and download for swarms in the CMS. A value of
3 for this target—the default in Libtorrent—means that
the CMS will only download pieces from a swarm if it
estimates it will be able to upload it back to at least
3 other downloaders in the swarm. Furthermore, once a
piece is downloaded, the CMS waits for it to actually be
uploaded 3 times before it proceeds to download other
pieces. This condition acts as a fail-safe mechanism for the
situation when the upload potential estimation is wrong,
and guarantees that in the worst case the loss of the CMS
in a swarm is equal to the size of one piece.

A crucial characteristic of the algorithm is its resilience
to widespread deployment in the community. If two CMS
peers meet, they recognize each other through a flag
present in the BitTorrent handshake message. Thus, the
two CMS peers do not needlessly upload and download
data from each other, preventing the waste of resources.

D. Archival mode
Previous work has shown that it is more advantageous

to seed new files than old files for earning credit in a
community[8]. At the same time, users are frequently
interested in the long term availability of certain files.
Therefore, we provide a special mode of operation for the
CMS, called archival mode.

All swarm sources—channels, web feeds, and folders—
are compatible with archival mode. When the users adds
a new source to the CMS, they can mark it for archival.
When a swarm is in archival mode, the CMS will ensure
that it is always seeded by a minimum of two seeders—the
minimum necessary to provide fault tolerance. In practice,
if the CMS observes that an archival swarm has two or
less seeders, it downloads and seeds it. Whenever the
number of seeders raises again above three, the CMS
pauses seeding, while continuing to monitor the swarms
through trackers scrapes.

Archival mode swarms generate less credit than the
normal swarms in the CMS. However, they always get
priority over normal swarms because the user explicitly
asked the CMS to seed them by using archival mode.

At the same time, the CMS does not necessarily seed
all archival mode swarms at all times. When other peers
are seeding, the CMS pauses seeding and starts instead
uploading in normal swarms which have the potential to

TABLE I
Duplicate content example: ubuntu-14.04-desktop-amd64.iso
shared in different swarms because of different piece sizes

and private flag usage

Hash Piece [B] Flag

18AC50D74C61883B3AB4C40F5DD3E35F157DE1A2 1 048 576 N/A
4D753474429D817B80FF9E0C441CA660EC5D2450 524 288 N/A
F88ED0C16CF7F452A5C737A0B7503F925E11FE00 524 288 0

generate more credit. Consequently, archival mode offers
more flexibility than simply having the user seed swarms
in Tribler outside of the CMS.

IV. Internet deployment challenges
In this section, we focus on several issues tangential to

credit mining that are crucial for a system deployed on the
Internet.

A. Duplicate content detection
In many P2P communities where the addition of new

content is open to all users, duplicate content is a problem
that leads to a poor distribution of resources[15]. For
example, searching for “Ubuntu 14.04 AMD64 torrent” on
Google at the time of writing yields several results. Three
contain exactly the same content, the Ubuntu ISO file
named ubuntu-14.04-desktop-amd64.iso, 1 010 827 264
bytes in size. However, they have different hashes, because
they use different piece sizes or needlessly use the BitTor-
rent private flag, as summarized in Table I.

We design a duplicate content detection subsystem for
the CMS that groups files based on readily available
metadata, specifically, file size and file name. Our design
deliberately does not include inspecting the actual data,
therefore providing fast results. The subsystem uses the
file size information recorded in the torrents as the first
criterion for duplicate detection. If two files have the same
size, the subsystem compares their names. The subsys-
tem uses the Levenshtein distance [16]—a type of edit
distance—to decide if two equally sized files are duplicates
or not. Whenever the file names are less than five edits
apart, they are considered duplicates.

For every group of duplicates detected, the CMS only
uses the swarm with the largest number of seeders for
credit mining. This peer-level behavior aligns with the
community goal of consolidating swarms, which has been
proven to increase performance [17]. However, this may
seem counter intuitive at first sight from a credit mining
perspective. Were the peer to choose the swarm with
less seeders, the potential for upload would be greater.
However, in the long term, the swarm with less seeders
will disappear first from the community, so the long term
potential for upload is greater for swarms with more
seeders.

Each peer runs the duplicate detection algorithm when-
ever a new torrent is added to the CMS. In case the new

torrent is a duplicate of an existing torrent, the selection
for credit mining may stop the existing torrent if it has less
seeders. Furthermore, the CMS reevaluates the selection
periodically to ensure the torrent with most seeders is used
for credit mining.

B. Spam detection
Spam, defined as misrepresenting content in order to

circumvent established retrieval and ranking techniques,
is a pervasive phenomenon in P2P systems [18].

For the CMS implementation, we use an explicit spam
detection mechanism based on the votes of users in the
Tribler community. Dispersy, the Tribler subsystem that
implements channels, enables users to do collaborative
spam filtering at the channel level. A specific Dispersy
message is created for every vote cast by a user on a
channel, classifying the channel as spam or not spam.
Each peer adds the Dispersy message representing the
user vote to its Bloom filter. Dispersy then distributes
the messages such that a global consensus can be formed.
Each peer is thus aware of the spam status of channels as
resulting from collaborative filtering. The CMS uses this
information for detecting spam among the swarms in its
sources. If a swarm is present in more spam than not spam
channels, the CMS considers it spam and does not take it
into consideration for credit mining.

C. Updating information
It is important that the information used by the CMS

swarm selection algorithm as input is constantly updated
to reflect changes in the P2P community. The network
traffic generated while updating this information may con-
stitute a non-negligible overhead compared to the upload
generated by the CMS.

Each peer periodically retrieves updated information
from trackers through a standard BitTorrent protocol
called scraping. We design an efficient tracker scraping
subsystem that minimizes network traffic. As a result, the
tracker load is also minimized, which again represents an
alignment of peer- and community-level goals. The main
idea is for each peer to group together torrents by tracker
and make a single scrape request for all torrents in a
group. Naturally, there has to be a limit on the number
of torrents part of a single request, i.e., the maximum size
of the message to be sent over the network. In accordance
with the BitTorrent UDP Tracker Protocol, we limit the
number of torrents in a single scrape request to 74 [19].
Each peer scrapes trackers at an interval of equal to the
swarm selection interval, which we experimentally explore
in Section VI.

V. Tribler implementation
From a software engineering perspective, Tribler con-

sists of modules divided in two layers: the core and the
graphical user interface, to facilitate the development of al-
ternative user interfaces. Our CMS implementation covers

Fig. 2. The Tribler credit mining user interface, showing an overview,
the list of potential swarms, and one active swarm.

both layers. Like the rest of Tribler, our implementation
uses the Python programming language and consists of
approximately 2000 lines of changes on top of Tribler,
including the unit tests.

We allow for easy extension of the CMS through new
pluggable policies. For swarms selection, new policies must
implement a comparison function for swarms, which has
access to all swarm parameters in Tribler, including num-
ber of seeders and leechers, and creation date, which we
used for the policies tested in this paper.

The CMS can be configured through a configuration file
which specifies parameters, such as the swarm selection
policy or the sharing ratio target. However, we have also
implemented a full graphical user interface for the CMS,
which is depicted in Figure 2.

First of all, the user interface allows users to manage
the credit mining sources, i.e., add and remove sources.
Second, it shows an overview of the credit mining ac-
tivity, including the total amount of bytes uploaded and
downloaded, and the upload and download speed of the
CMS. Finally, users can check the list of swarms that are
part of the CMS and understand exactly what the CMS is
doing. We believe this transparency will encourage people
to actively use credit mining in Tribler.

VI. Evaluation of credit mining in Tribler
In this section, we evaluate the CMS as implemented in

Tribler through experiments we conduct over the Internet.
We use Tribler instances that we control to connect to real-
world swarms we do not control, and record the activity
of the CMS. First, we evaluate the CMS configuration pa-
rameters and propose a default value for each parameter.
We then evaluate the effect of a community-wide CMS
deployment of by inserting many CMS peers at the same
time in a small number of swarms.

A. Experimental setup
As source of swarms, we use the RSS web feed of

etree.org, a community that shares music with per-
mission from authors. (In fact, BitTorrent was originally
designed to serve this community [20].) The RSS web

TABLE II
Parameters used in the experiments

Parameter Values

Swarm selection policy SeederRatio, SwarmAge, Random
Swarm selection interval 5 min, 10 min, 30 min
Sharing ratio target 1, 3, 5

feed contains the most recent 30 torrents published in
the community. New torrents are added at a rate of
approximately 20 per day, according to our observation.
We check the RSS web feed for new torrents every 30
minutes, the default Tribler interval. At any moment, we
credit mine a maximum of 13 swarms simultaneously, the
Tribler default for the maximum number of active swarms.

In Table II we summarize the CMS parameters we
change during the experiments. These parameters cover
both the swarm selection stage—policy and interval—and
the in-swarm behavior stage—sharing ratio target. We
evaluate each of the three parameters in turn. For each of
the parameters, we run three instances of Tribler, one for
each value of the parameter, while the other parameters
have a fixed value. The full range of potential values
for each parameter is impossible to explore exhaustively
using real-world experiments. We limit this experiment to
three values per parameter, which we select based on our
knowledge gained from designing and implementing the
CMS.

Throughout the experiments, we use as a performance
evaluation metric for the CMS the net credit gain in
Tribler, which is equal to the net upload gain in bytes:

net upload gain = uploaded bytes − downloaded bytes

When discussing the efficiency of the CMS, we also refer
to the normalized upload gain, which normalizes the net
upload gain by the amount of bytes downloaded:

normalized upload gain =
net upload gain

downloaded bytes
B. Choosing a swarm selection policy

In our first experiment, we evaluate the swarm selection
policy. Figure 3 depicts the evolution over a two-day
period of the credit earned by the CMS expressed as
net upload gain. The colored dots represent individual
swarms while the black line represents the overall result.
The swarm selection policy differs between the three sub-
graphs, while the other two parameters, swarm selection
interval and sharing ratio target, are fixed to 5 minutes
and 3, respectively. Note that we use a logarithmic vertical
axis in Figure 3 (as well as Figures 4 and 5), to better
illustrate the evolution of each swarm. At the beginning
of credit mining in a swarm, the net upload gain is always
negative, because it is necessary to download at least one
piece before uploading. Furthermore, because of transfer

100

1000

10000

100

1000

10000

100

1000

10000

S
e

e
d

e
rR

a
tio

S
w

a
rm

A
g

e
R

a
n

d
o

m

2014−11−16
00:00

2014−11−16
12:00

2014−11−17
00:00

2014−11−17
12:00

2014−11−18
00:00

Timestamp

N
e

t
u

p
lo

a
d

 g
a

in
 [

M
B

]

Fig. 3. The net upload gain for the three swarm selection policies.
Colored lines represent individual swarms, the black line represents
the total. Logarithmic vertical axes with data translated by 100 MB.

errors, some pieces require more than one download at-
tempt, also resulting in a negative upload gain. In order
to take the logarithm given these negative values, we apply
a translation to the data, adding 100 MB to each swarm
and to the total.

Analyzing Figure 3, we conclude that the SeederRatio
policy is the most efficient for credit mining. The credit
earned by the CMS during the experiment with the Seed-
erRatio policy, 24.27 GB, is more than twice as high as the
11.25 GB earned with the second best policy, SwarmAge,
and more than 20 times as high compared to 1.12 GB
of the worst policy, Random. Following the evolution of
individual swarms (identified by color), we notice a similar
relative evolution of swarms in each of the subgraphs;
even for the Radom policy, we note that the successful
swarms are also successful when using the other two poli-
cies. The individual swarm analysis also reveals why the
SwarmAge policy performs worse than SeederRatio; while
the beginning of credit mining is almost identical for both
policies, SwarmAge stops mining a swarm when newer
swarms appear, while the SeederRatio policy returns to
swarms in need of upload throughout the experiment.

C. Choosing a swarm selection interval
In Figure 4, we plot the results of evaluating the second

parameter, the swarm selection interval. It is important to
note that we set tracker scraping to use the same interval.

100

1000

100

1000

100

1000

5
 m

in
1

5
 m

in
3

0
 m

in
2014−11−19

00:00
2014−11−19

12:00
2014−11−20

00:00
2014−11−20

12:00

Timestamp

N
e

t
u

p
lo

a
d

 g
a

in
 [

M
B

]

Fig. 4. The net upload gain for the three swarm selection intervals.
Colored lines represent individual swarms, the black line represents
the total. Logarithmic vertical axes with data translated by 100 MB.

Intuitively, the smaller the interval, the more up-to-date
the CMS information will be, and the more credit should
be gained. The other two CMS parameters are set to
SeederRatio and 3.

Indeed, we observe an inverse correlation between the
interval duration and the amount of credit gained, with
values 5 min, 15 min, and 30 min producing 7.87 GB,
7.10 GB, and 5.23 GB, respectively. Note that the num-
bers for credit gained should only be compared among
themselves and not with the numbers in Figure 3, be-
cause the set of swarms used differs. Individual swarm
behavior (identified by color) is almost identical across
all subgraphs, the only difference being the amount of
credit gained for each swarm. Recall that the three Tribler
instances in the experiment use the same set of swarms for
credit mining. Therefore, by the time swarms appear in the
Tribler instance using the 30 min interval, the potential
for upload is already largely fulfilled by the other two
Tribler instances with shorter intervals. However, even
the 30 min interval generates substantial credit, so it
may be desirable to use it as a default value, considering
the reduced overhead it brings to both the peer and the
community tracker.

D. Choosing a sharing ratio target
Finally, in Figure 5 we depict the results of the third

experiment, evaluating last CMS parameter, the sharing

100

1000

10000

100

1000

10000

100

1000

10000

1
3

5

2014−11−23
00:00

2014−11−23
12:00

2014−11−24
00:00

2014−11−24
12:00

Timestamp

N
e

t
u

p
lo

a
d

 g
a

in
 [

M
B

]

Fig. 5. The net upload gain for the three sharing ratio targets.
Colored lines represent individual swarms, the black line represents
the total. Logarithmic vertical axes with data translated by 100 MB.

ratio target; the other two parameters are set to Seed-
erRatio and 5 minutes. Considering the total net credit
gain, setting the sharing ratio target to 1 produces the
best results, 15.86 GB, followed by 3, 10.71 GB, and 5,
which produces 6.28 GB.

However, if we compute the normalized credit gain,
we observe that it is proportional to the sharing ratio
target; the normalized credit gains are 1.08, 3.81, and
5.92 for sharing ratio targets 1, 3, and 5, respectively.
Using a sharing ratio target of 1 is inefficient (there are
only 1.08 GB of upload gained for each GB downloaded),
but this lack of efficiency is compensated by an increase
in the activity of the CMS: data is transferred in many
swarms which accumulates to an overall high net upload
gain. Thus, if we consider the resources used for credit
mining (e.g., network traffic, storage space), it is desirable
to select a higher sharing ratio target instead of 1. Overall,
we conclude that the Libtorrent default of 3 is a good value
for the sharing ratio target, resulting in a good balance
between the amount of credit gained and resources used.

E. Effect of widespread credit mining
In this fourth experiment, we emulate the widespread

deployment of the CMS by running 20 instances of Tri-
bler simultaneously using the same source of swarms, the
etree.org RSS web feed. From our observation, most of
the swarms have fewer than 5 downloaders, not including

0

500

1000

1500

2014−12−02
00:00

2014−12−02
06:00

2014−12−02
12:00

2014−12−02
18:00

Timestamp

N
e

t
u

p
lo

a
d

 g
a

in
 [

M
B

]

Fig. 6. The net upload gain of 20 credit mining peers deployed
simultaneously, represented by colored lines. The thick line represent
the median and the shaded area represents the 10th to 90th percentile
region.

our Tribler peers. Thus we produce during this experiment
a high proportion of credit mining peers.

Figure 6 illustrates the effect of simultaneously running
the 20 credit mining peers, all using the SeederRatio
swarm selection policy, a swarm selection interval of 5
minutes, and a sharing ratio target of 3. For clarity,
we only plot the overall net upload gain for each peer,
without the evolution of individual swarms. Each colored
line represent one peer, the thicker line represents the
median of all peers, and the shaded area represents the
gap between the 10th and 90th percentiles.

Even taking into account the variability of the swarms
used as input, we notice a significantly lower net upload
gain for the individual credit miners compared to the
previous experiments, with a median of 1.20 GB after one
day of credit mining. However, there are no catastrofic
effects of widespread CMS deployment. In fact, all peers
still obtain a positive net upload gain after one day
of activity, with a minimum of 1.00 GB. The distance
between the 10th percentile and the 90th percentile is only
0.54 GB, showing that credit mining peers have similar
chances of contributing to the community.

VII. Conclusion
The evolution of P2P systems has been tightly cou-

pled to the evolution of incentive mechanisms. Account-
ing mechanisms based on credit or on sharing ratio are
currently a widespread method for incentivizing seeding
in BitTorrent communities. In this paper, we have in-
troduced CMS, a decentralized system for credit mining
that enables honest users to contribute their idle upload
bandwidth to the community. Using the CMS is beneficial
both for the user, who earns credit, and for the commu-
nity, where the contributed upload speed results in faster
downloads for other users.

We have explored the parameters that control the CMS
behavior and provided insight into their effect on credit
mining efficiency and resource usage. Ultimately, the bal-

ance between credit earned and resources used is best left
to the user and we plan to implement in Tribler advanced
settings for changing this balance.

Furthermore, we have shown that CMS deployment
is reasonable even considering widespread deployment in
the community. The behavior of CMS peers within a
swarm prevents them from needlessly wasting resources
on uploading and downloading from each other. Instead,
the CMS peers take turns at providing upload bandwidth
to the actual downloaders in the community, thus always
obtaining a positive net upload gain.

Acknowledgments

The authors would like to thank Egbert Bouman for
help with the Tribler code and Elric Milon for help with
setting up the experiments.

References

[1] B. Cohen, “Incentives Build Robustness in BitTorrent,” in
Workshop on Economics of Peer-to-Peer Systems, Berkley,
CA, USA, 2003. [Online]. Available: http://sims.berkeley.edu/
research/conferences/p2pecon/papers/s4-cohen.pdf

[2] E. Adar and B. A. Huberman, “Free riding on Gnutella,”
First Monday, vol. 5, no. 10, Oct. 2000. [Online]. Available:
https://doi.org/10.5210/fm.v5i10.792

[3] M. Meulpolder, L. D’Acunto, M. Capotă, M. Wojciechowski,
J. A. Pouwelse, D. H. J. Epema, and H. J. Sips, “Public
and private BitTorrent communities: A measurement
study,” in International Workshop on Peer-to-Peer Systems
IPTPS. San Jose, CA: USENIX Association, 2010. [Online].
Available: https://www.usenix.org/conference/iptps-10/
public-and-private-bittorrent-communities-measurement-study

[4] A. L. Jia, R. Rahman, T. Vinkó, J. A. Pouwelse, and
D. H. Epema, “Fast download but eternal seeding: The
reward and punishment of Sharing Ratio Enforcement,” in
IEEE International Conference on Peer-to-Peer Computing
(P2P). IEEE, Aug. 2011, pp. 280–289. [Online]. Available:
https://doi.org/10.1109/P2P.2011.6038746

[5] N. Zeilemaker, M. Capotă, A. Bakker, and J. A. Pouwelse,
“Tribler: P2P media search and sharing,” in ACM International
conference on Multimedia (MM). New York: ACM Press,
2011, pp. 739–742. [Online]. Available: https://doi.org/10.1145/
2072298.2072433

[6] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips,
“BarterCast: A practical approach to prevent lazy freeriding
in P2P networks,” in IEEE International Symposium on
Parallel & Distributed Processing (IPDPS). IEEE, May 2009,
Conference proceedings (article), pp. 1–8. [Online]. Available:
https://doi.org/10.1109/IPDPS.2009.5160954

[7] B. Zhang, A. Iosup, J. A. Pouwelse, and D. H. J.
Epema, “Identifying, analyzing, and modeling flashcrowds
in BitTorrent,” in IEEE International Conference on Peer-
to-Peer Computing. IEEE, Aug. 2011, pp. 240–249. [Online].
Available: https://doi.org/10.1109/P2P.2011.6038742

[8] I. A. Kash, J. K. Lai, H. Zhang, and A. Zohar, “Economics of
BitTorrent communities,” in International conference on World
Wide Web (WWW). New York: ACM Press, 2012, p. 221.
[Online]. Available: https://doi.org/10.1145/2187836.2187867

[9] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson,
“One hop reputations for peer to peer file sharing
workloads,” in USENIX Symposium on Networked Systems
Design and Implementation (NSDI). San Francisco,
California: USENIX Association, 2008, pp. 1–14. [On-
line]. Available: https://www.usenix.org/conference/nsdi-08/
one-hop-reputations-peer-peer-file-sharing-workloads

[10] R. Petrocco, J. A. Pouwelse, and D. H. J. Epema, “Performance
analysis of the Libswift P2P streaming protocol,” in IEEE
International Conference on Peer-to-Peer Computing (P2P).
IEEE, Sep. 2012, pp. 103–114. [Online]. Available: https:
//doi.org/10.1109/P2P.2012.6335790

[11] N. Zeilemaker, B. Schoon, and J. A. Pouwelse, “Large-
scale message synchronization in challenged networks,” in
ACM Symposium on Applied Computing (SAC). New York:
ACM Press, 2014, pp. 481–488. [Online]. Available: https:
//doi.org/10.1145/2554850.2554908

[12] M. Capotă, N. Andrade, J. A. Pouwelse, and
D. H. J. Epema, “Investment Strategies for Credit-
Based P2P Communities,” Tech. Rep. PDS-2014-005, 2014.
[Online]. Available: http://www.pds.ewi.tudelft.nl/fileadmin/
pds/reports/2014/PDS-2014-005.pdf

[13] M. Capotă, J. A. Pouwelse, and D. H. J. Epema, “Towards
a Peer-to-Peer Bandwidth Marketplace,” in Distributed
Computing and Networking (ICDCN), M. Chatterjee, J.-
n. Cao, K. Kothapalli, and S. Rajsbaum, Eds. Coimbatore,
Tamil Nadu, India: Springer, 2014, pp. 302–316. [Online].
Available: https://doi.org/10.1007/978-3-642-45249-9_20

[14] A. Norberg, “Libtorrent.” [Online]. Available: {http:
//libtorrent.org}

[15] O. Papapetrou, S. Ramesh, S. Siersdorfer, and W. Nejdl,
“Optimizing Near Duplicate Detection for P2P Networks,” in
IEEE International Conference on Peer-to-Peer Computing
(P2P). IEEE, Aug. 2010, pp. 1–10. [Online]. Available:
https://doi.org/10.1109/P2P.2010.5570001

[16] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals,” in Soviet physics doklady, vol. 10, 1966,
p. 707.

[17] G. Dán and N. Carlsson, “Centralized and Distributed Protocols
for Tracker-Based Dynamic Swarm Management,” IEEE/ACM
Transactions on Networking, vol. 21, no. 1, pp. 297–310, Feb.
2013. [Online]. Available: https://doi.org/10.1109/TNET.2012.
2198491

[18] D. Jia, W. G. Yee, and O. Frieder, “Spam characterization
and detection in peer-to-peer file-sharing systems,” in ACM
conference on Information and knowledge mining (CIKM).
New York: ACM Press, 2008, p. 329. [Online]. Available:
https://doi.org/10.1145/1458082.1458128

[19] O. van der Spek, “UDP Tracker Protocol for BitTorrent,”
BitTorrent, BitTorrent extension proposal, 2008. [Online].
Available: http://bittorrent.org/beps/bep_15.html

[20] K. Peterson, “BitTorrent file-sharing program floods the Web,”
Seattle Times, 2005. [Online]. Available: {http://seattletimes.
com/html/businesstechnology/2002146729_bittorrent10.html}

